[en] Glutathione (GSH) levels are supposed to determine the vulnerability of many cells towards a wide array of insults. We investigated the effects of chronic inhibition of GSH synthesis and acute depletion of GSH on cerebellar granule neurons in vitro and determined cytoplasmic and mitochondrial GSH with relation to mitochondrial function and generation of reactive oxygen intermediates (ROI). l-buthionine sulfoximine (BSO), which irreversibly blocks gamma-glutamyl-cysteine synthase, led to a time- and concentration-dependent loss of cytoplasmic GSH, while mitochondrial GSH was relatively preserved. No increased generation of ROI was detected over 48 h and the mitochondrial membrane potential was largely maintained. Neuronal degeneration occurred when mitochondrial GSH levels had fallen below 50% of control after 24-36 h. In contrast, direct conjugation of mitochondrial and cytoplasmic GSH with etacrynic acid (EA), resulted in immediate loss of mitochondrial GSH, a large increase of ROI within 2 h, subsequent collapse of the mitochondrial membrane potential and complete cell death within 4-8 h. Electron microscopy studies revealed an as yet unknown change of the chromatin structure to a homogeneous granular pattern after BSO, while EA resulted in typical necrotic changes. No typical features of apoptosis, i.e., no chromatin condensation or DNA fragmentation were detected after GSH depletion after BSO or EA treatment.
Disciplines :
Neurology
Author, co-author :
Wüllner, U; Department of Neurology, Eberhard-Karls-University, Hoppe-Seyler-Str. 3, D-72076, Tübingen, Germany. wuellner@uni-bonn.de
Seyfried, J; Department of Neurology, Eberhard-Karls-Univ., Hoppe-S., Tübingen, Germany
Groscurth, P; Institute of Anatomy, Div. Cell Biol., Univ. Zurich-I., Zürich, Switzerland
Beinroth, S; Department of Neurology, Eberhard-Karls-Univ., Hoppe-S., Tübingen, Germany
Winter, S; Department of Neurology, Eberhard-Karls-Univ., Hoppe-S., Tübingen, Germany
Gleichmann, M; Department of Neurology, Eberhard-Karls-Univ., Hoppe-S., Tübingen, Germany
HENEKA, Michael ; Department of Neurology, Rheinische Friedrich-Wilhelms-U., Bonn, Germany
Löschmann, P.-A.; Department of Neurology, Eberhard-Karls-Univ., Hoppe-S., Tübingen, Germany
Schulz, J B; Department of Neurology, Eberhard-Karls-Univ., Hoppe-S., Tübingen, Germany
Weller, M; Department of Neurology, Eberhard-Karls-Univ., Hoppe-S., Tübingen, Germany
Klockgether, T; Department of Neurology, Rheinische Friedrich-Wilhelms-U., Bonn, Germany
External co-authors :
yes
Language :
English
Title :
Glutathione depletion and neuronal cell death: the role of reactive oxygen intermediates and mitochondrial function.
The excellent technical assistance of I. Müller and L. Dumitrescu is gratefully acknowledged; we thank R. Dringen for helpful discussions. This study was supported by the fortune program of the University of Tübingen (UW) and the BMBF 01 KS 9602.
Ankacrona M., Dypbukt J.M., Bonfoco E., Zhivotovsky B., Orrenius S., Lipton S.A., Nicotera P. Glutamate induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron. 15:1995;961-973.
Baker M.A., Cerniglia G.J., Zaman A. Microtiter plate assay for the measurement of glutathione and glutathione disulfide in large samples. Anal. Biochem. 190:1990;360-365.
Beaver J.P., Waring P. A decrease in intracellular glutathione concentration precedes the onset of apoptosis in murine thymocytes. Eur. J. Cell Biol. 68:1995;47-54.
Bojes H.K., Datta K., Xu J., Chin A., Simonian P., Nunez G., Kehrer J.P. Bcl-xL overexpression attenuates glutathione depletion in FL5.12 cells following interleukin-3 withdrawal. Biochem. J. 325:1997;315-319.
Dobbelsteen D.J., Nobel C.S.I., Schlegel J., Cotgreave I.A., Orrenius S., Slaters A.F.G. Rapid and specific efflux of reduced glutathione during apoptosis induced by anti-Fas/APO-1 antibody. J. Biol. Chem. 271:1996;15420-15427.
Garcia R.C., Colell A., Morales A., Kaplowitz N., Fernandez C.J.C. Role of oxidative stress generated from the mitochondrial electron transport chain and mitochondrial glutathione status in loss of mitochondrial function and activation of transcription factor nuclear factor-kappa-B: studies with isolated mitochondria and rat hepatocytes. Mol. Pharmacol. 48:1995;825-834.
Garcia R.C., Morales A., Colell A., Rodes J., Yi J.R., Kaplowitz N., Fernandez C.J.C. Evidence that the rat hepatic mitochondrial carrier is distinct from the sinusoidal and canalicular transporters for reduced glutathione. Expression studies in Xenopus laevis oocytes. J. Biol. Chem. 270:1995;15946-15949.
Han S.K., Mytillineou C., Cohen G. L-DOPA up-regulates glutathione and protects mesencephalic cultures against oxidative stress. J. Neurochem. 66:1996;501-510.
Heales S.J.R., Bolanos J.P., Clark J.B. Glutathione depletion is accompanied by increased neuronal nitric oxide synthase activity. Neurochem. Res. 21:1996;35-39.
Huang J., Philbert M.A. Distribution of glutathione and glutathione-related enzyme systems in mitochondria and cytosol of cultured cerebellar astrocytes and granule cells. Brain Res. 680:1995;16-22.
Huang J., Philbert M.A. Cellular responses of cultured cerebellar astrocytes to ethacrynic acid-induced perturbation of subcellular glutathione homeostasis. Brain Res. 711:1996;184-192.
Jenner P. Oxidative damage in neurodegenerative disease. The Lancet. 344:1994;796-798.
Kane D.J., Sarafia T.A., Anton R., Hahn H., Gralla E.B., Valentine J.S., Ord T., Bredesen D.E. Bcl-2 inhibition of neuronal death: decreased generation of reactive oxygen species. Science. 262:1993;1274-1277.
Langeveld C.H., Jongenelen A.M., Schepens E., Stoof J.C., Bast A., Drukarch B. Cultured rat striatal and cortical astrocytes protect mesencephalic dopaminergic neurons against hydrogen peroxide toxicity independent of their effect on neuronal development. Neurosci. Lett. 192:1995;13-16.
Lomaestro B.M., Malone M. Glutathione in health and disease: pharmacotherapeutic issues. Annals of Pharmacotherapy. 29:1995;1263-1273.
Macho A., Hirsch T., Marzo I., Marchetti P., Dallaporta B., Susin S.A., Zamzami M., Kroemer G. Glutathione depletion is an early and calcium elevation is a late event of thymocyte apoptosis. J. Immunol. 158:1997;4612-4619.
A. Meister, M. Andersson, Glutathione, Annu. Rev. Biochem. (1983) 711-760.
Nicoletti F., Wroblewski J.T., Novelli A., Alho H., Guidotti A.C.E. The activation of inositol phospholipid metabolism as a signal transducing system for excitatory amino acids in primary cultures of cerebellar granule cells. J. Neurosci. 67:1986;1905-1911.
Oyama Y., Hayashi A., Ueha T., Maekawa K. Characterization of 2′7′-dichlorofluorescinfluorescence in dissociated mammalian brain neurons: estimation on intracellular content of hydrogen peroxide. Brain Res. 635:1994;113-117.
Reed D.J., Savage M.K. Influence of metabolic inhibitors on mitochondrial permeability transition and glutathione status. Biochim. Biophys. Acta. 1271:1995;43-50.
Sato N., Iwata S., Nakamura K., Hori T., Mori K., Yodoi J. Thiol-mediated redox regulation of apoptosis: possible roles of cellular thiols other than glutathione in T cell apoptosis. J. Immunol. 154:1995;3194-3203.
Wüllner U., Löschmann P.-A., Schulz J.B., Schmid A., Dringen R., Eblen F., Turski L., Klockgether T. Glutathione depletion potentiates MPTP and MPP+ toxicity in nigral dopaminergic neurones. Neuroreport. 7:1996;921-923.
Wüllner U., Weller M., Groscurth P., Löschmann P.-A., Schulz J.B., Müller I., Klockgether T. Evidence for an active type of cell death with ultrastructural features distinct from apoptosis: the effects of 3-acetylpyridine toxicity. Neuroscience. 81:1997;721-734.
Zeevalk G.D., Bernard L.P., Albers D.S., Mirochnitchenko O., Nicklas W.J., Sonsalla P.K. Energy stress induced dopamine loss in glutathione peroxidase overexpressing transgenic mice and in glutathione depleted mesencephalic cultures. J. Neurochem. 68:1997;426-429.
Zheng X.X., Shoffner J.M., Voljavec A.S., Wallace D.C. Evaluation of procedures for assaying oxidativephosphorylation enzyme activities in mitochondrial myopathy muscle biopsies. Biochim. Biophys. Acta. 1019:1990;1-10.