[en] Neuroinflammation has been recognized as a component of Alzheimer's Disease (AD) pathology since the original descriptions by Alois Alzheimer and a role for infections in AD pathogenesis has long been hypothesized. More recently, this hypothesis has gained strength as human genetics and experimental data suggest key roles for inflammatory cells in AD pathogenesis. To review this topic, Duke/University of North Carolina (Duke/UNC) Alzheimer's Disease Research Center hosted a virtual symposium: "Infection and Inflammation: New Perspectives on Alzheimer's Disease (AD)." Participants considered current evidence for and against the hypothesis that AD could be caused or exacerbated by infection or commensal microbes. Discussion focused on connecting microglial transcriptional states to functional states, mouse models that better mimic human immunity, the potential involvement of inflammasome signaling, metabolic alterations, self-reactive T cells, gut microbes and fungal infections, and lessons learned from Covid-19 patients with neurologic symptoms. The content presented in the symposium, and major topics raised in discussions are reviewed in this summary of the proceedings.
Disciplines :
Neurology
Author, co-author :
Whitson, Heather E; Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Busse Bldg Rm 3502, Durham, NC, 27710, USA ; Durham VA Medical Center, Geriatric Research Education and Clinical Center, 508 Fulton Street, Durham, NC, 27705, USA
Colton, Carol; Department of Neurology, Duke University School of Medicine, 3116 N Duke St, Durham, NM, 27704, USA
El Khoury, Joseph; Center for Immunology & Inflammatory Diseases, Division of Infectious Diseases, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA
Gate, David; The Ken & Ruth Davee Dept of Neurology, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave, Ward 12-140, Chicago, IL 60611, USA
Goate, Alison; Dept of Genetics and Genomic Sciences, Icahn School of Medicine at Mt. Sinai, One Gustave L. Levy Place, Box 1498, New York, NY, 10029-6574, USA
HENEKA, Michael ; Dept of Neurodegenerative Disease and Geriatric Psychiatry/Neurology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53127, Bonn, Germany
Kaddurah-Daouk, Rima; Dept of Psychiatry and Behavioral Sciences, Dept of Medicine, Duke Institute of Brain Sciences, Duke University School of Medicine, DUMC Box 3903, Blue Zone, South, Durham, NC, 27710, USA
Klein, Robyn S; Center for Neuroimmunology & Neuroinfectious Diseases, Depts of Medicine, Pathology & Immunology, and Neuroscience, Washington University School of Medicine, 660 S Euclid Ave, Box 8015, St. Louis, MO, 63110, USA
Shinohara, Mari L; Dept of Immunology, Duke University School of Medicine, 207 Research Dr, Box 3010, Durham, NC, 27710, USA
Sisodia, Sangram; Dept of Neurobiology, University of Chicago, Abbott Memorial Hall, 947 East 58th St, MC 0928, Chicago, IL, 60637, USA
Spudich, Serena S; Dept of Neurology, Yale School of Medicine, PO Box 208018, New Haven, CT, 06520, USA
Stevens, Beth; F.M. Kirby Neurobiology Center, Children's Hospital Boston, 300 Longwood Ave, Center for Life Sciences 12th Floor, Boston, MA, 02115, USA
Tanzi, Rudolph; McCance Center for Brain Health, Massachusetts General Hospital, 114 16th St, Charlestown, MA, 02129, USA
Ting, Jenny P; Depts of Genetics, Microbiology and Immunology, Lineberger Comprehensive Cancer Center, Center for Translational Immunology, UNC School of Medicine, 125 Mason Farm Road, 6th Floor Marsico Hall, Chapel Hill, NC, 27599-7290, USA
Garden, Gwenn; Dept of Neurology, UNC School of Medicine, Physicians Office Building, 170 Manning Drive, Campus Box 7025, Chapel Hill, NC, 27599-7025, USA
Adamczak, S.E., de Rivero Vaccari, J.P., Dale, G., Brand, F.J., Nonner, D., Bullock, M.R., Keane, R.W., Pyroptotic neuronal cell death mediated by the AIM2 inflammasome. J. Cerebr. Blood Flow Metabol. 34:4 (2014), 621–629, 10.1038/jcbfm.2013.236.
Adams, K.J., Wilson, J.G., Millington, D.S., Moseley, M.A., Colton, C.A., Thompson, J.W., Gottschalk, W.K., Capillary electrophoresis-high resolution mass spectrometry for measuring in vivo arginine isotope incorporation in alzheimer's disease mouse models. J. Am. Soc. Mass Spectrom. 32:6 (2021), 1448–1458, 10.1021/jasms.1c00055.
Alonso, R., Pisa, D., Aguado, B., Carrasco, L., Identification of fungal species in brain tissue from alzheimer's disease by next-generation sequencing. J Alzheimers Dis 58:1 (2017), 55–67, 10.3233/JAD-170058.
Alonso, R., Pisa, D., Fernández-Fernández, A.M., Carrasco, L., Infection of fungi and bacteria in brain tissue from elderly persons and patients with alzheimer's disease. Front. Aging Neurosci., 10, 2018, 159, 10.3389/fnagi.2018.00159.
Badea, A., Kane, L., Anderson, R.J., Qi, Y., Foster, M., Cofer, G.P., Colton, C.A., The fornix provides multiple biomarkers to characterize circuit disruption in a mouse model of Alzheimer's disease. Neuroimage 142 (2016), 498–511, 10.1016/j.neuroimage.2016.08.014.
Badea, A., Wu, W., Shuff, J., Wang, M., Anderson, R.J., Qi, Y., Dunson, D.B., Identifying vulnerable brain networks in mouse models of genetic risk factors for late onset alzheimer's disease. Front. Neuroinf., 13, 2019, 72, 10.3389/fninf.2019.00072.
Baloni, P., Funk, C.C., Yan, J., Yurkovich, J.T., Kueider-Paisley, A., Nho, K., Price, N.D., Identifying differences in bile acid pathways for cholesterol clearance in Alzheimer's disease using metabolic networks of human brain regions. bioRxiv, 2019, 782987, 10.1101/782987.
Bergin, D.H., Jing, Y., Mockett, B.G., Zhang, H., Abraham, W.C., Liu, P., Altered plasma arginine metabolome precedes behavioural and brain arginine metabolomic profile changes in the APPswe/PS1ΔE9 mouse model of Alzheimer's disease. Transl. Psychiatry, 8(1), 2018, 108, 10.1038/s41398-018-0149-z.
Broz, P., Dixit, V.M., Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 16:7 (2016), 407–420, 10.1038/nri.2016.58.
Bryan, J., Mandan, A., Kamat, G., Gottschalk, W.K., Badea, A., Adams, K.J., Initiative, A.s.D.N., Likelihood ratio statistics for gene set enrichment in Alzheimer's disease pathways. Alzheimers Dement 17:4 (2021), 561–573, 10.1002/alz.12223.
Choi, S.H., Kim, Y.H., Hebisch, M., Sliwinski, C., Lee, S., D'Avanzo, C., Kim, D.Y., A three-dimensional human neural cell culture model of Alzheimer's disease. Nature 515:7526 (2014), 274–278, 10.1038/nature13800.
Colton, C.A., Wilson, J.G., Everhart, A., Wilcock, D.M., Puoliväli, J., Heikkinen, T., Vitek, M.P., mNos2 deletion and human NOS2 replacement in Alzheimer disease models. J. Neuropathol. Exp. Neurol. 73:8 (2014), 752–769, 10.1097/nen.0000000000000094.
de Rivero Vaccari, J.P., Lotocki, G., Alonso, O.F., Bramlett, H.M., Dietrich, W.D., Keane, R.W., Therapeutic neutralization of the NLRP1 inflammasome reduces the innate immune response and improves histopathology after traumatic brain injury. J. Cerebr. Blood Flow Metabol. 29:7 (2009), 1251–1261, 10.1038/jcbfm.2009.46.
Deerhake, M.E., Danzaki, K., Inoue, M., Cardakli, E.D., Nonaka, T., Aggarwal, N., Shinohara, M.L., Dectin-1 limits autoimmune neuroinflammation and promotes myeloid cell-astrocyte crosstalk via Card9-independent expression of Oncostatin M. Immunity 54:3 (2021), 484–498, 10.1016/j.immuni.2021.01.004 e488.
Deerhake, M.E., Shinohara, M.L., Emerging roles of Dectin-1 in noninfectious settings and in the CNS. Trends Immunol. 42:10 (2021), 891–903, 10.1016/j.it.2021.08.005.
Dodiya, H.B., Kuntz, T., Shaik, S.M., Baufeld, C., Leibowitz, J., Zhang, X., Sisodia, S.S., Sex-specific effects of microbiome perturbations on cerebral Aβ amyloidosis and microglia phenotypes. J. Exp. Med. 216:7 (2019), 1542–1560, 10.1084/jem.20182386.
Eimer, W.A., Vijaya Kumar, D.K., Navalpur Shanmugam, N.K., Rodriguez, A.S., Mitchell, T., Washicosky, K.J., Moir, R.D., Alzheimer's disease-associated β-amyloid is rapidly seeded by herpesviridae to protect against brain infection. Neuron 100:6 (2018), 1527–1532, 10.1016/j.neuron.2018.11.043.
Erny, D., Hrabě de Angelis, A.L., Jaitin, D., Wieghofer, P., Staszewski, O., David, E., Prinz, M., Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18:7 (2015), 965–977, 10.1038/nn.4030.
Garber, C., Soung, A., Vollmer, L.L., Kanmogne, M., Last, A., Brown, J., Klein, R.S., T cells promote microglia-mediated synaptic elimination and cognitive dysfunction during recovery from neuropathogenic flaviviruses. Nat. Neurosci. 22:8 (2019), 1276–1288, 10.1038/s41593-019-0427-y.
Gate, D., Saligrama, N., Leventhal, O., Yang, A.C., Unger, M.S., Middeldorp, J., Wyss-Coray, T., Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer's disease. Nature 577:7790 (2020), 399–404, 10.1038/s41586-019-1895-7.
Griciuc, A., Patel, S., Federico, A.N., Choi, S.H., Innes, B.J., Oram, M.K., Tanzi, R.E., TREM2 acts downstream of CD33 in modulating microglial pathology in alzheimer's disease. Neuron 103:5 (2019), 820–835 e827, 10.1016/j.neuron.2019.06.010.
Gris, D., Ye, Z., Iocca, H.A., Wen, H., Craven, R.R., Gris, P., Ting, J.P., NLRP3 plays a critical role in the development of experimental autoimmune encephalomyelitis by mediating Th1 and Th17 responses. J. Immunol. 185:2 (2010), 974–981, 10.4049/jimmunol.0904145.
Heneka, M.T., Kummer, M.P., Stutz, A., Delekate, A., Schwartz, S., Vieira-Saecker, A., Golenbock, D.T., NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature 493:7434 (2013), 674–678, 10.1038/nature11729.
Hoos, M.D., Richardson, B.M., Foster, M.W., Everhart, A., Thompson, J.W., Moseley, M.A., Colton, C.A., Longitudinal study of differential protein expression in an Alzheimer's mouse model lacking inducible nitric oxide synthase. J. Proteome Res. 12:10 (2013), 4462–4477, 10.1021/pr4005103.
Huang, K.L., Marcora, E., Pimenova, A.A., Di Narzo, A.F., Kapoor, M., Jin, S.C., Initiative, A.s.D.N., A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer's disease. Nat. Neurosci. 20:8 (2017), 1052–1061, 10.1038/nn.4587.
Inoue, M., Williams, K.L., Oliver, T., Vandenabeele, P., Rajan, J.V., Miao, E.A., Shinohara, M.L., Interferon-β therapy against EAE is effective only when development of the disease depends on the NLRP3 inflammasome. Sci. Signal., 5(225), 2012, ra38, 10.1126/scisignal.2002767.
Irrera, N., Pizzino, G., Calò, M., Pallio, G., Mannino, F., Famà, F., Bitto, A., Lack of the Nlrp3 inflammasome improves mice recovery following traumatic brain injury. Front. Pharmacol., 8, 2017, 459, 10.3389/fphar.2017.00459.
Ismael, S., Nasoohi, S., Ishrat, T., MCC950, the selective inhibitor of nucleotide Oligomerization domain-like receptor protein-3 inflammasome, protects mice against traumatic brain injury. J. Neurotrauma 35:11 (2018), 1294–1303, 10.1089/neu.2017.5344.
Jarius, S., Pache, F., Kortvelyessy, P., Jelcic, I., Stettner, M., Franciotta, D., Clinical, N., Cerebrospinal fluid findings in COVID-19: a multicenter study of 150 lumbar punctures in 127 patients. J. Neuroinflammation, 19(1), 2022, 19, 10.1186/s12974-021-02339-0.
Jha, S., Srivastava, S.Y., Brickey, W.J., Iocca, H., Toews, A., Morrison, J.P., Ting, J.P., The inflammasome sensor, NLRP3, regulates CNS inflammation and demyelination via caspase-1 and interleukin-18. J. Neurosci. 30:47 (2010), 15811–15820, 10.1523/JNEUROSCI.4088-10.2010.
Jia, X.M., Tang, B., Zhu, L.L., Liu, Y.H., Zhao, X.Q., Gorjestani, S., Lin, X., CARD9 mediates Dectin-1-induced ERK activation by linking Ras-GRF1 to H-Ras for antifungal immunity. J. Exp. Med. 211:11 (2014), 2307–2321, 10.1084/jem.20132349.
Kan, M.J., Lee, J.E., Wilson, J.G., Everhart, A.L., Brown, C.M., Hoofnagle, A.N., Colton, C.A., Arginine deprivation and immune suppression in a mouse model of Alzheimer's disease. J. Neurosci. 35:15 (2015), 5969–5982, 10.1523/JNEUROSCI.4668-14.2015.
Keren-Shaul, H., Spinrad, A., Weiner, A., Matcovitch-Natan, O., Dvir-Szternfeld, R., Ulland, T.K., Amit, I., A unique microglia type Associated with restricting development of alzheimer's disease. Cell 169:7 (2017), 1276–1290, 10.1016/j.cell.2017.05.018 e1217.
Klein, R.S., Garber, C., Funk, K.E., Salimi, H., Soung, A., Kanmogne, M., Cain, M., Neuroinflammation during RNA viral infections. Annu. Rev. Immunol. 37 (2019), 73–95, 10.1146/annurev-immunol-042718-041417.
Kumar, D.K., Choi, S.H., Washicosky, K.J., Eimer, W.A., Tucker, S., Ghofrani, J., Moir, R.D., Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer's disease. Sci. Transl. Med., 8(340), 2016, 10.1126/scitranslmed.aaf1059 340ra372.
Kunkle, B.W., Grenier-Boley, B., Sims, R., Bis, J.C., Damotte, V., Naj, A.C., Genetic and Environmental Risk in AD/Defining Genetic, P. l. a. E. R. f. A. s. D. C. G. P. Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat. Genet. 51:3 (2019), 414–430, 10.1038/s41588-019-0358-2.
Kwak, S.S., Washicosky, K.J., Brand, E., von Maydell, D., Aronson, J., Kim, S., Kim, D.Y., Amyloid-beta42/40 ratio drives tau pathology in 3D human neural cell culture models of Alzheimer's disease. Nat. Commun., 11(1), 2020, 1377, 10.1038/s41467-020-15120-3.
Lin, Q., Shen, F., Zhou, Q., Huang, P., Lin, L., Chen, M., Deng, Y., Interleukin-1beta disturbs the proliferation and differentiation of neural precursor cells in the Hippocampus via activation of notch signaling in postnatal rats exposed to lipopolysaccharide. ACS Chem. Neurosci. 10:5 (2019), 2560–2575, 10.1021/acschemneuro.9b00051.
Long, J.M., Holtzman, D.M., Alzheimer disease: an update on pathobiology and treatment strategies. Cell 179:2 (2019), 312–339, 10.1016/j.cell.2019.09.001.
MahmoudianDehkordi, S., Arnold, M., Nho, K., Ahmad, S., Jia, W., Xie, G., Consortium, A., Altered bile acid profile associates with cognitive impairment in Alzheimer's disease-An emerging role for gut microbiome. Alzheimers Dement 15:1 (2019), 76–92, 10.1016/j.jalz.2018.07.217.
Makin, S., The amyloid hypothesis on trial. Nature 559:7715 (2018), S4–S7, 10.1038/d41586-018-05719-4.
Matschke, J., Lütgehetmann, M., Hagel, C., Sperhake, J.P., Schröder, A.S., Edler, C., Glatzel, M., Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol. 19:11 (2020), 919–929, 10.1016/S1474-4422(20)30308-2.
McAlpine, L.S., Lifland, B., Check, J.R., Angarita, G.A., Ngo, T.T., Pleasure, S.J., Bartley, C.M., Remission of subacute psychosis in a COVID-19 patient with an antineuronal autoantibody after treatment with intravenous immunoglobulin. Biol. Psychiatr. 90:4 (2021), e23–e26, 10.1016/j.biopsych.2021.03.033.
Minter, M.R., Zhang, C., Leone, V., Ringus, D.L., Zhang, X., Oyler-Castrillo, P., Sisodia, S.S., Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer's disease. Sci. Rep., 6, 2016, 30028, 10.1038/srep30028.
Needham, B.D., Kaddurah-Daouk, R., Mazmanian, S.K., Gut microbial molecules in behavioural and neurodegenerative conditions. Nat. Rev. Neurosci. 21:12 (2020), 717–731, 10.1038/s41583-020-00381-0.
NIH, O.o.D., NIH Launches New Initiative. Retrieved from https://www.nih.gov/about-nih/who-we-are/nih-director/statements/nih-launches-new-initiative-study-long-covid.
Nott, A., Holtman, I.R., Coufal, N.G., Schlachetzki, J.C.M., Yu, M., Hu, R., Glass, C.K., Brain cell type-specific enhancer-promoter interactome maps and disease. Science 366:6469 (2019), 1134–1139, 10.1126/science.aay0793.
Novikova, G., Kapoor, M., Tcw, J., Abud, E.M., Efthymiou, A.G., Chen, S.X., Goate, A.M., Integration of Alzheimer's disease genetics and myeloid genomics identifies disease risk regulatory elements and genes. Nat. Commun., 12(1), 2021, 1610, 10.1038/s41467-021-21823-y.
Prokopenko, D., Morgan, S.L., Mullin, K., Hofmann, O., Chapman, B., Kirchner, R., Tanzi, R.E., Whole-genome sequencing reveals new Alzheimer's disease-associated rare variants in loci related to synaptic function and neuronal development. Alzheimers Dement 17:9 (2021), 1509–1527, 10.1002/alz.12319.
Qi, Y., Klyubin, I., Cuello, A.C., Rowan, M.J., NLRP3-dependent synaptic plasticity deficit in an Alzheimer's disease amyloidosis model in vivo. Neurobiol. Dis. 114 (2018), 24–30, 10.1016/j.nbd.2018.02.016.
Rooks, M.G., Garrett, W.S., Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 16:6 (2016), 341–352, 10.1038/nri.2016.42.
Salter, M.W., Stevens, B., Microglia emerge as central players in brain disease. Nat. Med. 23:9 (2017), 1018–1027, 10.1038/nm.4397.
Sánchez-Fernández, A., Skouras, D.B., Dinarello, C.A., López-Vales, R., OLT1177 (dapansutrile), a selective NLRP3 inflammasome inhibitor, ameliorates experimental autoimmune encephalomyelitis pathogenesis. Front. Immunol., 10, 2019, 2578, 10.3389/fimmu.2019.02578.
Solomon, I.H., Normandin, E., Bhattacharyya, S., Mukerji, S.S., Keller, K., Ali, A.S., Sabeti, P., Neuropathological features of Covid-19. N. Engl. J. Med. 383:10 (2020), 989–992, 10.1056/NEJMc2019373.
Song, E., Bartley, C.M., Chow, R.D., Ngo, T.T., Jiang, R., Zamecnik, C.R., Farhadian, S.F., Divergent and self-reactive immune responses in the CNS of COVID-19 patients with neurological symptoms. Cell Rep Med, 2(5), 2021, 100288, 10.1016/j.xcrm.2021.100288.
Sperling, R.A., Mormino, E.C., Schultz, A.P., Betensky, R.A., Papp, K.V., Amariglio, R.E., Johnson, K.A., The impact of amyloid-beta and tau on prospective cognitive decline in older individuals. Ann. Neurol. 85:2 (2019), 181–193, 10.1002/ana.25395.
Ungar, L., Altmann, A., Greicius, M.D., Apolipoprotein E, gender, and Alzheimer's disease: an overlooked, but potent and promising interaction. Brain Imaging Behav 8:2 (2014), 262–273, 10.1007/s11682-013-9272-x.
Venegas, C., Kumar, S., Franklin, B.S., Dierkes, T., Brinkschulte, R., Tejera, D., Heneka, M.T., Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer's disease. Nature 552:7685 (2017), 355–361, 10.1038/nature25158.
Zheng, D., Liwinski, T., Elinav, E., Inflammasome activation and regulation: toward a better understanding of complex mechanisms. Cell Discov, 6, 2020, 36, 10.1038/s41421-020-0167-x.
Zubair, A.S., McAlpine, L.S., Gardin, T., Farhadian, S., Kuruvilla, D.E., Spudich, S., Neuropathogenesis and neurologic manifestations of the Coronaviruses in the age of coronavirus disease 2019: a review. JAMA Neurol. 77:8 (2020), 1018–1027, 10.1001/jamaneurol.2020.2065.