[en] Aβ1-42 is well accepted to be a primary early pathogenic agent in Alzheimer's disease (AD). However, other amyloid peptides are now gaining considerable attention as potential key participants in AD due to their proposed higher neuronal toxicity. Impairment of the glutamatergic system is also widely accepted to be associated with pathomechanisms underlying AD. There is ample evidence that Aβ1-42 affects GLUN2B subunit containing N-methyl-D-aspartate receptor function and abolishes the induction of long term potentiation (LTP). In this study we show that different β-amyloid species, 1-42 Aβ1-42 and 1-40 (Aβ1-40) as well as post-translationally modified forms such as pyroglutamate-modified amyloid-(AβpE3) and nitrated Aβ (3NTyr10-Aβ), when applied for 90 min to murine hippocampal slices, concentration-dependently prevented the development of CA1-LTP after tetanic stimulation of the Schaffer collaterals with IC50s of 2, 9, 2 and 35 nM, respectively whilst having no effect on baseline AMPA receptor mediated fEPSPs. Aβ1-43 had no effect. Interestingly, the combination of all Aβ species did not result in any synergistic or additive inhibitory effect on LTP - the calculated pooled Aβ species IC50 was 20 nM. A low concentration (10 nM) of the GLUN2B receptor antagonist Radiprodil restored LTP in the presence of Aβ1-42, 3NTyr10-Aβ, Aβ1-40, but not AβpE3. In contrast to AMPA receptor mediated fEPSPs, all different β-amyloid species tested at 50 nM supressed baseline NMDA-EPSC amplitudes. Similarly, all different Aβ species tested decreased spine density. As with LTP, Radiprodil (10 nM) reversed the synaptic toxicity of Aβ species but not that of AβpE3. These data do not support the enhanced toxic actions reported for some Aβ species such as AβpE3, nor synergistic toxicity of the combination of different Aβ species. However, whilst in our hands AβpE3-42 was actually less toxic than Aβ1-42, its effects were not reversed by Radiprodil indicating that the target receptors/subunits mediating such synaptotoxicity may differ between the different Aβ species tested.
Disciplines :
Neurology
Author, co-author :
Rammes, Gerhard ; Department of Anaesthesiology, Technische Universität München, Munich, Germany. Electronic address: g.rammes@tum.de
Seeser, Franziska; Department of Anaesthesiology, Technische Universität München, Munich, Germany
Mattusch, Korinna; Department of Anaesthesiology, Technische Universität München, Munich, Germany
Zhu, Kaichuan ; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
Haas, Laura; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
Kummer, Markus ; Clinical Neuroscience Unit, Dept. of Neurology, University of Bonn, Germany
HENEKA, Michael ; Clinical Neuroscience Unit, Dept. of Neurology, University of Bonn, Germany
Herms, Jochen; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
Parsons, Chris G; Non-Clinical Science, Merz Pharmaceuticals GmbH, Frankfurt am Main, Germany
External co-authors :
yes
Language :
English
Title :
The NMDA receptor antagonist Radiprodil reverses the synaptotoxic effects of different amyloid-beta (Aβ) species on long-term potentiation (LTP).
Albrecht, M., Rammes, G., Parsons, C.G., Memantine Reverses SS-amyloid Oligomers-induced Deficits in Long Term Potentiation (LTP) in Murine Hippocampal Slices., 2008 Report.
Albrecht, M., Rammes, G., Parsons, C.G., Memantine reverses ß-amyloid oligomers-induced deficits in long term potentiation (LTP) in murine hippocampal slices. Alzheimer's & Dementia. 13th International Conference on Alzheimer's Disease (ICAD), Vienna, Austria, 2009, 1847.
Alzheimer, A., Über eine eigenartige Erkrankung der Hirnrinde. Centralblatt fur Nervenheilkunde Psychiatrie 30 (1907), 177–179.
Amadoro, G., Ciotti, M.T., Costanzi, M., Cestari, V., Calissano, P., Canu, N., NMDA receptor mediates tau-induced neurotoxicity by calpain and ERK/MAPK activation. Proc. Natl. Acad. Sci. U.S.A. 103 (2006), 2892–2897.
Anderson, W.W., Collingridge, G.L., The LTP Program: a data acquisition program for on-line analysis of long-term potentiation and other synaptic events. J. Neurosci. Meth. 108 (2001), 71–83.
Bao, F., Wicklund, L., Lacor, P.N., Klein, W.L., Nordberg, A., Marutle, A., Different beta-amyloid oligomer assemblies in Alzheimer brains correlate with age of disease onset and impaired cholinergic activity. Neurobiol. Aging, 33(825), 2012 e821–813.
Barghorn, S., Nimmrich, V., Striebinger, A., Krantz, C., Keller, P., Janson, B., Bahr, M., Schmidt, M., Bitner, R.S., Harlan, J., Barlow, E., Ebert, U., Hillen, H., Globular amyloid beta-peptide oligomer - a homogenous and stable neuropathological protein in Alzheimer's disease. J. Neurochem. 95 (2005), 834–847.
Bell, K.F., Claudio Cuello, A., Altered synaptic function in Alzheimer's disease. Eur. J. Pharmacol., Mol. Pharmacol. Sect. 545 (2006), 11–21.
Braak, H., Braak, E., Bohl, J., Staging of Alzheimer-related cortical destruction. Eur. Neurol. 33 (1993), 403–408.
Cao, X., Cui, Z., Feng, R., Tang, Y.P., Qin, Z., Mei, B., Tsien, J.Z., Maintenance of superior learning and memory function in NR2B transgenic mice during ageing. Eur. J. Neurosci. 25 (2007), 1815–1822.
Chambon, C., Wegener, N., Gravius, A., Danysz, W., Behavioural and cellular effects of exogenous amyloid-beta peptides in rodents. Behav. Brain Res. 225 (2011), 623–641.
Chazot, P.L., Stephenson, F.A., Molecular dissection of native mammalian forebrain NMDA receptors containing the NR1 C2 exon: direct demonstration of NMDA receptors comprising NR1, NR2A, and NR2B subunits within the same complex. J. Neurochem. 69 (1997), 2138–2144.
Citron, M., Alzheimer's disease: strategies for disease modification. Nat. Rev. Drug Discov. 9 (2010), 387–398.
Coan, E.J., Irving, A.J., Collingridge, G.L., Low-frequence activation of the NMDA receptor system can prevent the induction of LTP. Neurosci. Lett. 105 (1989), 205–210.
Danysz, W., Parsons, C.G., The NMDA receptor antagonist memantine as a symptomatological and neuroprotective treatment for Alzheimer's disease preclinical evidence. Int. J. Geriatr. Psychiatr. 18 (2003), S23–S32.
Danysz, W., Parsons, C.G., Alzheimer's disease, beta-amyloid, glutamate, NMDA receptors and memantine–searching for the connections. Br. J. Pharmacol. 167 (2012), 324–352.
Demuro, A., Parker, I., Stutzmann, G.E., Calcium signaling and amyloid toxicity in Alzheimer disease. J. Biol. Chem. 285 (2010), 12463–12468.
Dodt, H.U., Zieglgansberger, W., Infrared videomicroscopy: a new look at neuronal structure and function. Trends Neurosci. 17 (1994), 453–458.
Ferreira, A., Sinjoanu, R.C., Nicholson, A., Kleinschmidt, S., Abeta toxicity in primary cultured neurons. Meth. Mol. Biol. 670 (2011), 141–153.
Ferreira, S.T., Klein, W.L., The Abeta oligomer hypothesis for synapse failure and memory loss in Alzheimer's disease. Neurobiol. Learn. Mem. 96 (2011), 529–543.
Ferreira, S.T., Vieira, M.N., De Felice, F.G., Soluble protein oligomers as emerging toxins in Alzheimer's and other amyloid diseases. IUBMB Life 59 (2007), 332–345.
Folch, J., Petrov, D., Ettcheto, M., Abad, S., Sanchez-Lopez, E., Garcia, M.L., Olloquequi, J., Beas-Zarate, C., Auladell, C., Camins, A., Current research therapeutic strategies for Alzheimer's disease treatment. Neural Plast., 2016, 2016, 8501693.
Frankiewicz, T., Parsons, C.G., Memantine restores long term potentiation impaired by tonic N-methyl-D-aspartate (NMDA) receptor activation following reduction of Mg2+ in hippocampal slices. Neuropharmacology 38 (1999), 1253–1259.
Frankiewicz, T., Potier, B., Bashir, Z.I., Collingridge, G.L., Parsons, C.G., Effects of memantine and MK-801 on NMDA-induced currents in cultured neurones and on synaptic transmission and LTP in area CA1 of rat hippocampal slices. Br. J. Pharmacol. 117 (1996), 689–697.
Frost, J.L., Le, K.X., Cynis, H., Ekpo, E., Kleinschmidt, M., Palmour, R.M., Ervin, F.R., Snigdha, S., Cotman, C.W., Saido, T.C., Vassar, R.J., St George-Hyslop, P., Ikezu, T., Schilling, S., Demuth, H.U., Lemere, C.A., Pyroglutamate-3 amyloid-beta deposition in the brains of humans, non-human primates, canines, and Alzheimer disease-like transgenic mouse models. Am. J. Pathol. 183 (2013), 369–381.
Granger, A.J., Nicoll, R.A., Expression mechanisms underlying long-term potentiation: a postsynaptic view, 10 years on. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci., 369, 2014, 20130136.
Harris, M.E., Wang, Y.N., Pedigo, N.W., Hensley, K., Butterfield, D.A., Carney, J.M., Amyloid beta peptide (25-35) inhibits na+-dependent glutamate uptake in rat hippocampal astrocyte cultures. J. Neurochem. 67 (1996), 277–286.
Heininger, K., A unifying hypothesis of Alzheimer's disease. II. Pathophysiological processes. Hum. Psychopharmacol. Clin. Exp. 14 (1999), 525–581.
Higgins, G.A., Ballard, T.M., Enderlin, M., Haman, M., Kemp, J.A., Evidence for improved performance in cognitive tasks following selective NR2B NMDA receptor antagonist pre-treatment in the rat. Psychopharmacology (Berlin) 179:1 (2005), 85–98.
Hofling, C., Indrischek, H., Hopcke, T., Waniek, A., Cynis, H., Koch, B., Schilling, S., Morawski, M., Demuth, H.U., Rossner, S., Hartlage-Rubsamen, M., Mouse strain and brain region-specific expression of the glutaminyl cyclases QC and isoQC. Int. J. Dev. Neurosci. 36 (2014), 64–73.
Jawhar, S., Wirths, O., Bayer, T.A., Pyroglutamate amyloid-beta (Abeta): a hatchet man in Alzheimer disease. J. Biol. Chem. 286 (2011), 38825–38832.
Jurado, S., AMPA receptor trafficking in natural and pathological aging. Front. Mol. Neurosci., 10, 2017, 446.
Klyubin, I., Wang, Q., Reed, M.N., Irving, E.A., Upton, N., Hofmeister, J., Cleary, J.P., Anwyl, R., Rowan, M.J., Protection against Abeta-mediated rapid disruption of synaptic plasticity and memory by memantine. Neurobiol. Aging 32 (2011), 614–623.
Lacor, P.N., Buniel, M.C., Furlow, P.W., Clemente, A.S., Velasco, P.T., Wood, M., Viola, K.L., Klein, W.L., Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer's disease. J. Neurosci. 27 (2007), 796–807.
Lacor, P.N., Renner, M., Velasco, P.T., Triller, A., Klein, W.L., Single molecule trafficking reveals a new mechanism to explain Abeta oligomer (ADDLs) targeting of synapses and interference with memory-related protein distribution. 38th Society for Neuroscience Annual Meeting, Washington, USA, 2008 829.822.
Lai, Z.W., Petrera, A., Schilling, O., Protein amino-terminal modifications and proteomic approaches for N-terminal profiling. Curr. Opin. Chem. Biol. 24 (2015), 71–79.
Lesne, S., Koh, M.T., Kotilinek, L., Kayed, R., Glabe, C.G., Yang, A., Gallagher, M., Ashe, K.H., A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440 (2006), 352–357.
Li, S., Hong, S., Shepardson, N.E., Walsh, D.M., Shankar, G.M., Selkoe, D., Soluble oligomers of amyloid Beta protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron 62 (2009), 788–801.
Liang, J., Kulasiri, D., Samarasinghe, S., Computational investigation of Amyloid-beta-induced location- and subunit-specific disturbances of NMDAR at hippocampal dendritic spine in Alzheimer's disease. PLoS One, 12, 2017, e0182743.
MacDougall, M.J., Fine, A., The expression of long-term potentiation: reconciling the preists and the positivists. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci., 369, 2014, 20130135.
Martinez-Coria, H., Green, K.N., Billings, L.M., Kitazawa, M., Albrecht, M., Rammes, G., Parsons, C.G., Gupta, S., Banerjee, P., LaFerla, F.M., Memantine improves cognition and reduces Alzheimer's-like neuropathology in transgenic mice. Am. J. Pathol. 176 (2010), 870–880.
Masliah, E., Raber, J., Alford, M., Mallory, M., Mattson, M.P., Yang, D., Wong, D., Mucke, L., Amyloid protein precursor stimulates excitatory amino acid transport. Implications for roles in neuroprotection and pathogenesis. J. Biol. Chem. 273 (1998), 12548–12554.
Mattson, M.P., Barger, S.W., Cheng, B., Lieberburg, I., Smithswintosky, V.L., Rydel, R.E., ß-amyloid precursor protein metabolites and loss of neuronal ca2+ homeostasis in Alzheimer's disease. Trends Neurosci. 16 (1993), 409–414.
Mattson, M.P., Tomaselli, K.J., Rydel, R.E., Calcium-destabilizing and neurodegenerative effects of aggregated beta-amyloid peptide are attenuated by basic FGF. Brain Res. 621 (1993), 35–49.
Mony, L., Kew, J.N., Gunthorpe, M.J., Paoletti, P., Allosteric modulators of NR2B-containing NMDA receptors: molecular mechanisms and therapeutic potential. Br. J. Pharmacol. 157 (2009), 1301–1317.
Morris, R.G., Kopelman, M.D., The memory deficits in Alzheimer-type dementia: a review. Q. J. Exp. Psychol. 38 (1986), 575–602.
Mota, S.I., Ferreira, I.L., Rego, A.C., Dysfunctional synapse in Alzheimer's disease - a focus on NMDA receptors. Neuropharmacology 76:Pt A (2014), 16–26.
Noda, M., Nakanishi, H., Akaike, N., Glutamate release from microglia via glutamate transporter is enhanced by amyloid-beta peptide. Neuroscience 92 (1999), 1465–1474.
Oddo, S., Caccamo, A., Shepherd, J.D., Murphy, M.P., Golde, T.E., Kayed, R., Metherate, R., Mattson, M.P., Akbari, Y., LaFerla, F.M., Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39 (2003), 409–421.
Parameshwaran, K., Dhanasekaran, M., Suppiramaniam, V., Amyloid beta peptides and glutamatergic synaptic dysregulation. Exp. Neurol. 210 (2008), 7–13.
Parihar, V.K., Limoli, C.L., Cranial irradiation compromises neuronal architecture in the hippocampus. Proc. Natl. Acad. Sci. U.S.A. 110 (2013), 12822–12827.
Parsons, C.G., Danysz, W., Dekundy, A., Pulte, I., Memantine and cholinesterase inhibitors: complementary mechanisms in the treatment of Alzheimer's disease. Neurotox. Res. 24 (2013), 358–369.
Parsons, C.G., Danysz, W., Quack, G., Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist–a review of preclinical data. Neuropharmacology 38 (1999), 735–767.
Parsons, C.G., Stoffler, A., Danysz, W., Memantine: a NMDA receptor antagonist that improves memory by restoration of homeostasis in the glutamatergic system - too little activation is bad, too much is even worse. Neuropharmacology 53 (2007), 699–723.
Polder, H.R., Swandulla, D., The use of control theory for the design of voltage clamp systems: a simple and standardized procedure for evaluating system parameters. J. Neurosci. Meth. 109 (2001), 97–109.
Puzzo, D., Privitera, L., Leznik, E., Fa, M., Staniszewski, A., Palmeri, A., Arancio, O., Picomolar amyloid-beta positively modulates synaptic plasticity and memory in hippocampus. J. Neurosci. 28 (2008), 14537–14545.
Rammes, G., Danysz, W., Parsons, C.G., Pharmacodynamics of memantine: an update. Curr. Neuropharmacol. 6 (2008), 55–78.
Rammes, G., Gravius, A., Ruitenberg, M., Wegener, N., Chambon, C., Sroka-Saidi, K., Jeggo, R., Staniaszek, L., Spanswick, D., O'Hare, E., Palmer, P., Kim, E.M., Bywalez, W., Egger, V., Parsons, C.G., MRZ-99030-A novel modulator of Abeta aggregation: II - reversal of Abeta oligomer-induced deficits in long-term potentiation (LTP) and cognitive performance in rats and mice. Neuropharmacology 92 (2015), 170–182.
Rammes, G., Hasenjager, A., Sroka-Saidi, K., Deussing, J.M., Parsons, C.G., Therapeutic significance of NR2B-containing NMDA receptors and mGluR5 metabotropic glutamate receptors in mediating the synaptotoxic effects of beta-amyloid oligomers on long-term potentiation (LTP) in murine hippocampal slices. Neuropharmacology 60 (2011), 982–990.
Rammes, G., Mattusch, C., Haas, L., Kummer, M.P., Heneka, M., Parsons, C.G., The NMDA receptor antagonist radiprodil reverses the synaptotoxic effects of different amyloid-beta (Aß) species on long-term potentiation (LTP). Society for Neuroscience Abstracts. 43rd Society for Neuroscience Annual Meeting, SanDiego, USA, 2013 620.621.
Rammes, G., Mattusch, C., Wulff, M., Seeser, F., Kreuzer, M., Zhu, K., Deussing, J.M., Herms, J., Parsons, C.G., Involvement of GluN2B subunit containing N-methyl-d-aspartate (NMDA) receptors in mediating the acute and chronic synaptotoxic effects of oligomeric amyloid-beta (Abeta) in murine models of Alzheimer's disease (AD). Neuropharmacology 123 (2017), 100–115.
Renner, M., Lacor, P.N., Velasco, P.T., Xu, J., Contractor, A., Klein, W.L., Triller, A., Deleterious effects of amyloid beta oligomers acting as an extracellular scaffold for mGluR5. Neuron 66 (2010), 739–754.
Ronicke, R., Mikhaylova, M., Ronicke, S., Meinhardt, J., Schroder, U.H., Fandrich, M., Reiser, G., Kreutz, M.R., Reymann, K.G., Early neuronal dysfunction by amyloid beta oligomers depends on activation of NR2B-containing NMDA receptors. Neurobiol. Aging 32 (2011), 2219–2228.
Russo, C., Violani, E., Salis, S., Venezia, V., Dolcini, V., Damonte, G., Benatti, U., D'Arrigo, C., Patrone, E., Carlo, P., Schettini, G., Pyroglutamate-modified amyloid beta-peptides–AbetaN3(pE)–strongly affect cultured neuron and astrocyte survival. J. Neurochem. 82 (2002), 1480–1489.
Schilling, S., Lauber, T., Schaupp, M., Manhart, S., Scheel, E., Bohm, G., Demuth, H.U., On the seeding and oligomerization of pGlu-amyloid peptides (in vitro). Biochemistry 45 (2006), 12393–12399.
Schilling, S., Zeitschel, U., Hoffmann, T., Heiser, U., Francke, M., Kehlen, A., Holzer, M., Hutter-Paier, B., Prokesch, M., Windisch, M., Jagla, W., Schlenzig, D., Lindner, C., Rudolph, T., Reuter, G., Cynis, H., Montag, D., Demuth, H.U., Rossner, S., Glutaminyl cyclase inhibition attenuates pyroglutamate Abeta and Alzheimer's disease-like pathology. Nat. Med. 14 (2008), 1106–1111.
Selkoe, D.J., Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behav. Brain Res. 192 (2008), 106–113.
Sinnen, B.L., Bowen, A.B., Gibson, E.S., Kennedy, M.J., Local and use-dependent effects of beta-amyloid oligomers on NMDA receptor function revealed by optical quantal analysis. J. Neurosci. 36 (2016), 11532–11543.
Tang, Y.P., Shimizu, E., Dube, G.R., Rampon, C., Kerchner, G.A., Zhuo, M., Liu, G., Tsien, J.Z., Genetic enhancement of learning and memory in mice. Nature 401 (1999), 63–69.
Townsend, M., Shankar, G.M., Mehta, T., Walsh, D.M., Selkoe, D.J., Effects of secreted oligomers of amyloid beta-protein on hippocampal synaptic plasticity: a potent role for trimers. J. Physiol. 572 (2006), 477–492.
Xia, W., Brain amyloid beta protein and memory disruption in Alzheimer's disease. Neuropsychiatry Dis. Treat. 6 (2010), 605–611.
Yankner, B.A., Mechanisms of neuronal degeneration in Alzheimer's disease. Neuron 16 (1996), 921–932.
Yashiro, K., Philpot, B.D., Regulation of NMDA receptor subunit expression and its implications for LTD, LTP, and metaplasticity. Neuropharmacology 55 (2008), 1081–1094.
Zadori, D., Veres, G., Szalardy, L., Klivenyi, P., Toldi, J., Vecsei, L., Glutamatergic dysfunctioning in Alzheimer's disease and related therapeutic targets. J. Alzheim. Dis. 3:42 Suppl. l (2014), S177–S187.
Zajaczkowski, W., Frankiewicz, T., Parsons, C.G., Danysz, W., Uncompetitive NMDA receptor antagonists attenuate NMDA-induced impairment of passive avoidance learning and LTP. Neuropharmacology 36 (1997), 961–971.