[en] Atherosclerosis is an inflammatory disease linked to elevated blood cholesterol concentrations. Despite ongoing advances in the prevention and treatment of atherosclerosis, cardiovascular disease remains the leading cause of death worldwide. Continuous retention of apolipoprotein B-containing lipoproteins in the subendothelial space causes a local overabundance of free cholesterol. Because cholesterol accumulation and deposition of cholesterol crystals (CCs) trigger a complex inflammatory response, we tested the efficacy of the cyclic oligosaccharide 2-hydroxypropyl-β-cyclodextrin (CD), a compound that increases cholesterol solubility in preventing and reversing atherosclerosis. We showed that CD treatment of murine atherosclerosis reduced atherosclerotic plaque size and CC load and promoted plaque regression even with a continued cholesterol-rich diet. Mechanistically, CD increased oxysterol production in both macrophages and human atherosclerotic plaques and promoted liver X receptor (LXR)-mediated transcriptional reprogramming to improve cholesterol efflux and exert anti-inflammatory effects. In vivo, this CD-mediated LXR agonism was required for the antiatherosclerotic and anti-inflammatory effects of CD as well as for augmented reverse cholesterol transport. Because CD treatment in humans is safe and CD beneficially affects key mechanisms of atherogenesis, it may therefore be used clinically to prevent or treat human atherosclerosis.
Disciplines :
Neurology
Author, co-author :
Zimmer, Sebastian; Medizinische Klinik und Poliklinik II, University Hospital Bonn, 53105 Bonn, Germany
Grebe, Alena; Institute of Innate Immunity, University Hospital Bonn, 53127 Bonn, Germany
Bakke, Siril S; Institute of Innate Immunity, University Hospital Bonn, 53127 Bonn, Germany. German Center of Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany. Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, 7489 Trondheim, Norway
Bode, Niklas; Medizinische Klinik und Poliklinik II, University Hospital Bonn, 53105 Bonn, Germany
Halvorsen, Bente; Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0424 Oslo, Norway
Ulas, Thomas; Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
Skjelland, Mona; Department of Neurology, Oslo University Hospital Rikshospitalet, 0424 Oslo, Norway
De Nardo, Dominic; Institute of Innate Immunity, University Hospital Bonn, 53127 Bonn, Germany. Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia. Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
Labzin, Larisa I; Institute of Innate Immunity, University Hospital Bonn, 53127 Bonn, Germany
Kerksiek, Anja; Institute of Clinical Chemistry und Clinical Pharmacology, University Hospital Bonn, 53105 Bonn, Germany
Hempel, Chris; Addi and Cassi Fund, Reno, NV 89511, USA
HENEKA, Michael ; Clinic and Polyclinic for Neurology, University Hospital Bonn, 53105 Bonn, Germany
Hawxhurst, Victoria; Lipid Metabolism Unit, Center for Computational and Integrative Biology, Boston, MA 02114, USA
Fitzgerald, Michael L; Lipid Metabolism Unit, Center for Computational and Integrative Biology, Boston, MA 02114, USA
Trebicka, Jonel; Medizinische Klinik und Poliklinik I, University Hospital Bonn, 53105 Bonn, Germany. Faculty of Health Sciences, University of Southern Denmark Campusvej 55, DK-5230 Odense M, Denmark
Björkhem, Ingemar; Division of Clinical Chemistry, Karolinska Institutet, Huddinge University Hospital, 141 86 Huddinge, Sweden
Gustafsson, Jan-Åke; Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX 77004, USA
Westerterp, Marit; Department of Medicine, Columbia University, New York, NY 10032, USA
Tall, Alan R; Department of Medicine, Columbia University, New York, NY 10032, USA
Wright, Samuel D; CSL Behring, King of Prussia, PA 19406, USA
Espevik, Terje; Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, 7489 Trondheim, Norway
Schultze, Joachim L; German Center of Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany. Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
Nickenig, Georg; Medizinische Klinik und Poliklinik II, University Hospital Bonn, 53105 Bonn, Germany
Lütjohann, Dieter; Institute of Clinical Chemistry und Clinical Pharmacology, University Hospital Bonn, 53105 Bonn, Germany
Latz, Eicke; Institute of Innate Immunity, University Hospital Bonn, 53127 Bonn, Germany. German Center of Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany. Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, 7489 Trondheim, Norway. Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA. eicke.latz@uni-bonn.de
NIH Research Council of Norway Robert A. Welch Foundation Swedish Science Council Deutsche Forschungsgemeinschaft DFG
Funding text :
Acknowledgments: We appreciate the great technical assistance of C. Lahrmann, A. Glubokovskih, G. Hack and S. Bellinghausen (University of Bonn), A. Marstad (Norwegian University of Science and Technology), Z. Ali (Karolinska Institutet), and K. Krohg-Sørensen (Oslo University Hospital). We thank C. Hastings (Children's Hospital & Research Center Oakland) for help with the acquisition of samples from NPC patients and greatly appreciate the contribution of the Hadley Hope Fund (Medford). CD and rhodamine-labeled CD were provided by CTD Holdings Inc. LD540 was provided by C. Thiele (University of Bonn). Funding: This work wasfunded by NIH grants R01-HL093262, R21-HL113907-01 (to E.L.), HL112661-01 (to M.LF. and E.L.), HL101274 (to M.L.F.), and HL107653 (to A.R.T.); the Research Council of Norway through its Centres of Excellence funding scheme project no. 223255/F50 (to S.S.B., E.L, and T.E.); BONFOR (to S.Z. and N.B.); the Robert A. Welch Foundation (E-0004;to J.-Å.G.);the Swedish Science Council (H2416223; to J.-Å.G.); and grants from the Deutsche Forschungsgemeinschaft (DFG; SFB645, SFB670, SFB704, TRR83, and TRR57) (to E.L., J.L.S., and J.T.). E.L, M.T.H., and J.L.S. are members of the Excellence Cluster ImmunoSensation (Exc1023) funded by the DFG. Author contributions: S.Z. and A.G. designed, performed, and analyzed experiments. N.B. assisted with atherosclerosis mouse models and data analysis. S.S.B., L.I.L, B.H., M.S., J.T., A.K., and V.H. performed experiments. S.S.B., T.U., and J.L.S. performed bioinformatic analyses. J.-Å.G., M.T.H., I.B., M.W., and A.R.T. provided knockout mice. D.D., G.N., T.E., M.L.F., S.D.W., and D.L. analyzed data and provided critical suggestions and discussions throughout the study. C.H. provided the initial idea for the study. S.Z., A.G., and E.L. designed the study and wrote the manuscript. Competing interests: S.D.W. is a full-time employee of CSL Limited, which does not work with CD. All the other authors declare that they have no competing interests. Data and materials availability: Accession codes for data in Gene Expression Omnibus: GSE67014 includes GSE67011 and GSE67013.
J. G. Robinson, M. Farnier, M. Krempf, J. Bergeron, G. Luc, M. Averna, E. S. Stroes, G. Langslet, F. J. Raal, M. E. Shahawy, M. J. Koren, N. E. Lepor, C. Lorenzato, R. Pordy, U. Chaudhari, J. J. P. Kastelein; ODYSSEY LONG TERM Investigators, Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N. Engl. J. Med. 372, 1489-1499 (2015).
M. S. Sabatine, R. P. Giugliano, S. D. Wiviott, F. J. Raal, D. J. Blom, J. Robinson, C. M. Ballantyne, R. Somaratne, J. Legg, S. M. Wasserman, R. Scott, M. J. Koren, E. A. Stein; Open-Label Study of Long-Term Evaluation against LDL Cholesterol (OSLER) Investigators, Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N. Engl. J. Med. 372, 1500-1509 (2015).
Task Force Members, G. Montalescot, U. Sechtem, S. Achenbach, F. Andreotti, C. Arden, A. Budaj, R. Bugiardini, F. Crea, T. Cuisset, C. Di Mario, J. R. Ferreira, B. J. Gersh, A. K. Gitt, J. S. Hulot, N. Marx, L. H. Opie, M. Pfisterer, E. Prescott, F. Ruschitzka, M. Sabaté, R. Senior, D. P. Taggart, E. E. van der Wall, C. J. M. Vrints; ESC Committee for Practice Guidelines (CPG), J. L. Zamorano, S. Achenbach, H. Baumgartner, J. J. Bax, H. Bueno, V. Dean, C. Deaton, C. Erol, R. Fagard, R. Ferrari, D. Hasdai, A. W. Hoes, P. Kirchhof, J. Knuuti, P. Kohl, P. Lancellotti, A. Linhart, P. Nihoyannopoulos, M. F. Piepoli, P. Ponikowski, P. A. Sirnes, J. L. Tamargo, M. Tendera, A. Torbicki, W. Wijns, S. Windecker; Document Reviewers, J. Knuuti, M. Valgimigli, H. Bueno, M. J. Claeys, N. Donner-Banzhoff, C. Erol, H. Frank, C. Funck-Brentano, O. Gaemperli, J. R. Gonzalez-Juanatey, M. Hamilos, D. Hasdai, S. Husted, S. K. James, K. Kervinen, P. Kolh, S. D. Kristensen, P. Lancellotti, A. P. Maggioni, M. F. Piepoli, A. R. Pries, F. Romeo, L. Rydén, M. L. Simoons, P. A. Sirnes, P. G. Steg, A. Timmis, W. Wijns, S. Windecker, A. Yildirir, J. L. Zamorano, 2013 ESC guidelines on the management of stable coronary artery disease: The Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur. Heart J. 34, 2949-3003 (2013).
F. J. Sheedy, A. Grebe, K. J. Rayner, P. Kalantari, B. Ramkhelawon, S. B. Carpenter, C. E. Becker, H. N. Ediriweera, A. E. Mullick, D. T. Golenbock, L. M. Stuart, E. Latz, K. A. Fitzgerald, K. J. Moore, CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat. Immunol. 14, 812-820 (2013).
P. Duewell, H. Kono, K. J. Rayner, C. M. Sirois, G. Vladimer, F. G. Bauernfeind, G. S. Abela, L. Franchi, G. Nuñez, M. Schnurr, T. Espevik, E. Lien, K. A. Fitzgerald, K. L. Rock, K. J. Moore, S. D. Wright, V. Hornung, E. Latz, NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357-1361 (2010).
P. M. Ridker, T. Thuren, A. Zalewski, P. Libby, Interleukin-1β inhibition and the prevention of recurrent cardiovascular events: Rationale and design of the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS). Am. Heart J. 162, 597-605 (2011).
A. Warnatsch, M. Ioannou, Q. Wang, V. Papayannopoulos, Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science 349, 316-320 (2015).
S. Nymo, N. Niyonzima, T. Espevik, T. E. Mollnes, Cholesterol crystal-induced endothelial cell activation is complement-dependent and mediated by TNF. Immunobiology 219, 786-792 (2014).
E. O. Samstad, N. Niyonzima, S. Nymo, M. H. Aune, L. Ryan, S. S. Bakke, K. T. Lappegård, O.-L. Brekke, J. D. Lambris, J. K. Damås, E. Latz, T. E. Mollnes, T. Espevik, Cholesterol crystals induce complement-dependent inflammasome activation and cytokine release. J. Immunol. 192, 2837-2845 (2014).
R. Kiyotake, M. Oh-Hora, E. Ishikawa, T. Miyamoto, T. Ishibashi, S. Yamasaki, Human mincle binds to cholesterol crystals and triggers innate immune responses. J. Biol. Chem. 290, 25322-25332 (2015).
K. J. Rayner, C. C. Esau, F. N. Hussain, A. L. McDaniel, S. M. Marshall, J. M. van Gils, T. D. Ray, F. J. Sheedy, L. Goedeke, X. Liu, O. G. Khatsenko, V. Kaimal, C. J. Lees, C. Fernandez-Hernando, E. A. Fisher, R. E. Temel, K. J. Moore, Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature 478, 404-407 (2011).
S. Gould, R. C. Scott, 2-Hydroxypropyl-β-cyclodextrin (HP-β-CD): A toxicology review. Food Chem. Toxicol. 43, 1451-1459 (2005).
T. Loftsson, P. Jarho, M. Másson, T. Järvinen, Cyclodextrins in drug delivery. Expert Opin. Drug Deliv. 2, 335-351 (2005).
S. M. Liu, A. Cogny, M. Kockx, R. T. Dean, K. Gaus, W. Jessup, L. Kritharides, Cyclodextrins differentially mobilize free and esterified cholesterol from primary human foam cell macrophages. J. Lipid Res. 44, 1156-1166 (2003).
L. Kritharides, M. Kus, A. J. Brown, W. Jessup, R. T. Dean, Hydroxypropyl-β-cyclodextrin-mediated efflux of 7-ketocholesterol from macrophage foam cells. J. Biol. Chem. 271, 27450-27455 (1996).
V. M. Atger, M. de la Llera Moya, G. W. Stoudt, W. V. Rodrigueza, M. C. Phillips, G. H. Rothblat, Cyclodextrins as catalysts for the removal of cholesterol from macrophage foam cells. J. Clin. Invest. 99, 773-780 (1997).
D. S. Mackay, P. J. H. Jones, Plasma noncholesterol sterols: Current uses, potential and need for standardization. Curr. Opin. Lipidol. 23, 241-247 (2012).
G. S. Getz, C. A. Reardon, Animal models of atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 32, 1104-1115 (2012).
B. Hewing, E. A. Fisher, Preclinical mouse models and methods for the discovery of the causes and treatments of atherosclerosis. Expert Opin. Drug Discov. 7, 207-216 (2012).
K. J. Rayner, F. J. Sheedy, C. C. Esau, F. N. Hussain, R. E. Temel, S. Parathath, J. M. van Gils, A. J. Rayner, A. N. Chang, Y. Suarez, C. Fernandez-Hernando, E. A. Fisher, K. J. Moore, Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J. Clin. Invest. 121, 2921-2931 (2011).
I. Tabas, Consequences of cellular cholesterol accumulation: Basic concepts and physiological implications. J. Clin. Invest. 110, 905-911 (2002).
J. J. Repa, D. J. Mangelsdorf, The liver X receptor gene team: Potential new players in atherosclerosis. Nat. Med. 8, 1243-1248 (2002).
A. R. Tall, L. Yvan-Charvet, Cholesterol, inflammation and innate immunity. Nat. Rev. Immunol. 15, 104-116 (2015).
A. Reboldi, E. V. Dang, J. G. McDonald, G. Liang, D. W. Russell, J. G. Cyster, 25-Hydroxycholesterol suppresses interleukin-1-driven inflammation downstream of type I interferon. Science 345, 679-684 (2014).
A. V. Khera, M. Cuchel, M. de la Llera-Moya, A. Rodrigues, M. F. Burke, K. Jafri, B. C. French, J. A. Phillips, M. L. Mucksavage, R. L. Wilensky, E. R. Mohler, G. H. Rothblat, D. J. Rader, Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N. Engl. J. Med. 364, 127-135 (2011).
A. Rohatgi, A. Khera, J. D. Berry, E. G. Givens, C. R. Ayers, K. E. Wedin, I. J. Neeland, I. S. Yuhanna, D. R. Rader, J. A. de Lemos, P. W. Shaul, HDL cholesterol efflux capacity and incident cardiovascular events. N. Engl. J. Med. 371, 2383-2393 (2014).
D. J. Rader, E. Puré, Lipoproteins, macrophage function, and atherosclerosis: Beyond the foam cell? Cell Metab. 1, 223-230 (2005).
B. A. Janowski, P. J. Willy, T. R. Devi, J. R. Falck, D. J. Mangelsdorf, An oxysterol signalling pathway mediated by the nuclear receptor LXRα. Nature 383, 728-731 (1996).
A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A. Gillette, A. Paulovich, S. L. Pomeroy, T. R. Golub, E. S. Lander, J. P. Mesirov, Gene set enrichment analysis: A knowledgebased approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S.A. 102, 15545-15550 (2005).
S. Heinz, C. Benner, N. Spann, E. Bertolino, Y. C. Lin, P. Laslo, J. X. Cheng, C. Murre, H. Singh, C. K. Glass, Simple combinations of lineage-determining transcription factors prime cisregulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576-589 (2010).
J. J. Repa, S. D. Turley, J.-M. A. Lobaccaro, J. Medina, L. Li, K. Lustig, B. Shan, R. A. Heyman, J. M. Dietschy, D. J. Mangelsdorf, Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers. Science 289, 1524-1529 (2000).
B. Liu, H. Li, J. J. Repa, S. D. Turley, J. M. Dietschy, Genetic variations and treatments that affect the lifespan of the NPC1 mouse. J. Lipid Res. 49, 663-669 (2008).
A. M. Taylor, B. Liu, Y. Mari, B. Liu, J. J. Repa, Cyclodextrin mediates rapid changes in lipid balance in Npc1-/- mice without carrying cholesterol through the bloodstream. J. Lipid Res. 53, 2331-2342 (2012).
A. Mayor, F. Martinon, T. De Smedt, V. Pétrilli, J. Tschopp, A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses. Nat. Immunol. 8, 497-503 (2007).
A. Castrillo, S. B. Joseph, S. A. Vaidya, M. Haberland, A. M. Fogelman, G. Cheng, P. Tontonoz, Crosstalk between LXR and toll-like receptor signaling mediates bacterial and viral antagonism of cholesterol metabolism. Mol. Cell 12, 805-816 (2003).
K. R. Feingold, C. Grunfeld, The acute phase response inhibits reverse cholesterol transport. J. Lipid Res. 51, 682-684 (2010).
D. De Nardo, L. I. Labzin, H. Kono, R. Seki, S. V. Schmidt, M. Beyer, D. Xu, S. Zimmer, C. Lahrmann, F. A. Schildberg, J. Vogelhuber, M. Kraut, T. Ulas, A. Kerksiek, W. Krebs, N. Bode, A. Grebe, M. L. Fitzgerald, N. J. Hernandez, B. R. G. Williams, P. Knolle, M. Kneilling, M. Röcken, D. Lütjohann, S. D. Wright, J. L. Schultze, E. Latz, High-density lipoprotein mediates anti-inflammatory reprogramming of macrophages via the transcriptional regulator ATF3. Nat. Immunol. 15, 152-160 (2014).
M. S. Kappus, A. J. Murphy, S. Abramowicz, V. Ntonga, C. L. Welch, A. R. Tall, M. Westerterp, Activation of liver X receptor decreases atherosclerosis in Ldlr-/- mice in the absence of ATP-binding cassette transporters A1 and G1 in myeloid cells. Arterioscler. Thromb. Vasc. Biol. 34, 279-284 (2014).
S. B. Joseph, E. McKilligin, L. Pei, M. A. Watson, A. R. Collins, B. A. Laffitte, M. Chen, G. Noh, J. Goodman, G. N. Hagger, J. Tran, T. K. Tippin, X. Wang, A. J. Lusis, W. A. Hsueh, R. E. Law, J. L. Collins, T. M. Willson, P. Tontonoz, Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc. Natl. Acad. Sci. U.S.A. 99, 7604-7609 (2002).
J. E. Feig, I. Pineda-Torra, M. Sanson, M. N. Bradley, Y. Vengrenyuk, D. Bogunovic, E. L. Gautier, D. Rubinstein, C. Hong, J. Liu, C. Wu, N. van Rooijen, N. Bhardwaj, M. Garabedian, P. Tontonoz, E. A. Fisher, LXR promotes the maximal egress of monocyte-derived cells from mouse aortic plaques during atherosclerosis regression. J. Clin. Invest. 120, 4415-4424 (2010).
X. Li, V. Yeh, V. Molteni, Liver X receptor modulators: A review of recently patented compounds (2007-2009). Expert Opin. Ther. Pat. 20, 535-562 (2010).
V. Hornung, F. Bauernfeind, A. Halle, E. O. Samstad, H. Kono, K. L. Rock, K. A. Fitzgerald, E. Latz, Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 9, 847-856 (2008).
S. Wassmann, A. T. Bäumer, K. Strehlow, M. van Eickels, C. Grohé, K. Ahlbory, R. Rösen, M. Böhm, G. Nickenig, Endothelial dysfunction and oxidative stress during estrogen deficiency in spontaneously hypertensive rats. Circulation 103, 435-441 (2001).
D. Lütjohann, C. Hahn, W. Prange, T. Sudhop, M. Axelson, T. Sauerbruch, K. von Bergmann, C. Reichel, Influence of rifampin on serum markers of cholesterol and bile acid synthesis in men. Int. J. Clin. Pharmacol. Ther. 42, 307-313 (2004).
D. Lütjohann, A. Brzezinka, E. Barth, D. Abramowski, M. Staufenbiel, K. von Bergmann, K. Beyreuther, G. Multhaup, T. A. Bayer, Profile of cholesterol-related sterols in aged amyloid precursor protein transgenic mouse brain. J. Lipid Res. 43, 1078-1085 (2002).
S. Zimmer, M. Steinmetz, T. Asdonk, I. Motz, C. Coch, E. Hartmann, W. Barchet, S. Wassmann, G. Hartmann, G. Nickenig, Activation of endothelial toll-like receptor 3 impairs endothelial function. Circ. Res. 108, 1358-1366 (2011).
J. Spandl, D. J. White, J. Peychl, C. Thiele, Live cell multicolor imaging of lipid droplets with a new dye, LD540. Traffic 10, 1579-1584 (2009).
D. Lütjohann, M. Stroick, T. Bertsch, S. Kühl, B. Lindenthal, K. Thelen, U. Andersson, I. Björkhem, K. von Bergmann, K. Fassbender, High doses of simvastatin, pravastatin, and cholesterol reduce brain cholesterol synthesis in guinea pigs. Steroids 69, 431-438 (2004).
D. Lütjohann, O. Breuer, G. Ahlborg, I. Nennesmo, A. Sidén, U. Diczfalusy, I. Björkhem, Cholesterol homeostasis in human brain: Evidence for an age-dependent flux of 24S-hydroxycholesterol from the brain into the circulation. Proc. Natl. Acad. Sci. U.S.A. 93, 9799-9804 (1996).
S. Maere, K. Heymans, M. Kuiper, BiNGO: A Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21, 3448-3449 (2005).
D. Merico, R. Isserlin, O. Stueker, A. Emili, G. D. Bader, Enrichment map: A network-based method for gene-set enrichment visualization and interpretation. PLOS One 5, e13984 (2010).
L. Oesper, D. Merico, R. Isserlin, G. D. Bader, WordCloud: A Cytoscape plugin to create a visual semantic summary of networks. Source Code Biol. Med. 6, 7 (2011).
T. G. Brott, J. L. Halperin, S. Abbara, J. M. Bacharach, J. D. Barr, R. L. Bush, C. U. Cates, M. A. Creager, S. B. Fowler, G. Friday, V. S. Hertzberg, E. B. McIff, W. S. Moore, P. D. Panagos, T. S. Riles, R. H. Rosenwasser, A. J. Taylor, 2011 ASA/ACCF/AHA/AANN/AANS/ACR/ASNR/CNS/SAIP/SCAI/SIR/SNIS/SVM/SVS Guideline on the Management of Patients With Extracranial Carotid and Vertebral Artery Disease. A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, and the American Stroke Association, American Association of Neuroscience Nurses, American Association of Neurological Surgeons, American College of Radiology, American Society of Neuroradiology, Congress of Neurological Surgeons, Society of Atherosclerosis Imaging and Prevention, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of NeuroInterventional Surgery, Society for Vascular Medicine, and Society for Vascular Surgery. Circulation 124, e54-e130 (2011).
D. S. Mackay, P. J. H. Jones, S. B. Myrie, J. Plat, D. Lütjohann, Methodological considerations for the harmonization of non-cholesterol sterol bio-analysis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 957, 116-122 (2014).
P. Pehkonen, L Welter-Stahl, J. Diwo, J. Ryynänen, A. Wienecke-Baldacchino, S. Heikkinen, E. Treuter, K. R. Steffensen, C. Carlberg, Genome-wide landscape of liver X receptor chromatin binding and gene regulation in human macrophages. BMC Genomics 13, 50 (2012).
E. B. Mathiesen, K. H. Bønaa, O. Joakimsen, Echolucent plaques are associated with high risk of ischemic cerebrovascular events in carotid stenosis: The tromsø study. Circulation 103, 2171-2175 (2001).
P. S. Olofsson, K Jatta, D. Wågsäter, S. Gredmark, U. Hedin, G. Paulsson-Berne, C Söderberg-Nauclér, G. K. Hansson, A. Sirsjö, The antiviral cytomegalovirus inducible gene 5/viperin is expressed in atherosclerosis and regulated by proinflammatory agents. Arterioscler. Thromb. Vasc. Biol. 25, e113-e116 (2005).