Astrocyte-specific expression of interleukin 23 leads to an aggravated phenotype and enhanced inflammatory response with B cell accumulation in the EAE model.
Astrocyte-specific expression of interleukin 23 leads to an aggravated phenotype and enhanced inflammatory response with B cell accumulation in the EAE model.pdf
[en] BACKGROUND: Interleukin 23 is a critical cytokine in the pathogenesis of multiple sclerosis. But the local impact of interleukin 23 on the course of neuroinflammation is still not well defined. To further characterize the effect of interleukin 23 on CNS inflammation, we recently described a transgenic mouse model with astrocyte-specific expression of interleukin 23 (GF-IL23 mice). The GF-IL23 mice spontaneously develop a progressive ataxic phenotype with cerebellar tissue destruction and inflammatory infiltrates with high amounts of B cells most prominent in the subarachnoid and perivascular space.
METHODS: To further elucidate the local impact of the CNS-specific interleukin 23 synthesis in autoimmune neuroinflammation, we induced a MOG35-55 experimental autoimmune encephalomyelitis (EAE) in GF-IL23 mice and WT mice and analyzed the mice by histology, flow cytometry, and transcriptome analysis.
RESULTS: We were able to demonstrate that local interleukin 23 production in the CNS leads to aggravation and chronification of the EAE course with a severe paraparesis and an ataxic phenotype. Moreover, enhanced multilocular neuroinflammation was present not only in the spinal cord, but also in the forebrain, brainstem, and predominantly in the cerebellum accompanied by persisting demyelination. Thereby, interleukin 23 creates a pronounced proinflammatory response with accumulation of leukocytes, in particular B cells, CD4+ cells, but also γδ T cells and activated microglia/macrophages. Furthermore, transcriptome analysis revealed an enhanced proinflammatory cytokine milieu with upregulation of lymphocyte activation markers, co-stimulatory markers, chemokines, and components of the complement system.
CONCLUSION: Taken together, the GF-IL23 model allowed a further breakdown of the different mechanisms how IL-23 drives neuroinflammation in the EAE model and proved to be a useful tool to further dissect the impact of interleukin 23 on neuroinflammatory models.
Disciplines :
Neurology
Author, co-author :
Nitsch, Louisa ✱; Department of Neurology, University Clinic Bonn, Campus Venusberg 1, D-53127, Bonn, Germany. Louisa.Nitsch@ukb.uni-bonn.de
Petzinna, Simon ✱; Department of Neurology, University Clinic Bonn, Campus Venusberg 1, D-53127, Bonn, Germany
Zimmermann, Julian; Department of Neurology, University Clinic Bonn, Campus Venusberg 1, D-53127, Bonn, Germany
Schneider, Linda; Department of Neurology, University Clinic Bonn, Campus Venusberg 1, D-53127, Bonn, Germany ; Department of Surgery, University Clinic Bonn, Campus Venusberg 1, D-53127, Bonn, Germany
Krauthausen, Marius; Department of Neurology, University Clinic Bonn, Campus Venusberg 1, D-53127, Bonn, Germany
HENEKA, Michael ; Department of Neurodegenerative Disease and Geriatric Psychiatry, University Clinic Bonn, Campus Venusberg 1, D-53127, Bonn, Germany
Getts, Daniel R; Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, USA
Becker, Albert; Department of Neuropathology, University Clinic Bonn, Campus Venusberg 1, D-53127, Bonn, Germany
Müller, Marcus; Department of Neurology, University Clinic Bonn, Campus Venusberg 1, D-53127, Bonn, Germany ; School of Molecular Bioscience, University of Sydney, Sydney, Australia
✱ These authors have contributed equally to this work.
External co-authors :
yes
Language :
English
Title :
Astrocyte-specific expression of interleukin 23 leads to an aggravated phenotype and enhanced inflammatory response with B cell accumulation in the EAE model.
Deutsche Forschungsgemeinschaft University of Muenster Medical School University of Bonn Medical School Novartis Pharma Universitätsklinikum Bonn
Funding text :
MM was a post-doctoral fellow from the Deutsche Forschungsgemeinschaft [DFG, Mu17-07/3-1] and was also supported by the fund “Innovative Medical Research” of the University of Muenster Medical School, Germany. JZ was funded by the fund “Bonfor” from the University of Bonn Medical School, Germany and the DFG [KFO177, University of Bonn]. SP was funded by the fund “Bonfor” of the Bonn Medical School, Germany. LN was funded by the DFG [KFO177, University of Bonn] and the “Oppenheim Foerderpreis” Novartis GmbH. Open Access funding enabled and organized by Projekt DEAL.
Lassmann H, Brück W, Lucchinetti CF. The immunopathology of multiple sclerosis: an overview. Brain Pathol. 2007;17(2):210–8. 10.1111/j.1750-3639.2007.00064.x. DOI: 10.1111/j.1750-3639.2007.00064.x
Kurschus FC. T cell mediated pathogenesis in EAE: molecular mechanisms. Biomed J. 2015;38(3):183–93. 10.4103/2319-4170.155590. DOI: 10.4103/2319-4170.155590
Machado-Santos J, Saji E, Tröscher AR, Paunovic M, Liblau R, Gabriely G, et al. The compartmentalized inflammatory response in the multiple sclerosis brain is composed of tissue-resident CD8+ T lymphocytes and B cells. Brain. 2018;141(7):2066–82. 10.1093/brain/awy151. DOI: 10.1093/brain/awy151
Lucchinetti C, Brück W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol. 2000;47(6):707–17. 10.1002/1531-8249(200006)47:6<707::AID-ANA3>3.0.CO;2-Q. DOI: 10.1002/1531-8249(200006)47:6<707::AID-ANA3>3.0.CO;2-Q
Serafini B, Rosicarelli B, Magliozzi R, Stigliano E, Aloisi F. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol. 2004;14(2):164–74. 10.1111/j.1750-3639.2004.tb00049.x. DOI: 10.1111/j.1750-3639.2004.tb00049.x
Hauser SL, Bar-Or A, Comi G, Giovannoni G, Hartung HP, Hemmer B, et al. Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med. 2017;376(3):221–34. 10.1056/NEJMoa1601277. DOI: 10.1056/NEJMoa1601277
Rivers TM, Sprunt DH, Berry GP. Observations on attempts to produce acute disseminated encephalomyelitis in monkeys. J Exp Med. 1933;58(1):39–53. 10.1084/jem.58.1.39. DOI: 10.1084/jem.58.1.39
Iglesias A, Bauer J, Litzenburger T, Schubart A, Linington C. T- and B-cell responses to myelin oligodendrocyte glycoprotein in experimental autoimmune encephalomyelitis and multiple sclerosis. Glia. 2001;36(2):220–34. 10.1002/glia.1111. DOI: 10.1002/glia.1111
Javan MR, Shahraki S, Safa A, Zamani MR, Salmaninejad A, Aslani S. An interleukin 12 B single nucleotide polymorphism increases IL-12p40 production and is associated with increased disease susceptibility in patients with relapsing-remitting multiple sclerosis. Neurol Res. 2017;39(5):435–41. 10.1080/01616412.2017.1301623. DOI: 10.1080/01616412.2017.1301623
Sie C, Korn T, Mitsdoerffer M. Th17 cells in central nervous system autoimmunity. Exp Neurol. 2014;262 Pt A:18–27. DOI: 10.1016/j.expneurol.2014.03.009
Kebir H, Ifergan I, Alvarez JI, Bernard M, Poirier J, Arbour N, et al. Preferential recruitment of interferon-gamma-expressing TH17 cells in multiple sclerosis. Ann Neurol. 2009;66(3):390–402. 10.1002/ana.21748. DOI: 10.1002/ana.21748
Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity. 2000;13(5):715–25. 10.1016/S1074-7613(00)00070-4. DOI: 10.1016/S1074-7613(00)00070-4
Shajarian M, Alsahebfosoul F, Etemadifar M, Sedaghat N, Shahbazi M, Firouzabadi FP, et al. IL-23 plasma level measurement in relapsing remitting multiple sclerosis (RRMS) patients compared to healthy subjects. Immunol Invest. 2015;44(1):36–44. 10.3109/08820139.2014.930477. DOI: 10.3109/08820139.2014.930477
Wen SR, Liu GJ, Feng RN, Gong FC, Zhong H, Duan SR, et al. Increased levels of IL-23 and osteopontin in serum and cerebrospinal fluid of multiple sclerosis patients. J Neuroimmunol. 2012;244(1-2):94–6. 10.1016/j.jneuroim.2011.12.004. DOI: 10.1016/j.jneuroim.2011.12.004
Li Y, Chu N, Hu A, Gran B, Rostami A, Zhang GX. Increased IL-23p19 expression in multiple sclerosis lesions and its induction in microglia. Brain. 2007;130(2):490–501. 10.1093/brain/awl273. DOI: 10.1093/brain/awl273
Li FF, Zhu XD, Yan P, Jin MH, Yue H, Zhang Q, et al. Characterization of variations in IL23A and IL23R genes: possible roles in multiple sclerosis and other neuroinflammatory demyelinating diseases. Aging (Albany NY). 2016;8(11):2734–46. 10.18632/aging.101058. DOI: 10.18632/aging.101058
Becher B, Durell BG, Noelle RJ. IL-23 produced by CNS-resident cells controls T cell encephalitogenicity during the effector phase of experimental autoimmune encephalomyelitis. J Clin Invest. 2003;112(8):1186–91. 10.1172/JCI200319079. DOI: 10.1172/JCI200319079
Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature. 2003;421(6924):744–8. 10.1038/nature01355. DOI: 10.1038/nature01355
Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med. 2005;201(2):233–40. 10.1084/jem.20041257. DOI: 10.1084/jem.20041257
Pirhonen J, Matikainen S, Julkunen I. Regulation of virus-induced IL-12 and IL-23 expression in human macrophages. J Immunol. 2002;169(10):5673–8. 10.4049/jimmunol.169.10.5673. DOI: 10.4049/jimmunol.169.10.5673
Constantinescu CS, Tani M, Ransohoff RM, Wysocka M, Hilliard B, Fujioka T, et al. Astrocytes as antigen-presenting cells: expression of IL-12/IL-23. J Neurochem. 2005;95(2):331–40. 10.1111/j.1471-4159.2005.03368.x. DOI: 10.1111/j.1471-4159.2005.03368.x
Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441(7090):235–8. 10.1038/nature04753. DOI: 10.1038/nature04753
Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity. 2006;24(2):179–89. 10.1016/j.immuni.2006.01.001. DOI: 10.1016/j.immuni.2006.01.001
Nitsch L, Zimmermann J, Krauthausen M, Hofer MJ, Saggu R, Petzold GC, et al. CNS-specific synthesis of interleukin 23 induces a progressive cerebellar ataxia and the accumulation of both T and B cells in the brain: characterization of a novel transgenic mouse model. Mol Neurobiol. 2019;56(12):7977–93. 10.1007/s12035-019-1640-0. DOI: 10.1007/s12035-019-1640-0
Quintana A, Müller M, Frausto RF, Ramos R, Getts DR, Sanz E, et al. Site-specific production of IL-6 in the central nervous system retargets and enhances the inflammatory response in experimental autoimmune encephalomyelitis. J Immunol. 2009;183(3):2079–88. 10.4049/jimmunol.0900242. DOI: 10.4049/jimmunol.0900242
Liu Y, Holdbrooks AT, Meares GP, Buckley JA, Benveniste EN, Qin H. Preferential recruitment of neutrophils into the cerebellum and brainstem contributes to the atypical experimental autoimmune encephalomyelitis phenotype. J Immunol. 2015;195(3):841–52. 10.4049/jimmunol.1403063. DOI: 10.4049/jimmunol.1403063
de Haas AH, Boddeke HW, Biber K. Region-specific expression of immunoregulatory proteins on microglia in the healthy CNS. Glia. 2008;56(8):888–94. 10.1002/glia.20663. DOI: 10.1002/glia.20663
Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, et al. David bioinformatics resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007;35(suppl_2):W169–75. 10.1093/nar/gkm415. DOI: 10.1093/nar/gkm415
Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37:1–13. DOI: 10.1093/nar/gkn923
Lassmann H. Multiple sclerosis pathology. Cold Spring Harb Perspect Med. 2018;8(3). 10.1101/cshperspect.a028936.
Bramow S, Frischer JM, Lassmann H, Koch-Henriksen N, Lucchinetti CF, Sørensen PS, et al. Demyelination versus remyelination in progressive multiple sclerosis. Brain. 2010;133(10):2983–98. 10.1093/brain/awq250. DOI: 10.1093/brain/awq250
Brok HP, van Meurs M, Blezer E, Schantz A, Peritt D, Treacy G, et al. Prevention of experimental autoimmune encephalomyelitis in common marmosets using an anti-il-12p40 monoclonal antibody. J Immunol. 2002;169(11):6554–63. 10.4049/jimmunol.169.11.6554. DOI: 10.4049/jimmunol.169.11.6554
BA ‘TH, Brok HP, Remarque E, Benson J, Treacy G, Amor S, et al. Suppression of ongoing disease in a nonhuman primate model of multiple sclerosis by a human-anti-human il-12p40 antibody. J Immunol. 2005;175:4761–8. DOI: 10.4049/jimmunol.175.7.4761
Codarri L, Fontana A, Becher B. Cytokine networks in multiple sclerosis: lost in translation. Curr Opin Neurol. 2010;23(3):205–11. 10.1097/WCO.0b013e3283391feb. DOI: 10.1097/WCO.0b013e3283391feb
Thakker P, Leach MW, Kuang W, Benoit SE, Leonard JP, Marusic S. Il-23 is critical in the induction but not in the effector phase of experimental autoimmune encephalomyelitis. J Immunol. 2007;178(4):2589–98. 10.4049/jimmunol.178.4.2589. DOI: 10.4049/jimmunol.178.4.2589
Pagenstecher A, Lassmann S, Carson MJ, Kincaid CL, Stalder AK, Campbell IL. Astrocyte-targeted expression of IL-12 induces active cellular immune responses in the central nervous system and modulates experimental allergic encephalomyelitis. J Immunol. 2000;164(9):4481–92. 10.4049/jimmunol.164.9.4481. DOI: 10.4049/jimmunol.164.9.4481
Procaccini C, De Rosa V, Pucino V, Formisano L, Matarese G. Animal models of multiple sclerosis. Eur J Pharmacol. 2015;759:182–91. 10.1016/j.ejphar.2015.03.042. DOI: 10.1016/j.ejphar.2015.03.042
Kowarik MC, Grummel V, Wemlinger S, Buck D, Weber MS, Berthele A, et al. Immune cell subtyping in the cerebrospinal fluid of patients with neurological diseases. J Neurol. 2014;261(1):130–43. 10.1007/s00415-013-7145-2. DOI: 10.1007/s00415-013-7145-2
Anthony IC, Crawford DH, Bell JE. B lymphocytes in the normal brain: contrasts with HIV-associated lymphoid infiltrates and lymphomas. Brain. 2003;126(5):1058–67. 10.1093/brain/awg118. DOI: 10.1093/brain/awg118
Lucchinetti CF, Popescu BF, Bunyan RF, Moll NM, Roemer SF, Lassmann H, et al. Inflammatory cortical demyelination in early multiple sclerosis. N Engl J Med. 2011;365(23):2188–97. 10.1056/NEJMoa1100648. DOI: 10.1056/NEJMoa1100648
Reali C, Magliozzi R, Roncaroli F, Nicholas R, Howell OW, Reynolds R. B cell rich meningeal inflammation associates with increased spinal cord pathology in multiple sclerosis. Brain Pathol. 2020;30(4):779–93. 10.1111/bpa.12841. DOI: 10.1111/bpa.12841
Li R, Bar-Or A. The multiple roles of B cells in multiple sclerosis and their implications in multiple sclerosis therapies. Cold Spring Harb Perspect Med. 2018.
Li R, Patterson KR, Bar-Or A. Reassessing B cell contributions in multiple sclerosis. Nat Immunol. 2018;19(7):696–707. 10.1038/s41590-018-0135-x. DOI: 10.1038/s41590-018-0135-x
Batista FD, Harwood NE. The who, how and where of antigen presentation to B cells. Nat Rev Immunol. 2009;9(1):15–27. 10.1038/nri2454. DOI: 10.1038/nri2454
Crawford A, Macleod M, Schumacher T, Corlett L, Gray D. Primary T cell expansion and differentiation in vivo requires antigen presentation by B cells. J Immunol. 2006;176(6):3498–506. 10.4049/jimmunol.176.6.3498. DOI: 10.4049/jimmunol.176.6.3498
McLaughlin KA, Wucherpfennig KW. B cells and autoantibodies in the pathogenesis of multiple sclerosis and related inflammatory demyelinating diseases. Adv Immunol. 2008;98:121–49. 10.1016/S0065-2776(08)00404-5. DOI: 10.1016/S0065-2776(08)00404-5
André P, Nannizzi-Alaimo L, Prasad SK, Phillips DR. Platelet-derived CD40L: the switch-hitting player of cardiovascular disease. Circulation. 2002;106(8):896–9. 10.1161/01.CIR.0000028962.04520.01. DOI: 10.1161/01.CIR.0000028962.04520.01
Rivera A, Chen CC, Ron N, Dougherty JP, Ron Y. Role of B cells as antigen-presenting cells in vivo revisited: antigen-specific B cells are essential for T cell expansion in lymph nodes and for systemic T cell responses to low antigen concentrations. Int Immunol. 2001;13(12):1583–93. 10.1093/intimm/13.12.1583. DOI: 10.1093/intimm/13.12.1583
Pierce SK, Morris JF, Grusby MJ, Kaumaya P, van Buskirk A, Srinivasan M, et al. Antigen-presenting function of B lymphocytes. Immunol Rev. 1988;106(1):149–80. 10.1111/j.1600-065X.1988.tb00778.x. DOI: 10.1111/j.1600-065X.1988.tb00778.x
Sabatino JJ, Pröbstel AK, Zamvil SS. B cells in autoimmune and neurodegenerative central nervous system diseases. Nat Rev Neurosci. 2019;20(12):728–45. 10.1038/s41583-019-0233-2. DOI: 10.1038/s41583-019-0233-2
Molnarfi N, Schulze-Topphoff U, Weber MS, Patarroyo JC, Prod'homme T, Varrin-Doyer M, et al. MHC class II-dependent B cell APC function is required for induction of CNS autoimmunity independent of myelin-specific antibodies. J Exp Med. 2013;210(13):2921–37. 10.1084/jem.20130699. DOI: 10.1084/jem.20130699
Weber MS, Prod'homme T, Patarroyo JC, Molnarfi N, Karnezis T, Lehmann-Horn K, et al. B-cell activation influences T-cell polarization and outcome of anti-CD20 B-cell depletion in central nervous system autoimmunity. Ann Neurol. 2010;68(3):369–83. 10.1002/ana.22081. DOI: 10.1002/ana.22081
Nishihara H, Soldati S, Mossu A, Rosito M, Rudolph H, Muller WA, et al. Human CD4. Fluids barriers CNS. 2020;17(1):3. 10.1186/s12987-019-0165-2. DOI: 10.1186/s12987-019-0165-2
Kaskow BJ, Baecher-Allan C. Effector T cells in multiple sclerosis. Cold Spring Harb Perspect Med. 2018;8(4). 10.1101/cshperspect.a029025.
Olsson T. Cytokines in neuroinflammatory disease: role of myelin autoreactive T cell production of interferon-gamma. J Neuroimmunol. 1992;40(2-3):211–8. 10.1016/0165-5728(92)90135-8. DOI: 10.1016/0165-5728(92)90135-8
Chegou NN, Heyckendorf J, Walzl G, Lange C, Ruhwald M. Beyond the IFN-γ horizon: biomarkers for immunodiagnosis of infection with Mycobacterium tuberculosis. Eur Respir J. 2014;43(5):1472–86. 10.1183/09031936.00151413. DOI: 10.1183/09031936.00151413
Polentarutti N, Introna M, Sozzani S, Mancinelli R, Mantovani G, Mantovani A. Expression of monocyte chemotactic protein-3 in human monocytes and endothelial cells. Eur Cytokine Netw. 1997;8(3):271–4.
Li BH, Garstka MA, Li ZF. Chemokines and their receptors promoting the recruitment of myeloid-derived suppressor cells into the tumor. Mol Immunol. 2020;117:201–15. 10.1016/j.molimm.2019.11.014. DOI: 10.1016/j.molimm.2019.11.014
Sørensen TL, Tani M, Jensen J, Pierce V, Lucchinetti C, Folcik VA, et al. Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J Clin Invest. 1999;103(6):807–15. 10.1172/JCI5150. DOI: 10.1172/JCI5150
Trebst C, Ransohoff RM. Investigating chemokines and chemokine receptors in patients with multiple sclerosis: opportunities and challenges. Arch Neurol. 2001;58(12):1975–80. 10.1001/archneur.58.12.1975. DOI: 10.1001/archneur.58.12.1975
Ferretti E, Ponzoni M, Doglioni C, Pistoia V. IL-17 superfamily cytokines modulate normal germinal center B cell migration. J Leukoc Biol. 2016;100(5):913–8. 10.1189/jlb.1VMR0216-096RR. DOI: 10.1189/jlb.1VMR0216-096RR
Magliozzi R, Howell OW, Nicholas R, Cruciani C, Castellaro M, Romualdi C, et al. Inflammatory intrathecal profiles and cortical damage in multiple sclerosis. Ann Neurol. 2018;83(4):739–55. 10.1002/ana.25197. DOI: 10.1002/ana.25197
Sellebjerg F, Börnsen L, Khademi M, Krakauer M, Olsson T, Frederiksen JL, et al. Increased cerebrospinal fluid concentrations of the chemokine CXCL13 in active MS. Neurology. 2009;73(23):2003–10. 10.1212/WNL.0b013e3181c5b457. DOI: 10.1212/WNL.0b013e3181c5b457
Alvarez E, Piccio L, Mikesell RJ, Trinkaus K, Parks BJ, Naismith RT, et al. Predicting optimal response to B-cell depletion with rituximab in multiple sclerosis using CXCL13 index, magnetic resonance imaging and clinical measures. Mult Scler J Exp Transl Clin. 2015;1:205521731562380031.
Wekerle H. B cells in multiple sclerosis. Autoimmunity. 2017;50(1):57–60. 10.1080/08916934.2017.1281914. DOI: 10.1080/08916934.2017.1281914
Hundgeburth LC, Wunsch M, Rovituso D, Recks MS, Addicks K, Lehmann PV, et al. The complement system contributes to the pathology of experimental autoimmune encephalomyelitis by triggering demyelination and modifying the antigen-specific T and B cell response. Clin Immunol. 2013;146(3):155–64. 10.1016/j.clim.2012.12.007. DOI: 10.1016/j.clim.2012.12.007
Terényi N, Nagy N, Papp K, Prechl J, Oláh I, Erdei A. Transient decomplementation of mice delays onset of experimental autoimmune encephalomyelitis and impairs MOG-specific T cell response and autoantibody production. Mol Immunol. 2009;47(1):57–63. 10.1016/j.molimm.2008.12.026. DOI: 10.1016/j.molimm.2008.12.026
Mead RJ, Singhrao SK, Neal JW, Lassmann H, Morgan BP. The membrane attack complex of complement causes severe demyelination associated with acute axonal injury. J Immunol. 2002;168(1):458–65. 10.4049/jimmunol.168.1.458. DOI: 10.4049/jimmunol.168.1.458
Liu J, Lin F, Strainic MG, An F, Miller RH, Altuntas CZ, et al. IFN-gamma and IL-17 production in experimental autoimmune encephalomyelitis depends on local APC-T cell complement production. J Immunol. 2008;180(9):5882–9. 10.4049/jimmunol.180.9.5882. DOI: 10.4049/jimmunol.180.9.5882
Awasthi A, Riol-Blanco L, Jäger A, Korn T, Pot C, Galileos G, et al. Cutting edge: IL-23 receptor gfp reporter mice reveal distinct populations of IL-17-producing cells. J Immunol. 2009;182(10):5904–8. 10.4049/jimmunol.0900732. DOI: 10.4049/jimmunol.0900732
Sonobe Y, Liang J, Jin S, Zhang G, Takeuchi H, Mizuno T, et al. Microglia express a functional receptor for interleukin-23. Biochem Biophys Res Commun. 2008;370(1):129–33. 10.1016/j.bbrc.2008.03.059. DOI: 10.1016/j.bbrc.2008.03.059
Rasmussen S, Wang Y, Kivisäkk P, Bronson RT, Meyer M, Imitola J, et al. Persistent activation of microglia is associated with neuronal dysfunction of callosal projecting pathways and multiple sclerosis-like lesions in relapsing--remitting experimental autoimmune encephalomyelitis. Brain. 2007;130(11):2816–29. 10.1093/brain/awm219. DOI: 10.1093/brain/awm219
Kutzelnigg A, Lucchinetti CF, Stadelmann C, Brück W, Rauschka H, Bergmann M, et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain. 2005;128(11):2705–12. 10.1093/brain/awh641. DOI: 10.1093/brain/awh641
Bauer J, Sminia T, Wouterlood FG, Dijkstra CD. Phagocytic activity of macrophages and microglial cells during the course of acute and chronic relapsing experimental autoimmune encephalomyelitis. J Neurosci Res. 1994;38(4):365–75. 10.1002/jnr.490380402. DOI: 10.1002/jnr.490380402
Napoli I, Neumann H. Microglial clearance function in health and disease. Neuroscience. 2009;158(3):1030–8. 10.1016/j.neuroscience.2008.06.046. DOI: 10.1016/j.neuroscience.2008.06.046
Napoli I, Neumann H. Protective effects of microglia in multiple sclerosis. Exp Neurol. 2010;225(1):24–8. 10.1016/j.expneurol.2009.04.024. DOI: 10.1016/j.expneurol.2009.04.024