[en] It is now well accepted that inflammatory responses in brain contribute to the genesis and evolution of damage in neurological diseases, trauma, and infection. Inflammatory mediators including cytokines, cell adhesion molecules, and reactive oxygen species including NO are detected in human brain and its animal models, and interventions that reduce levels or expression of these agents provide therapeutic benefit in many cases. Although in some cases, the causes of central inflammatory responses are clear--for example those due to viral infection in AIDS dementia, or those due to the secretion of proinflammatory substances by activated lymphocytes in multiple sclerosis--in other conditions the factors that allow the initiation of brain inflammation are not well understood; nor is it well known why brain inflammatory activation is not as well restricted as it is in the periphery. The concept is emerging that perturbation of endogenous regulatory mechanisms could be an important factor for initiation, maintenance, and lack of resolution of brain inflammation. Conversely, activation of intrinsic regulatory neuronal pathways could provide protection in neuroinflammatory conditions. This concept is the extension of the principle of "central neurogenic neuroprotection" formulated by Donald Reis and colleagues, which contends the existence of neuronal circuits that protect the brain against the damage initiated by excitotoxic injury. In this paper we will review work initiated in the Reis laboratory establishing that activation of endogenous neural circuits can exert anti-inflammatory actions in brain, present data suggesting that these effects could be mediated by noradrenaline, and summarize recent studies suggesting that loss of noradrenergic locus ceruleus neurons contributes to inflammatory activation in Alzheimer's disease.
Disciplines :
Neurology
Author, co-author :
Galea, Elena; Department of Anesthesiology, University of Illinois, Chicago, Illinois, USA
HENEKA, Michael ; Department of Neurology, University of Bonn, Bonn, Germany
Dello Russo, Cinzia; Department of Anesthesiology, University of Illinois, Chicago, IL, United States
Feinstein, Douglas L; Department of Anesthesiology, University of Illinois, Chicago, IL, United States ; MC 519, Chicago, IL 60612, United States
External co-authors :
yes
Language :
English
Title :
Intrinsic regulation of brain inflammatory responses.
Publication date :
October 2003
Journal title :
Cellular and Molecular Neurobiology
ISSN :
0272-4340
eISSN :
1573-6830
Publisher :
Kluwer Academic/Plenum Publishers, New York, Us ny
Volume :
23
Issue :
4-5
Pages :
625 - 635
Peer reviewed :
Peer Reviewed verified by ORBi
Funding text :
We thank Liubov Lyandvert for excellent technical assistance for studies carried out in the Don Reis laboratory, and Anthony Sharp and Patricia Murphy for assistance with studies carried out at UIC. We thank Irina Balyasnikova for studies of brain endothelial cells. This work was supported by grants from the National Multiple Sclerosis Society, the N.I.H., the VA research division, and the American Heart Association.
Adolfsson, R., Gottfries, C. G., Roos, B. E., and Winblad, B. (1979). Changes in the brain catecholamines in patients with dementia of Alzheimer type. Br. J. Psychiatry 135:216-223.
Akiyama, H., Arai, T., Kondo, H., Tanno, E., Haga, C., and Ikeda, K. (2000). Cell mediators of inflammation in the Alzheimer disease brain. Alzheimer Dis. Assoc. Disord. 14(Suppl. 1):S47-S53.
Ballestas, M. E., and Benveniste, E. N. (1997). Elevation of cyclic AMP levels in astrocytes antagonizes cytokine-induced adhesion molecule expression. J. Neurochem. 69:1438-1448.
Balyasnikova, I. V., Pelligrino, D. A., Greenwood, J., Adamson, P., Dragon, S., Raza, H., and Galea, E. (2000). Cyclic adenosine monophosphate regulates the expression of the intercellular adhesion molecule and the inducible nitric oxide synthase in brain endothelial cells. J. Cereb. Blood Flow Metab. 20:688-699.
Benveniste, E. N., Huneycutt, B. S., Shrikant, P., and Ballestas, M. E. (1995). Second messenger systems in the regulation of cytokines and adhesion molecules in the central nervous system. Brain Behav. Immun. 9:304-314.
Boje, K. M., and Arora, P. K. (1992). Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res. 587:250-256.
Bondareff, W., Mountjoy, C. Q., and Roth, M. (1981). Selective loss of neurones of origin of adrenergic projection to cerebral cortex (nucleus locus coeruleus) in senile dementia. Lancet 1:783-784.
Bondareff, W., Mountjoy, C. Q., Roth, M., Rossor, M. N., Iversen, L. L., Reynolds, G. P., and Hauser, D. L. (1987). Neuronal degeneration in locus ceruleus and cortical correlates of Alzheimer disease. Alzheimer Dis. Assoc. Disord. 1:256-262.
Brough, D., Le Feuvre, R. A., Iwakura, Y., and Rothwell, N. J. (2002). Purinergic (P2X7) receptor activation of microglia induces cell death via an interleukin-1-independent mechanism. Mol. Cell. Neurosci. 19:272-280.
Caggiano, A. O., and Kraig, R. P. (1999). Prostaglandin E receptor subtypes in cultured rat microglia and their role in reducing lipopolysaccharide-induced interleukin-1 beta production. J. Neurochem. 72:565-575.
Chakfe, Y., Seguin, R., Antel, J. P., Morissette, C., Malo, D., Henderson, D., and Seguela, P. (2002). ADP and AMP induce interleukin-1 beta release from microglial cells through activation of ATP-primed P2X7 receptor channels. J. Neurosci. 22:3061-3069.
Chao, C. C., Hu, S., Molitor, T. W., Shaskan, E. G., and Peterson, P. K. (1992). Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J. Immunol. 149:2736-2741.
Cho, S., Kim, Y., Cruz, M. O., Park, E. M., Chu, C. K., Song, G. Y., and Joh, T. H. (2001). Repression of proinflammatory cytokine and inducible nitric oxide synthase (NOS2). gene expression in activated microglia by N-acetyl-O-methyldopamine: Protein kinase A-dependent mechanism. Glia 33:324-333.
Combs, C. K., Karlo, J. C., Kao, S. C., and Landreth, G. E. (2001). Beta-Amyloid stimulation of microglia and monocytes results in TNFalpha-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J. Neurosci. 21:1179-1188.
Corradin, S. B., Mauel, J., Donini, S. D., Quattrocchi, E., and Ricciardi-Castagnoli, P. (1993). Inducible nitric oxide synthase activity of cloned murine microglial cells. Glia 7:255-262.
del Zoppo, G., Ginis, I., Hallenbeck, J. M., Iadecola, C., Wang, X., and Feuerstein, G. Z. (2000). Inflammation and stroke: Putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia. Brain Pathol. 10:95-112.
Feinstein, D. L. (1998). Suppression of astroglial nitric oxide synthase expression by norepinephrine results from decreased NOS-2 promoter activity. J. Neurochem. 70:1484-1496.
Feinstein, D. L., Galea, E., and Reis, D. J. (1993). Norepinephrine suppresses inducible nitric oxide synthase activity in rat astroglial cultures. J. Neurochem. 60:1945-1948.
Forster, C., Clark, H. B., Ross, M. E., and Iadecola, C. (1999). Inducible nitric oxide synthase expression in human cerebral infarcts. Acta Neuropathol. (Berl.) 97:215-220.
Fritschy, J. M., and Grzanna, R. (1991). Experimentally-induced neuron loss in the locus coeruleus of adult rats. Exp. Neurol. 111:123-127.
Frohman, E. M., Vayuvegula, B., Gupta, S., and van den, N. S. (1988a). Norepinephrine inhibits gamma-interferon-induced major histocompatibility class II (Ia) antigen expression on cultured astrocytes via beta-2-adrenergic signal transduction mechanisms. Proc. Natl. Acad. Sci. U.S.A. 85:1292-1296.
Frohman, E. M., Vayuvegula, B., van den, N. S., and Gupta, S. (1988b). Norepinephrine inhibits gamma-interferon-induced MHC class II (Ia) antigen expression on cultured brain astrocytes. J. Neuroimmunol. 17:89-101.
Galea, E., and Feinstein, D. L. (1999). Regulation of the expression of the inflammatory nitric oxide synthase (NOS2) by cyclic AMP. FASEB J. 13:2125-2137.
Galea, E., Glickstein, S. B., Feinstein, D. L., Golanov, E. V., and Reis, D. J. (1998a). Stimulation of cerebellar fastigial nucleus inhibits interleukin-1beta-induced cerebrovascular inflammation. Am. J. Physiol. 275:H2053-H2063.
Galea, E., Golanov, E. V., Feinstein, D. L., Kobylarz, K. A., Glickstein, S. B., and Reis, D. J. (1998b). Cerebellar stimulation reduces inducible nitric oxide synthase expression and protects brain from ischemia. Am. J. Physiol. 274:H2035-45.
Gavrilyuk, V., Dello, R. C., Heneka, M. T., Pelligrino, D., Weinberg, G., and Feinstein, D. L. (2002). Norepinephrine increases IkBα expression in astrocytes. J. Biol. Chem. 277:29662-29668.
Gavrilyuk, V., Horvath, EP., Weinberg, G., and Feinstein, D. L. (2001). A 27-bp region of the inducible nitric oxide synthase promoter regulates expression in glial cells. J. Neurochem. 78:129-140.
German, D. C., Manaye, K. F., White, C. L., III, Woodward, D. J., McIntire, D. D., Smith, W. K., Kalaria, R. N., and Mann, D. M. (1992). Disease-specific patterns of locus coeruleus cell loss. Ann. Neurol. 32:667-676.
Glickstein, S. B., Golanov, E. V., and Reis, D. J. (1999). Intrinsic neurons of fastigial nucleus mediate neurogenic neuroprotection against excitotoxic and ischemic neuronal injury in rat. J. Neurosci. 19:4142-4154.
Golanov, E. V., Christensen, J. D., and Reis, D. J. (1999). Role of potassium channels in the central neurogenic neuroprotection elicited by cerebellar stimulation in rat. Brain Res. 842:496-500.
Golanov, E. V., and Reis, D. J. (1999). Neuroprotective electrical stimulation of cerebellar fastigial nucleus attenuates expression of periinfarction depolarizing waves (PIDs) and inhibits cortical spreading depression. Brain Res. 818:304-315.
Heneka, M. T., Galea, E., Gavriluyk, V., Dumitrescu-Ozimek, L., Daeschner, J., O'Banion, M. K., Weinberg, G., Klockgether, T., and Feinstein, D. L. (2002). Noradrenergic depletion potentiates beta-amyloid-induced cortical inflammation: Implications for Alzheimer's disease. J. Neurosci. 22:2434-2442.
Heneka, M. T., Wiesinger, H., Dumitrescu-Ozimek, L., Riederer, P., Feinstein, D. L., and Klockgether, T. (2001). Neuronal and glial coexpression of argininosuccinate synthetase and inducible nitric oxide synthase in Alzheimer disease. J. Neuropathol. Exp. Neurol. 60:906-916.
Hetier, E., Ayala, J., Bousseau, A., and Prochiantzv A. (1991). Modulation of interleukin-1 and tumor necrosis factor expression by beta-adrenergic agonists in mouse ameboid microglial cells. Exp. Brain Res. 86:407-413.
Iadecola, C., Zhang, F., Casey, R., Nagayama, M., and Ross, M. E. (1997). Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. J. Neurosci. 17:9157-9164.
Iadecola, C., Zhang, F., Xu, S., Casey, R., and Ross, M. E. (1995a). Inducible nitric oxide synthase gene expression in brain following cerebral ischemia. J. Cereb. Blood Flow Metab. 15:378-384.
Iadecola, C., Zhang, F., and Xu, X. (1995b). Inhibition of inducible nitric oxide synthase ameliorates cerebral ischemic damage. Am. J. Physiol. 268:R286-R292.
Iversen, L. L., Rossor, M. N., Reynolds, G. P., Hills, R., Roth, M., Mountjoy, C. Q., Foote, S. L., Morrison, J. H., and Bloom, F. E. (1983). Loss of pigmented dopamine-beta-hydroxylase positive cells from locus coeruleus in senile dementia of Alzheimer's type. Neurosci. Lett. 39:95-100.
Jander, S., Kraemer, M., Schroeter, M., Witte, O. W., and Stol,l G. (1995). Lymphocytic infiltration and expression of intercellular adhesion molecule-1 in photochemically induced ischemia of the rat cortex. J. Cereb. Blood Flow Metab. 15:42-51.
John, G. R., Simpson, J. E., Woodroofe, M. N., Lee, S. C., and Brosnan, C. F. (2001). Extracellular nucleotides differentially regulate interleukin-1 beta signaling in primary human astrocytes: Implications for inflammatory gene expression. J. Neurosci. 21:4134-4142.
Knott, C., Stern, G., and Wilkin, G. P. (2000). Inflammatory regulators in Parkinson's disease: iNOS, lipocortin-1, and cyclooxygenases-1 and -2. Mol. Cell. Neurosci. 16:724-739.
Lassmann, H., Zimprich, F., Rossler, K., and Vass, K. (1991). Inflammation in the nervous system. Basic mechanisms and immunological concepts. Rev. Neurol. (Paris). 147:763-781.
Lee, S. C., Zhao, M. L., Hirano, A., and Dickson, D. W. (1999). Inducible nitric oxide synthase immunoreactivity in the Alzheimer disease hippocampus: Association with Hirano bodies, neurofibrillary tangles, and senile plaques. J. Neuropathol. Exp. Neurol. 58:1163-1169.
Lin, H. L., and Murphy, S. (1997). Regulation of astrocyte nitric oxide synthase type II expression by ATP and glutamate involves loss of transcription factor binding to DNA. J. Neurochem. 69:612-616.
Mann, D. M., Lincoln, J., Yates, P. O., Stamp, J. E., and Toper, S. (1980). Changes in the monoamine containing neurones of the human CNS in senile dementia. Br. J. Psychiatry 136:533-541.
Mann, D. M., Yates, P. O., and Hawkes, J. (1983). The pathology of the human locus ceruleus. Clin. Neuropathol. 2:1-7.
Mavridis, M., Degryse, A. D., Lategan, A. J., Marien, M. R., and Colpaert, F. C. (1991). Effects of locus coeruleus lesions on parkinsonian signs, striatal dopamine and substantia nigra cell loss after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in monkeys: A possible role for the locus coeruleus in the progression of Parkinson's disease. Neuroscience 41:507-523.
Merrill, J. E., Ignarro, L. J., Sherman, M. P., Melinek, J., and Lane, T. E. (1993). Microglial cell cytotoxicity of oligodendrocytes is mediated through nitric oxide. J. Immunol. 151:2132-2141.
Minghetti, L., and Levi, G. (1998). Microglia as effector cells in brain damage and repair: Focus on prostanoids and nitric oxide. Prog. Neurobiol. 54:99-125.
Minghetti, L., Nicolini, A., Polazzi, E., Creminon, C., Maclouf, J., and Levi, G. (1997). Inducible nitric oxide synthase expression in activated rat microglial cultures is downregulated by exogenous prostaglandin E2 and by cyclooxygenase inhibitors. Glia 19:152-160.
Nomura, Y., and Kitamura, Y. (1993). Inducible nitric oxide synthase in glial cells. Neurosci. Res. 18:103-107.
Orihara, Y., Ikematsu, K., Tsuda, R., and Nakasono, I. (2001). Induction of nitric oxide synthase by traumatic brain injury. Forensic Sci. Int. 123:142-149.
Petrova, T. V., Akama, K. T., and Van Eldik, L. J. (1999). Selective modulation of BV-2 microglial activation by prostaglandin E(2). Differential effects on endotoxin-stimulated cytokine induction. J. Biol. Chem. 274:28823-28827.
Reis, D. J., Berger, S. B., Underwood, M. D., and Khayata, M. (1991). Electrical stimulation of cerebellar fastigial nucleus reduces ischemic infarction elicited by middle cerebral artery occlusion in rat. J. Cereb. Blood Flow Metab. 11:810-818.
Reis, D. J., and Golanov, E. V. (1997). Autonomic and vasomotor regulation. Int. Rev. Neurobiol. 41:121-149.
Reis, D. J., Kobylarz, K., Yamamoto, S., and Golanov, E. V. (1998). Brief electrical stimulation of cerebellar fastigial nucleus conditions long-lasting salvage from focal cerebral ischemia: Conditioned central neurogenic neuroprotection. Brain Res. 780:159-163.
Robinson, F. R., and Fuchs, A. F. (2001). The role of the cerebellum in voluntary eye movements. Ann. Rev. Neurosci. 24:981-1004.
Rothwell, N. J., and Luheshi, G. N. (2000). Interleukin 1 in the brain: Biology, pathology and therapeutic target. Trends Neurosci. 23:618-625.
Stroemer, R. P., and Rothwell, N. J. (1997). Cortical protection by localized striatal injection of IL-1ra following cerebral ischemia in the rat. J. Cereb. Blood Flow Metab. 17:597-604.
Van Eldik, L. J. (2001). Glia and Alzheimer's disease. Neurochem. Int. 39:329-331.
Vodovotz, Y., Lucia, M. S., Flanders, K. C., Chesler, L., Xie, Q. W., Smith, T. W., Weidner, J., Mumford, R., Webber, R., Nathan, C., Roberts, A. B., Lippa, C. F., and Sporn, M. B. (1996). Inducible nitric oxide synthase in tangle-bearing neurons of patients with Alzheimer's disease. J. Exp. Med. 184:1425-1433.
Wong, A., Luth, H. J., Deuther-Conrad, W., Dukic-Stefanovic, S., Gasic-Milenkovic, J., Arendt, T., and Munch, G. (2001). Advanced glycation endproducts co-localize with inducible nitric oxide synthase in Alzheimer's disease. Brain Res. 920:32-40.
Xu, F., Zhou, T., Gibson, T., and Frazier, D. T. (2001). Fastigial nucleus-mediated respiratory responses depend on the medullary gigantocellular nucleus. J. Appl. Physiol. 91:1713-1722.
Zhang, R. L., Chopp, M., Jiang, N., Tang, W. X., Prostak, J., Manning, A. M., and Anderson, D. C. (1995). Anti-intercellular adhesion molecule-1 antibody reduces ischemic cell damage after transient but not permanent middle cerebral artery occlusion in the Wistar rat. Stroke 26:1438-1442.
Zielasek, J., Tausch, M., Toyka, K. V., and Hartung, H. P. (1992). Production of nitrite by neonatal rat microglial cells/brain macrophages. Cell. Immunol. 141:111-120.