[en] Over the past decades, our view on neurodegenerative diseases has been mainly centered around neurons and their networks. Only recently it became evident that immunological processes arise alongside degenerating neurons, raising the question whether these represent just meaningless bystander reactions or in turn, contribute to pathogenesis and disease symptoms. When considering any effect of inflammatory events on the CNS one has to consider the site, duration and nature of immune activation. Likewise, one has to distinguish between mechanisms which directly impact the neuronal compartment and indirect mechanisms, which affect cells that are important for neuronal functioning and survival. As discussed in this review, both types of mechanisms may be present at the same time and additively or synergistically lead to neuronal demise. Inflammatory mediators released by the principle innate immune cells of the brain, microglia and astrocytes, can compromise the function and structure of neurons, thereby playing important roles in the pathogenesis of neurodegenerative diseases.
Disciplines :
Neurology
Author, co-author :
Ising, Christina; German Center for Neurodegenerative Diseases (DZNE), Sigmund Freud Str. 27, 53127, Bonn, Germany ; Department of Neurodegenerative Diseases and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53127, Bonn, Germany
HENEKA, Michael ; German Center for Neurodegenerative Diseases (DZNE), Sigmund Freud Str. 27, 53127, Bonn, Germany. michael.heneka@ukbonn.de ; Department of Neurodegenerative Diseases and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53127, Bonn, Germany. michael.heneka@ukbonn.de
External co-authors :
yes
Language :
English
Title :
Functional and structural damage of neurons by innate immune mechanisms during neurodegeneration.
Publication date :
25 January 2018
Journal title :
Cell Death and Disease
eISSN :
2041-4889
Publisher :
Springer Science and Business Media LLC, Basingstoke, Hampshire, England
Aspelund, A. et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med. 212, 991-999 (2015).
Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337-341 (2015).
Brendecke, S. M. & Prinz, M. Do not judge a cell by its cover-diversity of CNS resident, adjoining and infiltrating myeloid cells in inflammation. Semin. Immunopathol. 37, 591-605 (2015).
Alzheimer's Association. Alzheimer's disease facts and figures. Alzheimers Dement. J. Alzheimers Assoc. 2013, 208-245 (2013).
Schulz, C. et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336, 86-90 (2012).
Alliot, F., Godin, I. & Pessac, B. Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res. Dev. Brain Res. 117, 145-152 (1999).
Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841-845 (2010).
Lawson, L. J., Perry, V. H., Dri, P. & Gordon, S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39, 151-170 (1990).
Kettenmann, H., Hanisch, U.-K., Noda, M. & Verkhratsky, A. Physiology of microglia. Physiol. Rev. 91, 461-553 (2011).
Ransohoff, R. M. A polarizing question: do M1 and M2 microglia exist? Nat. Neurosci. 19, 987-991 (2016).
Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer's disease. Cell 169, 1276-1290.e17 (2017).
Heneka, M. T., Kummer, M. P. & Latz, E. Innate immune activation in neurodegenerative disease. Nat. Rev. Immunol. 14, 463-477 (2014).
Meyer-Luehmann, M. et al. Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer's disease. Nature 451, 720-724 (2008).
Tay, T. L. et al. A new fate mapping system reveals context-dependent random or clonal expansion of microglia. Nat. Neurosci. 20, 793-803 (2017).
Heneka, M. T. et al. NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature 493, 674-678 (2013).
Naj, A. C. et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. Nat. Genet. 43, 436-441 (2011).
Hollingworth, P. et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nat. Genet. 43, 429-435 (2011).
Jonsson, T. et al. Variant of TREM2 associated with the risk of Alzheimer's disease. N. Engl. J. Med. 368, 107-116 (2013).
Huang, K.-L. et al. A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer's disease. Nat. Neurosci. https://doi.org/10.1038/nn.4587 (2017).
Ramon, Y. Cajal Santiago 1852-1934. Ramon Y Cajal S. histologie du systeme nerveux de l'homme et des vertebres. Hachette Livre-BNF: S.l., 2013.
Ben Haim, L. & Rowitch, D. H. Functional diversity of astrocytes in neural circuit regulation. Nat. Rev. Neurosci. 18, 31-41 (2017).
Wang, X. et al. Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat. Neurosci. 9, 816-823 (2006).
Dani, J. W., Chernjavsky, A. & Smith, S. J. Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron 8, 429-440 (1992).
Bélanger, M., Allaman, I. & Magistretti, P. J. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell. Metab. 14, 724-738 (2011).
McBean G. J. Cysteine, glutathione, and thiol redox balance in astrocytes. Antioxid. Basel Switz https://doi.org/10.3390/antiox6030062 (2017).
Perea, G., Yang, A., Boyden, E. S. & Sur, M. Optogenetic astrocyte activation modulates response selectivity of visual cortex neurons in vivo. Nat. Commun. 5, 3262 (2014).
Martín, R., Bajo-Grañeras, R., Moratalla, R., Perea, G. & Araque, A. Circuit-specific signaling in astrocyte-neuron networks in basal ganglia pathways. Science 349, 730-734 (2015).
Kim, J. G. et al. Leptin signaling in astrocytes regulates hypothalamic neuronal circuits and feeding. Nat. Neurosci. 17, 908-910 (2014).
Christopherson, K. S. et al. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120, 421-433 (2005).
Eroglu, C. et al. Gabapentin receptor alpha2delta-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis. Cell 139, 380-392 (2009).
Clarke, L. E. et al. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 504, 394-400 (2013).
Ben Haim, L. Carrillo-de Sauvage M-A, Ceyzériat K, Escartin C. Elusive roles for reactive astrocytes in neurodegenerative diseases. Front Cell Neurosci. 9, 278 (2015).
Murphy, K. & Weaver, C. Janeway's immunobiology. 9th edn, (Garland Science/Taylor & Francis Group, LLC, New York, NY, 2016).
Stence, N., Waite, M. & Dailey, M. E. Dynamics of microglial activation: A confocal time-lapse analysis in hippocampal slices. Glia 33, 256-266 (2001).
Orr, A. G., Orr, A. L., Li, X.-J., Gross, R. E. & Traynelis, S. F. Adenosine A(2A) receptor mediates microglial process retraction. Nat. Neurosci. 12, 872-878 (2009).
Schafer, D. P. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74, 691-705 (2012).
Parkhurst, C. N. et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155, 1596-1609 (2013).
Wang, Q., Rowan, M. J. & Anwyl, R. Beta-Amyloid-mediated inhibition of NMDA receptor-dependent long-Term potentiation induction involves activation of microglia and stimulation of inducible nitric oxide synthase and superoxide. J. Neurosci. J. Soc. Neurosci. 24, 6049-6056 (2004).
Weberpals, M. et al. NOS2 gene deficiency protects from sepsis-induced long-Term cognitive deficits. J. Neurosci. J. Soc. Neurosci. 29, 14177-14184 (2009).
Kummer, M. P. et al. Nitration of tyrosine 10 critically enhances amyloid β aggregation and plaque formation. Neuron 71, 833-844 (2011).
Tong, L. et al. Brain-derived neurotrophic factor-dependent synaptic plasticity is suppressed by interleukin-1β via p38 mitogen-Activated protein kinase. J. Neurosci. J. Soc. Neurosci. 32, 17714-17724 (2012).
Tancredi, V. et al. Tumor necrosis factor alters synaptic transmission in rat hippocampal slices. Neurosci. Lett. 146, 176-178 (1992).
Tancredi, V. et al. The inhibitory effects of interleukin-6 on synaptic plasticity in the rat hippocampus are associated with an inhibition of mitogen-Activated protein kinase ERK. J. Neurochem. 75, 634-643 (2000).
Murray, C. A. & Lynch, M. A. Evidence that increased hippocampal expression of the cytokine interleukin-1 beta is a common trigger for age-and stress-induced impairments in long-Term potentiation. J. Neurosci. J. Soc. Neurosci. 18, 2974-2981 (1998).
Lian, H. et al. NFkappaB-Activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer's disease. Neuron 85, 101-115 (2015).
Rosen, D. R. et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59-62 (1993).
Boillée, S. et al. Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312, 1389-1392 (2006).
Nagai, M. et al. Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat. Neurosci. 10, 615-622 (2007).
Di Giorgio, F. P., Carrasco, M. A., Siao, M. C., Maniatis, T. & Eggan, K. Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model. Nat. Neurosci. 10, 608-614 (2007).
Papadeas, S. T., Kraig, S. E., O'Banion, C., Lepore, A. C. & Maragakis, N. J. Astrocytes carrying the superoxide dismutase 1 (SOD1G93A) mutation induce wild-Type motor neuron degeneration in vivo. Proc. Natl. Acad. Sci. USA 108, 17803-17808 (2011).
Gallardo, G. et al. An α2-Na/K ATPase/α-Adducin complex in astrocytes triggers non-cell autonomous neurodegeneration. Nat. Neurosci. 17, 1710-1719 (2014).
Cui, W., Allen, N. D., Skynner, M., Gusterson, B. & Clark, A. J. Inducible ablation of astrocytes shows that these cells are required for neuronal survival in the adult brain. Glia 34, 272-282 (2001).
Custer, S. K. et al. Bergmann glia expression of polyglutamine-expanded ataxin-7 produces neurodegeneration by impairing glutamate transport. Nat. Neurosci. 9, 1302-1311 (2006).
Lattke, M. et al. Transient IKK2 activation in astrocytes initiates selective non-cell-Autonomous neurodegeneration. Mol. Neurodegener. 12, 16 (2017).
Heneka, M. T. et al. Focal glial activation coincides with increased BACE1 activation and precedes amyloid plaque deposition in APP[V717I] transgenic mice. J. Neuroinflamm. 2, 22 (2005).
Carter, S. F. et al. Evidence for astrocytosis in prodromal Alzheimer disease provided by 11C-deuterium-L-deprenyl: A multitracer PET paradigm combining 11C-Pittsburgh compound B and 18F-FDG. J. Nucl. Med. Publ. Soc. Nucl. Med 53, 37-46 (2012).
Hamelin, L. et al. Early and protective microglial activation in Alzheimer's disease: A prospective study using 18F-DPA-714 PET imaging. Brain J. Neurol. 139, 1252-1264 (2016).
Hong, S. et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352, 712-716 (2016).
Grathwohl, S. A. et al. Formation and maintenance of Alzheimer's disease beta-Amyloid plaques in the absence of microglia. Nat. Neurosci. 12, 1361-1363 (2009).
Spangenberg, E. E. et al. Eliminating microglia in Alzheimer's mice prevents neuronal loss without modulating amyloid-β pathology. Brain J. Neurol. 139, 1265-1281 (2016).
Condello, C., Yuan, P., Schain, A. & Grutzendler, J. Microglia constitute a barrier that prevents neurotoxic protofibrillar Aβ42 hotspots around plaques. Nat. Commun. 6, 6176 (2015).
Masliah, E., Alford, M., DeTeresa, R., Mallory, M. & Hansen, L. Deficient glutamate transport is associated with neurodegeneration in Alzheimer's disease. Ann. Neurol. 40, 759-766 (1996).
Li, S., Mallory, M., Alford, M., Tanaka, S. & Masliah, E. Glutamate transporter alterations in Alzheimer disease are possibly associated with abnormal APP expression. J. Neuropathol. Exp. Neurol. 56, 901-911 (1997).
Simpson, J. E. et al. Astrocyte phenotype in relation to Alzheimer-Type pathology in the ageing brain. Neurobiol. Aging 31, 578-590 (2010).
Cardona, A. E. et al. Control of microglial neurotoxicity by the fractalkine receptor. Nat. Neurosci. 9, 917-924 (2006).
Lee, S. et al. CX3CR1 deficiency alters microglial activation and reduces beta-Amyloid deposition in two Alzheimer's disease mouse models. Am. J. Pathol. 177, 2549-2562 (2010).
Liu, Z., Condello, C., Schain, A., Harb, R. & Grutzendler, J. CX3CR1 in microglia regulates brain amyloid deposition through selective protofibrillar amyloid-β phagocytosis. J. Neurosci. J. Soc. Neurosci. 30, 17091-17101 (2010).
Cho, S.-H. et al. CX3CR1 protein signaling modulates microglial activation and protects against plaque-independent cognitive deficits in a mouse model of Alzheimer disease. J. Biol. Chem. 286, 32713-32722 (2011).
Yoshiyama, Y. et al. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53, 337-351 (2007).
Schindowski, K. et al. Alzheimer's disease-like tau neuropathology leads to memory deficits and loss of functional synapses in a novel mutated tau transgenic mouse without any motor deficits. Am. J. Pathol. 169, 599-616 (2006).
Bhaskar, K. et al. Regulation of tau pathology by the microglial fractalkine receptor. Neuron 68, 19-31 (2010).
Li, Y., Liu, L., Barger, S. W. & Griffin, W. S. T. Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway. J. Neurosci. J. Soc. Neurosci. 23, 1605-1611 (2003).
Asai, H. et al. Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat. Neurosci. 18, 1584-1593 (2015).
Castaño, A., Herrera, A. J., Cano, J. & Machado, A. Lipopolysaccharide intranigral injection induces inflammatory reaction and damage in nigrostriatal dopaminergic system. J. Neurochem. 70, 1584-1592 (1998).
Arimoto, T. et al. Interleukin-10 protects against inflammation-mediated degeneration of dopaminergic neurons in substantia nigra. Neurobiol. Aging 28, 894-906 (2007).
Kim, W. G. et al. Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J. Neurosci. J. Soc. Neurosci. 20, 6309-6316 (2000).
Chiang, C. S., Powell, H. C., Gold, L. H., Samimi, A. & Campbell, I. L. Macrophage/microglial-mediated primary demyelination and motor disease induced by the central nervous system production of interleukin-3 in transgenic mice. J. Clin. Invest. 97, 1512-1524 (1996).
Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481-487 (2017).
Zamanian, J. L. et al. Genomic analysis of reactive astrogliosis. J. Neurosci. J. Soc. Neurosci. 32, 6391-6410 (2012).
Traugott, U., Reinherz, E. L. & Raine, C. S. Multiple sclerosis: distribution of T cell subsets within active chronic lesions. Science 219, 308-310 (1983).
Traugott, U., Reinherz, E. L. & Raine, C. S. Multiple sclerosis. Distribution of T cells, T cell subsets and Ia-positive macrophages in lesions of different ages. J. Neuroimmunol. 4, 201-221 (1983).
Abdelhak, A., Weber, M. S. & Tumani, H. Primary progressive multiple sclerosis: putting together the puzzle. Front. Neurol. 8, 234 (2017).
Kurkowska-Jastrzebska, I., Wrońska, A., Kohutnicka, M., Członkowski, A. & Członkowska, A. MHC class II positive microglia and lymphocytic infiltration are present in the substantia nigra and striatum in mouse model of Parkinson's disease. Acta Neurobiol. Exp. (Warsz.) 59, 1-8 (1999).
Brochard, V. et al. Infiltration of CD4+lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J. Clin. Invest. 119, 182-192 (2009).
Kelly, R. J. et al. Glial activation in AβPP/PS1 mice is associated with infiltration of IFNγ-producing cells. J. Alzheimers Dis. https://doi.org/10.3233/JAD-130539 (2013).
Zenaro, E. et al. Neutrophils promote Alzheimer's disease-like pathology and cognitive decline via LFA-1 integrin. Nat. Med. 21, 880-886 (2015).
Fiala, M. et al. Cyclooxygenase-2-positive macrophages infiltrate the Alzheimer's disease brain and damage the blood-brain barrier. Eur. J. Clin. Invest. 32, 360-371 (2002).
Rogers, J., Luber-Narod, J., Styren, S. D. & Civin, W. H. Expression of immune system-Associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer's disease. Neurobiol. Aging 9, 339-349 (1988).
Itagaki, S., McGeer, P. L. & Akiyama, H. Presence of T-cytotoxic suppressor and leucocyte common antigen positive cells in Alzheimer's disease brain tissue. Neurosci. Lett. 91, 259-264 (1988).
Togo, T. et al. Occurrence of T cells in the brain of Alzheimer's disease and other neurological diseases. J. Neuroimmunol. 124, 83-92 (2002).
Laurent, C. et al. Hippocampal T cell infiltration promotes neuroinflammation and cognitive decline in a mouse model of tauopathy. Brain J. Neurol. 140, 184-200 (2017).
Serpe, C. J., Coers, S., Sanders, V. M. & Jones, K. J. CD4+T, but not CD8+ or B, lymphocytes mediate facial motoneuron survival after facial nerve transection. Brain Behav. Immun. 17, 393-402 (2003).
Moalem, G. et al. Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat. Med. 5, 49-55 (1999).
Nielsen, H. H. et al. Enhanced microglial clearance of myelin debris in T cell-infiltrated central nervous system. J. Neuropathol. Exp. Neurol. 68, 845-856 (2009).
Yuste, J. E., Tarragon, E., Campuzano, C. M. & Ros-Bernal, F. Implications of glial nitric oxide in neurodegenerative diseases. Front. Cell Neurosci. 9, 322 (2015).