[en] Degeneration of locus ceruleus (LC) neurons and subsequent reduction of norepinephrine (NE) in LC projection areas represent an early pathological indicator of Alzheimer's disease (AD). In order to study the effects of NE depletion on cortical and hippocampal adrenergic system changes, LC degeneration was induced in 3-month-old APP/PS1 mice by the neurotoxin N-(2-chloroethyl)-N-ethyl-bromo-benzylamine (dsp4). Dsp4 induced a widespread loss of norepinephrine transporter binding in multiple brain structures already at 4.5 months. This was accompanied by changes of α-1-, α-2-, and β-1-adreneroceptor binding sites as well as altered adrenoceptor mRNA expression. In parallel, we observed increased micro- and astrogliosis in cortical and hippocampal structures in dsp4-treated groups. In addition, the expression of the pro-inflammatory cytokines CCL2 and IL-1β were induced in both, dsp4-treated and APP/PS1-transgenic mice, whereas IL-1α was only up-regulated in dsp4-treated APP/PS1 mice. Concerning amyloid β (Aβ) deposition, we observed an elevation of Aβ1-42 levels in aged dsp4-treated APP/PS1 mice. These data support the hypothesis that LC degeneration leads to dysregulation of adrenergic receptors and exacerbation of Aβ-induced neuroinflammation, both of which are exploitable for early disease marker development.
Disciplines :
Neurology
Author, co-author :
Jardanhazi-Kurutz, D; Global Drug Discovery, Bayer Schering Pharma AG, Berlin, Müllerstrasse 178, 13342 Berlin, Germany
Kummer, M P; Department of Neurology, University of Bonn, 53105 Bonn, Germany
Terwel, D; Department of Neurology, University of Bonn, 53105 Bonn, Germany
Vogel, K; Global Drug Discovery, Bayer Schering Pharma AG, Berlin, 13342 Berlin, Germany
Thiele, A; Global Drug Discovery, Bayer Schering Pharma AG, Berlin, 13342 Berlin, Germany
HENEKA, Michael ; Department of Neurology, University of Bonn, 53105 Bonn, Germany
External co-authors :
yes
Language :
English
Title :
Distinct adrenergic system changes and neuroinflammation in response to induced locus ceruleus degeneration in APP/PS1 transgenic mice.
We thank Claudia Hülsmann and Claudia Kamfenkel for excellent technical support. The authors thank Balázs Gulyás and Christer Halldin for the generous gift of [ 3 H]MeNER. This investigation was funded by Bayer Schering Pharma AG , Berlin, Germany.
Battisti W.P., Artymyshyn R.P., Murray M. Beta 1- and beta 2-adrenergic 125I-pindolol binding sites in the interpeduncular nucleus of the rat: normal distribution and the effects of deafferentation. J Neurosci 1989, 9:2509-2518.
Benarroch E.E. The locus ceruleus NE system-Functional organization and potential clinical significance. Neurology 2009, 73:1699-1704.
Bondareff W., Mountjoy C.Q., Roth M., Rossor M.N., Iversen L.L., Reynolds G.P., Hauser D.L. Neuronal degeneration in locus ceruleus and cortical correlates of Alzheimer disease. Alzheimer Dis Assoc Disord 1987, 1:256-262.
Cheetham S.C., Viggers J.A., Butler S.A., Prow M.R., Heal D.J. [3H]nisoxetine-a radioligand for noradrenaline reuptake sites: correlation with inhibition of [3H]noradrenaline uptake and effect of DSP-4 lesioning and antidepressant treatments. Neuropharmacology 1996, 35:63-70.
Counts S.E., Mufson E.J. Noradrenaline activation of neurotrophic pathways protects against neuronal amyloid toxicity. J Neurochem 2010, 113:649-660.
Eikelenboom P., van Exel E., Hoozemans J.J., Veerhuis R., Rozemuller A.J., van Gool W.A. Neuroinflammation-an early event in both the history and pathogenesis of Alzheimer's disease. Neurodegener Dis 2010, 7:38-41.
Feinstein D.L., Heneka M.T., Gavrilyuk V., Dello Russo C., Weinberg G., Galea E. Noradrenergic regulation of inflammatory gene expression in brain. Neurochem Int 2002, 41:357-365.
Fornai F., Bassi L., Torracca M.T., Alessandri M.G., Scalori V., Corsini G.U. Region- and neurotransmitter-dependent species and strain differences in DSP-4-induced monoamine depletion in rodents. Neurodegeneration 1996, 5:241-249.
Fritschy J.M., Grzanna R. Immunohistochemical analysis of the neurotoxic effects of DSP-4 identifies two populations of noradrenergic axon terminals. Neuroscience 1989, 30:181-197.
German D.C., Manaye K.F., White C.L., Woodward D.J., McIntire D.D., Smith W.K., Kalaria R.N., Mann D.M. Disease-specific patterns of locus coeruleus cell loss. Ann Neurol 1992, 32:667-676.
Gibbs M.E., Summers R.J. Role of adrenoceptor subtypes in memory consolidation. Prog Neurobiol 2002, 67:345-391.
Grzanna R., Berger U., Fritschy J.M., Geffard M. Acute action of DSP-4 on central NE axons: biochemical and immunohistochemical evidence for differential effects. J Histochem Cytochem 1989, 37:1435-1442.
Gulyás B., Brockschnieder D., Nag S., Pavlova E., Kása P., Beliczai Z., Légrádi A., Gulya K., Thiele A., Dyrks T., Halldin C. The norepinephrine transporter (NET) radioligand (S,S)-[18F]FMeNER-D2 shows significant decreases in NET density in the human brain in Alzheimer's disease: a post-mortem autoradiographic study. Neurochem Int 2010, 56:789-798.
Gulyás B., Makkai B., Kása P., Gulya K., Bakota L., Várszegi S., Beliczai Z., Andersson J., Csiba L., Thiele A., Dyrks T., Suhara T., Suzuki K., Higuchi M., Halldin C. A comparative autoradiography study in post mortem whole hemisphere human brain slices taken from Alzheimer patients and age-matched controls using two radiolabelled DAA1106 analogues with high affinity to the peripheral benzodiazepine receptor (PBR) system. Neurochem Int 2009, 54:28-36.
Haglund M., Sjöbeck M., Englund E. Locus ceruleus degeneration is ubiquitous in Alzheimer's disease: possible implications for diagnosis and treatment. Neuropathology 2006, 26:528-532.
Häidkind R., Eller M., Harro M., Kask A., Rinken A., Oreland L., Harro J. Effects of partial locus coeruleus denervation and chronic mild stress on behaviour and monoamine neurochemistry in the rat. Eur Neuropsychopharmacol 2003, 13:19-28.
Harro J., Häidkind R., Harro M., Modiri A.R., Gillberg P.G., Pähkla R., Matto V., Oreland L. Chronic mild unpredictable stress after noradrenergic denervation: attenuation of behavioural and biochemical effects of DSP-4 treatment. Eur Neuropsychopharmacol 1999, 10:5-16.
Heneka M.T., Ramanathan M., Jacobs A.H., Dumitrescu-Ozimek L., Bilkei-Gorzo A., Debeir T., Sastre M., Galldiks N., Zimmer A., Hoehn M., Heiss W.D., Klockgether T., Staufenbiel M. Locus ceruleus degeneration promotes Alzheimer pathogenesis in amyloid precursor protein 23 transgenic mice. J Neurosci 2006, 26:1343-1354.
Heneka M.T., Nadrigny F., Regen T., Martinez-Hernandez A., Dumitrescu-Ozimek L., Terwel D., Jardanhazi-Kurutz D., Walter J., Kirchhoff F., Hanisch U.K., Kummer M.P. Locus ceruleus controls Alzheimer's disease pathology by modulating microglial functions through NE. Proc Natl Acad Sci U S A 2010, 107:6058-6063.
Herrmann N., LanctÔt K.L., Khan L.R. The role of NE in the behavioral and psychological symptoms of dementia. J Neuropsychiatry Clin Neurosci 2004, 16:261-276.
Hoogendijk W.J., Feenstra M.G., Botterblom M.H., Gilhuis J., Sommer I.E., Kamphorst W., Eikelenboom P., Swaab D.F. Increased activity of surviving locus ceruleus neurons in Alzheimer's disease. Ann Neurol 1999, 45:82-91.
Hou Y.P., Manns I.D., Jones B.E. Immunostaining of cholinergic pontomesencephalic neurons for alpha 1 versus alpha 2 adrenergic receptors suggests different sleep-wake state activities and roles. Neuroscience 2002, 114:517-521.
Hudson A.L., Robinson E.S., Lalies M.D., Tyacke R.J., Jackson H.C., Nutt D.J. In vitro and in vivo approaches to the characterization of the alpha2-adrenoceptor. J Auton Pharmacol 1999, 19:311-320.
Jardanhazi-Kurutz D., Kummer M.P., Terwel D., Vogel K., Dyrks T., Thiele A., Heneka M.T. Induced LC degeneration in APP/PS1 transgenic mice accelerates early cerebral amyloidosis and cognitive deficits. Neurochem Int 2010, 57:375-382.
Kalaria R.N., Andorn A.C., Tabaton M., Whitehouse P.J., Harik S.I., Unnerstall J.R. Adrenergic receptors in aging and Alzheimer's disease: increased beta 2-receptors in prefrontal cortex and hippocampus. J Neurochem 1989, 53:1772-1781.
Kiyota T., Yamamoto M., Xiong H., Lambert M.P., Klein W.L., Gendelman H.E., Ransohoff R.M., Ikezu T. CCL2 accelerates microglia-mediated Abeta oligomer formation and progression of neurocognitive dysfunction. PLoS One 2009, 4:e6197.
Leverenz J.B., Miller M.A., Dobie D.J., Peskind E.R., Raskind M.A. Increased alpha 2-adrenergic receptor binding in locus coeruleus projection areas in dementia with Lewy bodies. Neurobiol Aging 2001, 22:555-561.
Lippoldt A., Jansson A., Kniesel U., Andbjer B., Andersson A., Wolburg H., Fuxe K., Haller H. Phorbol ester induced changes in tight and adherens junctions in the choroid plexus epithelium and in the ependyma. Brain Res 2000, 854:197-206.
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001, 25:402-408.
Lyness S.A., Zarow C., Chui H.C. Neuron loss in key cholinergic and aminergic nuclei in Alzheimer disease: a meta-analysis. Neurobiol Aging 2003, 24:1-23.
Marien M.R., Colpaert F.C., Rosenquist A.C. Noradrenergic mechanisms in neurodegenerative diseases: a theory. Brain Res Brain Res Rev 2004, 45:38-78.
Matthews K.L., Chen C.P., Esiri M.M., Keene J., Minger S.L., Francis P.T. Noradrenergic changes, aggressive behavior, and cognition in patients with dementia. Biol Psychiatry 2002, 51:407-416.
Meana J.J., Barturen F., Garro M.A., García-Sevilla J.A., Fontán A., Zarranz J.J. Decreased density of presynaptic alpha 2-adrenoceptors in postmortem brains of patients with Alzheimer's disease. J Neurochem 1992, 58:1896-1904.
Mori K., Ozaki E., Zhang B., Yang L., Yokoyama A., Takeda I., Maeda N., Sakanaka M., Tanaka J. Effects of NE on rat cultured microglial cells that express alpha1, alpha2, beta1 and beta2 adrenergic receptors. Neuropharmacology 2002, 43:1026-1034.
Nakadate K., Imamura K., Watanabe Y. Cellular and subcellular localization of alpha-1 adrenoceptors in the rat visual cortex. Neuroscience 2006, 141:1783-1792.
Papay R., Gaivin R., McCune D.F., Rorabaugh B.R., Macklin W.B., McGrath J.C., Perez D.M. Mouse alpha1B-adrenergic receptor is expressed in neurons and NG2 oligodendrocytes. J Comp Neurol 2004, 478:1-10.
Papay R., Gaivin R., Jha A., McCune D.F., McGrath J.C., Rodrigo M.C., Simpson P.C., Doze V.A., Perez D.M. Localization of the mouse alpha1A-adrenergic receptor (AR) in the brain: alpha1AAR is expressed in neurons, GABAergic interneurons, and NG2 oligodendrocyte progenitors. J Comp Neurol 2006, 497:209-222.
Pascual J., Grijalba B., García-Sevilla J.A., Zarranz J.J., Pazos A. Loss of high-affinity alpha 2-adrenoceptors in Alzheimer's disease: an autoradiographic study in frontal cortex and hippocampus. Neurosci Lett 1992, 142:36-40.
Paxinos G., Franklin K.B.J. The mouse brain in stereotaxic coordinates 2001, Academic Press, New York. Second Edition.
Pazos A., Probst A., Palacios J.M. Beta-adrenoceptor subtypes in the human brain: autoradiographic localization. Brain Res 1985, 358:324-328.
Rainbow T.C., Parsons B., Wolfe B.B. Quantitative autoradiography of beta 1- and beta 2-adrenergic receptors in rat brain. Proc Natl Acad Sci U S A 1984, 81:1585-1589.
Ramos B.P., Arnsten A.F. Adrenergic pharmacology and cognition: focus on the prefrontal cortex. Pharmacol Ther 2007, 113:523-536.
Reinikainen K.J., Paljärvi L., Huuskonen M., Soininen H., Laakso M., Riekkinen P.J. A post-mortem study of noradrenergic, serotonergic and GABAergic neurons in Alzheimer's disease. J Neurol Sci 1988, 84:101-116.
Rommelfanger K.S., Mitrano D.A., Smith Y., Weinshenker D. Light and electron microscopic localization of alpha-1 adrenergic receptor immunoreactivity in the rat striatum and ventral midbrain. Neuroscience 2009, 158:1530-1540.
Roth G.S., Joseph J.A., Mason R.P. Membrane alterations as causes of impaired signal transduction in Alzheimer's disease and aging. Trends Neurosci 1995, 18:203-206.
Ruan L., Kang Z., Pei G., Le Y. Amyloid deposition and inflammation in APPswe/PS1dE9 mouse model of Alzheimer's disease. Curr Alzheimer Res 2009, 6:531-540.
Russo-Neustadt A., Cotman C.W. Adrenergic receptors in Alzheimer's disease brain: selective increases in the cerebella of aggressive patients. J Neurosci 1997, 17:5573-5580.
Schroeter S., Apparsundaram S., Wiley R.G., Miner L.H., Sesack S.R., Blakely R.D. Immunolocalization of the cocaine- and antidepressant-sensitive l-NE transporter. J Comp Neurol 2000, 420:211-232.
Scullion G.A., Kendall D.A., Sunter D., Marsden C.A., Pardon M.C. Central noradrenergic depletion by DSP-4 prevents stress-induced memory impairments in the object recognition task. Neuroscience 2009, 164:415-423.
Szelényi J. Cytokines and the central nervous system. Brain Res Bull 2001, 54:329-338.
Szot P., White S.S., Greenup J.L., Leverenz J.B., Peskind E.R., Raskind M.A. Compensatory changes in the noradrenergic nervous system in the locus ceruleus and hippocampus of postmortem subjects with Alzheimer's disease and dementia with Lewy bodies. J Neurosci 2006, 26:467-478.
Szot P., White S.S., Greenup J.L., Leverenz J.B., Peskind E.R., Raskind M.A. Changes in adrenoreceptors in the prefrontal cortex of subjects with dementia: evidence of compensatory changes. Neuroscience 2007, 146:471-480.
Szot P., Miguelez C., White S.S., Franklin A., Sikkema C., Wilkinson C.W., Ugedo L., Raskind M.A. A comprehensive analysis of the effect of DSP4 on the locus coeruleus noradrenergic system in the rat. Neuroscience 2010, 166:279-291.
Tavares A., Handy D.E., Bogdanova N.N., Rosene D.L., Gavras H. Localization of alpha 2A- and alpha 2B-adrenergic receptor subtypes in brain. Hypertension 1996, 27:449-455.
Tejani-Butt S.M. [3H]nisoxetine: a radioligand for quantitation of NE uptake sites by autoradiography or by homogenate binding. J Pharmacol Exp Ther 1992, 260:427-436.
Tejani-Butt S.M., Yang J., Zaffar H. NE transporter sites are decreased in the locus coeruleus in Alzheimer's disease. Brain Res 1993, 631:147-150.
Tellioglu T., Robertson D. Genetic or acquired deficits in the NE transporter: current understanding of clinical implications. Expert Rev Mol Med 2001, 2001:1-10.
van Waarde A., Vaalburg W., Doze P., Bosker F.J., Elsinga P.H. PET imaging of beta-adrenoceptors in human brain: a realistic goal or a mirage?. Curr Pharm Des 2004, 10:1519-1536.
Wang R., Macmillan L.B., Fremeau R.T., Magnuson M.A., Lindner J., Limbird L.E. Expression of alpha 2-adrenergic receptor subtypes in the mouse brain: evaluation of spatial and temporal information imparted by 3 kb of 5' regulatory sequence for the alpha 2A AR-receptor gene in transgenic animals. Neuroscience 1996, 74:199-218.
Weinshenker D. Functional consequences of locus coeruleus degeneration in Alzheimer's disease. Curr Alzheimer Res 2008, 5:342-345.
Wenk G.L., McGann K., Hauss-Wegrzyniak B., Rosi S. The toxicity of tumor necrosis factor-alpha upon cholinergic neurons within the nucleus basalis and the role of NE in the regulation of inflammation: implications for Alzheimer's disease. Neuroscience 2003, 121:719-729.
Zarow C., Lyness S.A., Mortimer J.A., Chui H.C. Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch Neurol 2003, 60:337-341.