[en] The inflammatory responses in many cell types are reduced by noradrenaline (NA) binding to beta-adrenergic receptors. We previously demonstrated that cortical inflammatory responses to aggregated amyloid beta (Abeta) are increased if NA levels were first depleted by lesioning locus ceruleus (LC) noradrenergic neurons, which replicates the loss of LC occurring in Alzheimer's disease. To examine the molecular basis for increased responses, we used the selective neurotoxin DSP4 to lesion the LC, and then examined levels of putative anti-inflammatory molecules. Inflammatory responses were achieved by injection of aggregated Abeta1-42 peptide and IL-1beta into frontal cortex, which induced neuronal inducible nitric oxide synthase (iNOS) and microglial IL-1beta expression. DSP4-treatment reduced basal levels of nuclear factor kappa B (NF-kappaB) inhibitory IkappaB proteins, and of heat shock protein (HSP)70. Inflammatory responses were prevented by co-injection (ibuprofen or ciglitzaone) or oral administration (pioglitazone) of peroxisome proliferator-activated receptor gamma (PPARgamma) agonists. Treatment with PPARgamma agonists restored IkappaBalpha, IkappaBbeta, and HSP70 levels to values equal or above those observed in control animals, and reduced activation of cortical NF-kappaB. These results suggest that noradrenergic depletion reduces levels of anti-inflammatory molecules which normally limit cortical responses to Abeta, and that PPARgamma agonists can reverse that effect. These findings suggest one mechanism by which PPARgamma agonists could provide benefit in neurological diseases having an inflammatory component.
Disciplines :
Neurology
Author, co-author :
HENEKA, Michael ; Department of Neurology, University of Bonn, Germany. Michael.Heneka@ukb.uni-bonn.de
Gavrilyuk, Vitaliy; Department of Anesthesiology, University of Illinois, W. Side Veteran's Aff. Res. Division, Chicago, IL, United States
Landreth, Gary E; Department of Neurosciences, Case Western Reserve University, Cleveland, OH, United States
O'Banion, M Kerry; Department of Neurobiology, Univ. of Rochester Medical Center, Rochester, NY, United States
Weinberg, Guy; Department of Anesthesiology, University of Illinois, W. Side Veteran's Aff. Res. Division, Chicago, IL, United States
Feinstein, Douglas L; Department of Anesthesiology, University of Illinois, W. Side Veteran's Aff. Res. Division, Chicago, IL, United States
External co-authors :
yes
Language :
English
Title :
Noradrenergic depletion increases inflammatory responses in brain: effects on IkappaB and HSP70 expression.
Akama K. T., Albanese C., Pestell R. G. and Van Eldik L. J. (1998) Amyloid β-peptide stimulates nitric oxide production in astrocytes through an NFκB-dependent mechanism. Proc. Natl Acad. Sci. USA 95, 5795-5800.
Finch C. E., Frautschy S., Griffin W. S., Hampel H., Hull M., Landreth G., Lue L., Mrak R., Mackenzie I. R., McGeer P. L., O'Banion M. K., Pachter J., Pasinetti G., Plata-Salaman C., Rogers J., Rydel R., Shen Y., Streit W., Strohmeyer R., Tooyoma I., Van Muiswinkel F. L., Veerhuis R., Walker D., Webster S., Wegrzyniak B., Wenk G. and Wyss-Coray T. (2000) Inflammation and Alzheimer's disease. Neurobiol. Aging 21, 383-421.
Algarte M., Kwon H., Genin P. and Hiscott J. (1999) Identification by in vivo genomic footprinting of a transcriptional switch containing NF-κB and Sp1 that regulates the IκBα promoter. Mol. Cell. Biol. 19, 6140-6153.
Aronowski J., Strong R., Kang H. S. and Grotta J. C. (2000) Selective upregulation of IκBα in ischemic penumbra following focal cerebral ischemia. Neuroreport 11, 1529-1533.
Asensio V. C. and Campbell I. L. (2001) Chemokines and viral diseases of the central nervous system. Adv. Virus Res. 56, 127-173.
Balyasnikova I. V., Pelligrino D. A., Greenwood J., Adamson P., Dragon S., Raza H. and Galea E. (2000) Cyclic adenosine monophosphate regulates the expression of the intercellular adhesion molecule and the inducible nitric oxide synthase in brain endothelial cells. J. Cereb. Blood Flow Metab. 20, 688-699.
Barger S. W. and Harmon A. D. (1997) Microglial activation by Alzheimer amyloid precursor protein and modulation by apolipoprotein E. Nature 388, 878-881.
Benveniste E. N., Nguyen V. T. and O'Keefe G. M. (2001) Immunological aspects of microglia: relevance to Alzheimer's disease. Neurochem. Int. 39, 381-391.
Bernardo A., Levi G. and Minghetti L. (2000) Role of the peroxisome proliferator-activated receptor-γ (PPAR-γ) and its natural ligand 15-deoxy-δ12, 14-prostaglandin J2 in the regulation of microglial functions. Eur J. Neurosci. 12, 2215-2223.
Boissiere F., Hunot S., Faucheux B., Duyckaerts C., Hauw J. J., Agid Y. and Hirsch E. C. (1997) Nuclear translocation of NF-κB in cholinergic neurons of patients with Alzheimer's disease. Neuroreport 8, 2849-2852.
Brochu S., Olivier M. and Rivest S. (1999) Neuronal activity and transcription of proinflammatory cytokines, IκBα, and iNOS in the mouse brain during acute endotoxemia and chronic infection with Trypanosoma brucei brucei. J. Neurosci. Res. 57, 801-816.
Chin J. H., Okazaki M., Hu Z. W., Miller J. W. and Hoffman B. B. (1996) Activation of heat shock protein (HSP)70 and proto-oncogene expression by α1 adrenergic agonist in rat aorta with age. J. Clin. Invest. 97, 2316-2323.
Clark R. B. (2002) The role of PPARs in inflammation and immunity. J. Leukoc. Biol. 71, 388-400.
Colville-Nash P. R., Qureshi S. S., Willis D. and Willoughby D. A. (1998) Inhibition of inducible nitric oxide synthase by peroxisome proliferator-activated receptor agonists: correlation with induction of heme oxygenase 1. J. Immunol. 161, 978-984.
Combs C. K., Johnson D. E., Karlo J. C., Cannady S. B. and Landreth G. E. (2000) Inflammatory mechanisms in Alzheimer's disease: inhibition of β-amyloid-stimulated proinflammatory responses and neurotoxicity by PPARγ agonists. J. Neurosci. 20, 558-567.
Combs C. K., Karlo J. C., Kao S. C. and Landreth G. E. (2001) β-Amyloid stimulation of microglia and monocytes results in TNFα-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J. Neurosci. 21, 1179-1188.
Delerive P., Gervois P., Fruchart J. C. and Staels B. (2000) Induction of IκBα expression as a mechanism contributing to the anti-inflammatory activities of peroxisome proliferator-activated receptor-α activators. J. Biol. Chem. 275, 36703-36707.
Delgado M. and Ganea D. (2001) Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit expression of Fas ligand in activated T lymphocytes by regulating c-Myc, NF-κB, NF-AT, and early growth factors 2/3. J. Immunol. 166, 1028-1040.
Dragon S. and Baumann R. (2001) Erythroid carbonic anhydrase and HSP70 expression in chick embryonic development: role of cAMP and hypoxia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R870-R878.
Du Bales K. R. Y., Dodel R. C., Yan G. M., Hamilton-Byrd E. and Paul S. M. (1998) The NF-κB/Rel family of proteins mediates Aβ-induced neurotoxicity and glial activation. Brain Res. Mol. Brain Res. 57, 63-72.
Farmer P. and Pugin J. (2000) β-Adrenergic agonists exert their 'anti-inflammatory' effects in monocytic cells through the IκB/NF-κB pathway. Am. J. Physiol. Lung Cell Mol. Physiol. 279, L675-L682.
Feinstein D., Heneka M., Gavrilyuk V., Russo C., Weinberg G. and Galea E. (2002) Noradrenergic regulation of inflammatory gene expression in brain. Neurochem Int. 41, 357.
Ferrer I., Marti E., Lopez E. and Tortosa A. (1998) NF-κB immunoreactivity is observed in association with β A4 diffuse plaques in patients with Alzheimer's disease. Neuropathol. Appl. Neurobiol. 24, 271-277.
Fiebich B. L., Hofer T. J., Lieb K., Huell M., Butcher R. D., Schumann G., Schulze-Osthoff K. and Bauer J. (1999) The non-steroidal anti-inflammatory drug tepoxalin inhibits interleukin-6 and α1-antichymotrypsin synthesis in astrocytes by preventing degradation of IκB-α. Neuropharmacology 38, 1325-1333.
Gavrilyuk V., Horvath P., Weinberg G. and Feinstein D. L. (2001) A 27-bp region of the inducible nitric oxide synthase promoter regulates expression in glial cells. J. Neurochem. 78, 129-140.
Gavrilyuk V., Dello R. C., Heneka M. T., Pelligrino D., Weinberg G. and Feinstein D. L. (2002) Norepinephrine increases IκBα expression in astrocytes. J. Biol Chem. 277, 29662-29668.
Goodwin J. L., Uemura E. and Cunnick J. E. (1995) Microglial release of nitric oxide by the synergistic action of β-amyloid and IFN-γ Brain Res. 692, 207-214.
Heneka M. T., Klockgether T. and Feinstein D. L. (2000a) Peroxisome proliferator-activated receptor-γ ligands reduce neuronal inducible nitric oxide synthase expression and cell death in vivo. J. Neurosci. 20, 6862-6867.
Heneka M. T., Sharp A., Klockgether T., Gavrilyuk V. and Feinstein D. L. (2000b) The heat shock response inhibits NF-κB activation, nitric oxide synthase type 2 expression, and macrophage/microglial activation in brain. J. Cereb. Blood Flow Metab. 20, 800-811.
Heneka M. T., Landreth G. E. and Feinstein D. L. (2001a) Role for peroxisome proliferator-activated receptor-γ in Alzheimer's disease. Ann. Neurol. 49, 276.
Heneka M. T., Sharp A., Murphy P., Lyons J. A., Dumitrescu L. and Feinstein D. L. (2001b) The heat shock response reduces myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis in mice. J. Neurochem. 77, 568-579.
Heneka M. T., Wiesinger H., Dumitrescu-Ozimek L., Riederer P., Feinstein D. L. and Klockgether T. (2001c) Neuronal and glial coexpression of argininosuccinate synthetase and inducible nitric oxide synthase in Alzheimer's disease. J. Neuropathol. Exp. Neurol. 60, 906-916.
Heneka M. T., Galea E., Gavriluyk V., Dumitrescu-Ozimek L., Daeschner J., O'Banion M. K., Weinberg G., Klockgether T. and Feinstein D. L. (2002) Noradrenergic depletion potentiates β-amyloid-induced cortical inflammation: implications for Alzheimer's disease. J. Neurosci. 22, 2434-2442.
Herring A. C., Faubert Kaplan B. L. and Kaminski N. E. (2001) Modulation of CREB and NF-κB signal transduction by cannabinol in activated thymocytes. Cell Signal 13, 241-250.
Ii M., Sunamoto M., Ohnishi K. and Ichimori Y. (1996) β-Amyloid protein-dependent nitric oxide production from microglial cells and neurotoxicity. Brain Res. 720, 93-100.
Ito C. Y., Kazantsev A. G. and Baldwin A. S. Jr (1994) Three NF-κB sites in the IκBα promoter are required for induction of gene expression by TNFα Nucleic Acids Res. 22, 3787-3792.
Kakimura J., Kitamura Y., Takata K., Umeki M., Suzuki S., Shibagaki K., Taniguchi T., Nomura Y., Gebicke-Haerter P. J., Smith M. A., Perry G. and Shimohama S. (2002) Microglial activation and amyloid-β clearance induced by exogenous heat-shock proteins. FASEB J. 16, 601-603.
Kaltschmidt B., Uherek M., Volk B., Baeuerle P. A. and Kaltschmidt C. (1997) Transcription factor NF-κB is activated in primary neurons by amyloid βpeptides and in neurons surrounding early plaques from patients with Alzheimer's disease. Proc. Natl Acad. Sci. USA 94, 2642-2647.
Kamthong P. J. and Wu M. (2001) Inhibitor of nuclear factor-κB induction by cAMP antagonizes interleukin-1-induced human macrophage-colony-stimulating-factor expression. Biochem. J. 356, 525-530.
Kopec K. K. and Carroll R. T. (2000) Phagocytosis is regulated by nitric oxide in murine microglia. Nitric Oxide 4, 103-111.
Kopp E. and Ghosh S. (1994) Inhibition of NF-κB by sodium salicylate and aspirin. Science 265, 956-959.
Koppal T., Petrova T. V. and Van Eldik L. J. (2000) Cyclopentenone prostaglandin 15-deoxy-δ(12,14)-prostaglandin J (2) acts as a general inhibitor of inflammatory responses in activated BV-2 microglial cells. Brain Res. 867, 115-121.
Le Bail O., Schmidt-Ullrich R. and Israel A. (1993) Promoter analysis of the gene encoding the IκB-α/MAD3 inhibitor of NF-κB: positive regulation by members of the rel/NF-κB family. EMBO J. 12, 5043-5049.
Lee S. C., Zhao M. L., Hirano A. and Dickson D. W. (1999) Inducible nitric oxide synthase immunoreactivity in the Alzheimer's disease hippocampus: association with Hirano bodies, neurofibrillary tangles, and senile plaques. J. Neuropathol. Exp. Neurol. 58, 1163-1169.
Lehmann J. M., Moore L. B., Smith-Oliver T. A., Wilkison W. O., Willson T. M. and Kliewer S. A. (1995) An antidiabetic thiazolidinedione is a high-affinity ligand for peroxisome proliferator-activated receptor γ (PPARγ). J. Biol. Chem. 270, 12953-12956.
Lehmann J. M., Lenhard J. M., Oliver B. B., Ringold G. M. and Kliewer S. A. (1997) Peroxisome proliferator-activated receptors α and γ are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J. Biol. Chem. 272, 3406-3410.
Li A. C., Brown K. K., Silvestre M. J., Willson T. M., Palinski W. and Glass C. K. (2000a) Peroxisome proliferator-activated receptor γ ligands inhibit development of atherosclerosis in LDL receptor-deficient mice. J. Clin. Invest. 106, 523-531.
Li Y., Barger S. W., Liu L., Mrak R. E. and Griffin W. S. (2000b) S100β induction of the proinflammatory cytokine interleukin-6 in neurons. J. Neurochem. 74, 143-150.
Lim G. P., Yang F., Chu T., Chen P., Beech W., Teter B., Tran T., Ubeda O., Ashe K. H., Frautschy S. A. and Cole G. M. (2000) Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer's disease. J. Neurosci. 20, 5709-5714.
Lukiw W.-J. and Bazan N. G. (1998) Strong nuclear factor-κB-DNA binding parallels cyclo-oxygenase-2 gene transcription in aging and in sporadic Alzheimer's disease superior temporal lobe neocortex. J. Neurosci. Res. 53, 583-592.
Mackenzie I. R. and Munoz D. G. (2001) Effect of anti-inflammatory medications on neuropathological findings in Alzheimer's disease. Arch. Neurol. 58, 517-519.
Maggi L. B., Sadeghi H., Weigand C., Scarim A. L., Heitmeier M. R. and Corbett J. A. (2000) Anti-inflammatory actions of 15-deoxyδ(12,14)-prostaglandin J2 and troglitazone: evidence for heat shock-dependent and -independent inhibition of cytokine-induced inducible nitric oxide synthase expression. Diabetes 49, 346-355.
Mann D. M. (1983) The locus coeruleus and its possible role in ageing and degenerative disease of the human central nervous system. Mech. Ageing Dev. 23, 73-94.
May M. J. and Ghosh S. (1997) Rel/NF-κB and IκB proteins: an overview. Semin. Cancer Biol. 8, 63-73.
Meng X., Brown J. M., Ao L., Banerjee A. and Harken A. H. (1996) Norepinephrine induces cardiac heat shock protein 70 and delayed cardioprotection in the rat through α 1 adrenoceptors. Cardiovasc. Res. 32, 374-383.
Murphy P., Sharp A., Shin J., Gavrilyuk V., Dello R. C., Weinberg G., Sharp F. R., Lu A., Heneka M. T. and Feinstein D. L. (2002a) Suppressive effects of ansamycins on inducible nitric oxide synthase expression and the development of experimental autoimmune encephalomyelitis. J. Neurosci. Res. 67, 461-470.
Murphy P., Sharp A., Shin J., Gavrilyuk V., Dello R. C., Weinberg G., Sharp F. R., Lu A., Heneka M. T. and Feinstein D. L. (2002b) Suppressive effects of ansamycins on inducible nitric oxide synthase expression and the development of experimental autoimmune encephalomyelitis. J. Neurosci. Res. 67, 461-470.
Mustafa S. B. and Olson M. S. (1998) Expression of nitric-oxide synthase in rat Kupffer cells is regulated by cAMP. J. Biol. Chem. 273, 5073-5080.
Niino M., Iwabuchi K., Kikuchi S., Ato M., Morohashi T., Ogata A., Tashiro K. and Onoe K. (2001) Amelioration of experimental autoimmune encephalomyelitis in C57BL/6 mice by an agonist of peroxisome proliferator-activated receptor-γ. J. Neuroimmunol. 116, 40-48.
Nisoli E., Regianini L., Bulbarelli A., Briscini L., Breacale R. and Carruba M. O. (2001) Protective effects of noradrenaline against tumor necrosis factor-α-induced apoptosis in cultured rat brown adipocytes: Role of nitric oxide-induced heat shock protein 70 expression. Int. J. Obes. Relat. Metab. Disord. 25, 1421-1430.
Paape M. J., Miller R. H. and Ziv G. (1991) Pharmacologic enhancement or suppression of phagocytosis by bovine neutrophils. Am. J. Vet. Res. 52, 363-366.
Pasinetti G. M., Ho L. and Pompl P. (2002) Amyloid immunization in Alzheimer's disease: do we promote amyloid scavenging at the cost of inflammatory degeneration? Neurobiol. Aging 23, 665.
Paxinos G., Watson C., Pennisi M. and Topple A. (1985) Bregma, lambda and the interaural midpoint in stereotaxic surgery with rats of different sex, strain and weight. J. Neurosci. Methods 13, 139-143.
Quan N., He L., Lai W., Shen T. and Herkenham M. (2000) Induction of IκBα mRNA expression in the brain by glucocorticoids: a negative feedback mechanism for immune-to-brain signaling. J. Neurosci. 20, 6473-6477.
Rogers J. and Lue L. F. (2001) Microglial chemotaxis, activation, and phagocytosis of amyloid β-peptide as linked phenomena in Alzheimer's disease. Neurochem. Int. 39, 333-340.
Rogers J., Kirby L. C., Hempelman S. R., Berry D. L., McGeer P. L., Kaszniak A. W., Zalinski J., Cofield M., Mansukhani L. and Willson P. (1993) and Clinical trial of indomethacin in Alzheimer's disease. Neurology 43, 1609-1611.
Rogers J., Strohmeyer R., Kovelowski C. J. and Li R. (2002) Microglia and inflammatory mechanisms in the clearance of amyloid β peptide. GLIA 40, 260-269.
Rossi F. and Bianchini E. (1996) Synergistic induction of nitric oxide by β-amyloid and cytokines in astrocytes. Biochem. Biophys. Res. Commun. 225, 474-478.
Rossi A., Kapahi P., Natoli G., Takahashi T., Chen Y., Karin M. and Santoro M. G. (2000) Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IκB kinase. Nature 403, 103-108.
Rothwell N. J. and Luheshi G. N. (2000) Interleukin 1 in the brain: biology, pathology and therapeutic target. Trends Neurosci. 23, 618-625.
Schenk D. B. and Yednock T. (2002) The role of microglia in Alzheimer's disease: friend or foe? Neurobiol. Aging 23, 677.
Scheuren N., Bang H., Munster T., Brune K. and Pahl A. (1998) Modulation of transcription factor NF-κB by enantiomers of the nonsteroidal drug ibuprofen. Br. J. Pharmacol. 123, 645-652.
Simeonidis S., Stauber D., Chen G. Y., Hendrickson W. A. and Thanos D. (1999) Mechanisms by which IκB proteins control NF-κB activity. Proc. Natl Acad. Sci. USA 96, 49-54.
Stasiolek M., Gavrilyuk V., Sharp A., Horvath P., Selmaj K. and Feinstein D. L. (2000) Inhibitory and stimulatory effects of lactacystin on expression of nitric oxide synthase type 2 in brain glial cells. The role of IκBβ. J. Biol. Chem. 275, 24847-24856.
Stewart W. F., Kawas C., Corrada M. and Metter E. J. (1997) Risk of Alzheimer's disease and duration of NSAID use. Neurology 48, 626-632.
Su C. G., Wen X., Bailey S. T., Jiang W., Rangwala S. M., Keilbaugh S. A., Flanigan A., Murthy S., Lazar M. A. and Wu G. D. (1999) A novel therapy for colitis utilizing PPAR-γ ligands to inhibit the epithelial inflammatory response. J. Clin. Invest. 104, 383-389.
Terai K., Matsuo A. and McGeer P. L. (1996) Enhancement of immunoreactivity for NF-κB in the hippocampal formation and cerebral cortex of Alzheimer's disease. Brain Res. 735, 159-168.
Traenckner E. B., Pahl H. L., Henkel T., Schmidt K. N., Wilk S. and Baeuerle P. A. (1995) Phosphorylation of human IκBα on serines 32 and 36 controls IκBα proteolysis and NF-κB activation in response to diverse stimuli. EMBO J. 14, 2876-2883.
Vodovotz Y., Lucia M. S., Flanders K. C., Chesler L., Xie Q. W., Smith T. W., Weidner J., Mumford R., Webber R., Nathan C., Roberts A. B., Lippa C. F. and Sporn M. B. (1996) Inducible nitric oxide synthase in tangle-bearing neurons of patients with Alzheimer's disease. J. Exp. Med. 184, 1425-1433.
Willson T. M., Brown P. J., Sternbach D. D. and Henke B. R. (2000) The PPARs: from orphan receptors to drug discovery. J. Med. Chem. 43, 527-550.
Willson T. M., Lambert M. H. and Kliewer S. A. (2001) Peroxisome proliferator-activated receptor γ and metabolic disease. Annu. Rev. Biochem. 70, 341-367.
Wong H. R., Ryan M. A., Menendez I. Y. and Wispe J. R. (1999) Heat shock activates the I-κBα promoter and increases I-κBα mRNA expression. Cell Stress Chaperones 4, 1-7.
Yoshiyama Y., Arai K. and Hattori T. (2001) Enhanced expression of I-κB with neurofibrillary pathology in Alzheimer's disease. Neuroreport 12, 2641-2645.
Zhang J. and Rivest S. (2001) Anti-inflammatory effects of prostaglandin E2 in the central nervous system in response to brain injury and circulating lipopolysaccharide. J. Neurochem. 76, 855-864.
del Zoppo G., Ginis I., Hallenbeck J. M., Iadecola C., Wang X. and Feuerstein G. Z. (2000) Inflammation and stroke: putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia. Brain Pathol 10, 95-112.