A rare heterozygous TREM2 coding variant identified in familial clustering of dementia affects an intrinsically disordered protein region and function of TREM2.
[en] Rare coding variants in the triggering receptor expressed on myeloid cells-2 (TREM2) gene have been associated with Alzheimer disease (AD) and homozygous TREM2 loss-of-function variants have been reported in families with monogenic frontotemporal-like dementia with/without bone abnormalities. In a whole-exome sequencing study of a family with probable AD-type dementia without pathogenic variants in known autosomal dominant dementia disease genes and negative for the apolipoprotein E (APOE) ε4 allele, we identified an extremely rare TREM2 coding variant, that is, a glycine-to-tryptophan substitution at amino acid position 145 (NM_018965.3:c.433G>T/p.[Gly145Trp]). This alteration is found in only 1 of 251,150 control alleles in gnomAD. It was present in both severely affected as well as in another putatively affected and one 61 years old as yet unaffected family member suggesting incomplete penetrance and/or a variable age of onset. Gly145 maps to an intrinsically disordered region (IDR) of TREM2 between the immunoglobulin-like and transmembrane domain. Subsequent cellular studies showed that the variant led to IDR shortening and structural changes of the mutant protein resulting in an impairment of cellular responses upon receptor activation. Our results, suggest that a p.(Gly145Trp)-induced structural disturbance and functional impairment of TREM2 may contribute to the pathogenesis of an AD-like form of dementia.
Disciplines :
Neurology
Author, co-author :
Karsak, Meliha ✱; Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
Glebov, Konstantin ✱; Department of Neurology, University of Bonn, Bonn, Germany
Scheffold, Marina; Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany ; Institute of Pharmacology and Toxicology, University of Ulm, Ulm, Germany
Bajaj, Thomas; Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, Cologne, Germany
Kawalia, Amit; Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, Cologne, Germany
Karaca, Ilker; Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany
Rading, Sebastian; Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
Kornhuber, Johannes; Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
Peters, Oliver; Department of Psychiatry, Charité University Medicine, Berlin, Germany
Diez-Fairen, Monica; Department of Neurology, Memory and Movement Disorders Units, University Hospital Mutua de Terrassa, Terrassa, Barcelona, Spain ; Fundació Docència i Recerca Mútua Terrassa, University Hospital Mútua de Terrassa, Terrassa, Barcelona, Spain
Frölich, Lutz; Department of Geriatric Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
Hüll, Michael; Center for Psychiatry, Clinic for Geriatric Psychiatry and Psychotherapy Emmendingen and Department of Psychiatry and Psychotherapy, University of Freiburg, Freiburg, Germany
Wiltfang, Jens; Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany ; German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
Scherer, Martin; Department of Primary Medical Care, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
Riedel-Heller, Steffi; Institute of Social Medicine, Occupational Health and Public Health, University of Leipzig, Leipzig, Germany
Schneider, Anja; Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany ; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
HENEKA, Michael ; Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany ; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany ; Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
Fliessbach, Klaus; Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany
Sharaf, Ahmed; Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
Thiele, Holger; Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
Lennarz, Martina; Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
Jessen, Frank; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany ; Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, Cologne, Germany
Maier, Wolfgang; Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany ; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
Kubisch, Christian; Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
Ignatova, Zoya; Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
Nürnberg, Peter; Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany ; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
Pastor, Pau; Department of Neurology, Memory and Movement Disorders Units, University Hospital Mutua de Terrassa, Terrassa, Barcelona, Spain ; Fundació Docència i Recerca Mútua Terrassa, University Hospital Mútua de Terrassa, Terrassa, Barcelona, Spain
Walter, Jochen ; Department of Neurology, University of Bonn, Bonn, Germany
Ramirez, Alfredo ; Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, Cologne, Germany ; Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany
✱ These authors have contributed equally to this work.
External co-authors :
yes
Language :
English
Title :
A rare heterozygous TREM2 coding variant identified in familial clustering of dementia affects an intrinsically disordered protein region and function of TREM2.
Deutsche Forschungsgemeinschaft Bundesministerium für Bildung und Forschung Alzheimer Forschung Initiative
Funding text :
We thank all patients and controls for their participation in this project. This study was funded in part by the German Federal Ministry of Education and Research (grants KND: 01GI0102, 01GI0420, 01GI0422, 01GI0423, 01GI0429, 01GI0431, 01GI0433, and 01GI0434; grants KNDD: 01GI0710, 01GI0711, 01GI0712, 01GI0713, 01GI0714, 01GI0715, 01GI0716, and 01ET1006B). Part of this study was also funded by grants to Jochen Walter: DFG WA1477/6-2 (KFO177), Innovative Medicines Initiative 2 Joint Undertaking (IMI2 JU), grant/award number: No 115976 (PHAGO), and to KG (Alzheimer Forschung Initiative e.V. grant 16019). Center for Applied Medical Research, University of Navarra (CIMA; Pamplona, Spain) contributed to this study.
Alawbathani, S., Kawalia, A., Karakaya, M., Altmüller, J., Nürnberg, P., & Cirak, S. (2018). Late diagnosis of a truncating WISP3 mutation entails a severe phenotype of progressive pseudorheumatoid dysplasia. Molecular Case Studies, 4(1), a002139. https://doi.org/10.1101/mcs.a002139
Bellenguez, C., Charbonnier, C., Grenier-Boley, B., Quenez, O., Le Guennec, K., Nicolas, G., … Jurici, S. (2017). Contribution to Alzheimer's disease risk of rare variants in TREM2, SORL1, and ABCA7 in 1779 cases and 1273 controls. Neurobiology of Aging, 59, 220.e1–220.e9. https://doi.org/10.1016/j.neurobiolaging.2017.07.001
Benitez, B. A., Cooper, B., Pastor, P., Jin, S. C., Lorenzo, E., Cervantes, S., & Cruchaga, C. (2013). TREM2 is associated with the risk of Alzheimer's disease in Spanish population. Neurobiology of Aging, 34(6), 1711.e15–1711.e17. https://doi.org/10.1016/j.neurobiolaging.2012.12.018
Gatz, M., Reynolds, C. A., Fratiglioni, L., Johansson, B., Mortimer, J. A., Berg, S., … Pedersen, N. L. (2006). Role of genes and environments for explaining Alzheimer disease. Archives of General Psychiatry, 63(2), 168–174. https://doi.org/10.1001/archpsyc.63.2.168
Glebov, K., Wunderlich, P., Karaca, I., & Walter, J. (2016). Functional involvement of γ-secretase in signaling of the triggering receptor expressed on myeloid cells-2 (TREM2). Journal of Neuroinflammation, 13, 17. https://doi.org/10.1186/s12974-016-0479-9
Guerreiro, R., Bilgic, B., Guven, G., Bras, J., Rohrer, J., Lohmann, E., … Emre, M. (2013). Novel compound heterozygous mutation in TREM2 found in a Turkish frontotemporal dementia-like family. Neurobiol Aging, 34(12), 2890 e1-5. https://doi.org/10.1016/j.neurobiolaging.2013.06.005
Habchi, J., Tompa, P., Longhi, S., & Uversky, V. N. (2014). Introducing protein intrinsic disorder. Chemical Reviews, 114(13), 6561–6588. https://doi.org/10.1021/cr400514h
Heilmann, S., Drichel, D., Clarimon, J., Fernández, V., Lacour, A., Wagner, H., … Ramirez, A. (2015). PLD3 in non-familial Alzheimer's disease. Nature, 520(7545), E3–E5. https://doi.org/10.1038/nature14039
Jessen, F., Wiese, B., Bickel, H., Eiffländer-Gorfer, S., Fuchs, A., Kaduszkiewicz, H., … van den Bussche, H. (2011). Prediction of dementia in primary care patients. PLOS One, 6(2), e16852. https://doi.org/10.1371/journal.pone.0016852
Jin, S. C., Benitez, B. A., Karch, C. M., Cooper, B., Skorupa, T., Carrell, D., … Cruchaga, C. (2014). Coding variants in TREM2 increase risk for Alzheimer's disease. Human Molecular Genetics, 23(21), 5838–5846. https://doi.org/10.1093/hmg/ddu277
Karch, C. M., & Goate, A. M. (2015). Alzheimer's disease risk genes and mechanisms of disease pathogenesis. Biological Psychiatry, 77(1), 43–51. https://doi.org/10.1016/j.biopsych.2014.05.006
Kawalia, A., Motameny, S., Wonczak, S., Thiele, H., Nieroda, L., Jabbari, K., … Nürnberg, P. (2015). Leveraging the power of high performance computing for next generation sequencing data analysis: Tricks and twists from a high throughput exome workflow. PLOS One, 10(5):e0126321. https://doi.org/10.1371/journal.pone.0126321
Kiialainen, A., Hovanes, K., Paloneva, J., Kopra, O., & Peltonen, L. (2005). Dap12 and Trem2, molecules involved in innate immunity and neurodegeneration, are co-expressed in the CNS. Neurobiology of Disease, 18(2), 314–322. https://doi.org/10.1016/j.nbd.2004.09.007
Kiialainen, A., Veckman, V., Saharinen, J., Paloneva, J., Gentile, M., Hakola, P., … Peltonen, L. (2007). Transcript profiles of dendritic cells of PLOSL patients link demyelinating CNS disorders with abnormalities in pathways of actin bundling and immune response. Journal of Molecular Medicine, 85(9), 971–983. https://doi.org/10.1007/s00109-007-0191-4
Kleinberger, G., Yamanishi, Y., Suarez-Calvet, M., Czirr, E., Lohmann, E., Cuyvers, E., … Haass, C. (2014). TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Science Translational Medicine, 6(243), 243ra86. https://doi.org/10.1126/scitranslmed.3009093
Kornhuber, J., Schmidtke, K., Frolich, L., Perneczky, R., Wolf, S., Hampel, H., … Wiltfang, J. (2009). Early and differential diagnosis of dementia and mild cognitive impairment. Dementia and Geriatric Cognitive Disorders, 27(5), 404–417. https://doi.org/10.1159/000210388
Krasemann, S., Madore, C., Cialic, R., Baufeld, C., Calcagno, N., El Fatimy, R., … Butovsky, O. (2017). The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity, 47(3), 566–581.e9. https://doi.org/10.1016/j.immuni.2017.08.008
Levine, Z. A., Larini, L., LaPointe, N. E., Feinstein, S. C., & Shea, J. -E. (2015). Regulation and aggregation of intrinsically disordered peptides. Proceedings of the National Academy of Sciences, 112(9), 2758–2763. https://doi.org/10.1073/pnas.1418155112
Lill, C. M., Rengmark, A., Pihlstrøm, L., Fogh, I., Shatunov, A., Sleiman, P. M., … Bertram, L. (2015). The role of TREM2 R47H as a risk factor for Alzheimer's disease, frontotemporal lobar degeneration, amyotrophic lateral sclerosis, and Parkinson's disease. Alzheimer's & Dementia, 11(12), 1407–1416. https://doi.org/10.1016/j.jalz.2014.12.009
McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E. M. (1984). Clinical diagnosis of Alzheimer's disease: Report of the NINCDS-ADRDA Work Group* under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology, 34(7), 939–939. http://www.ncbi.nlm.nih.gov/pubmed/6610841
McKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack, C. R., Kawas, C. H., & Phelps, C. H. (2011). The diagnosis of dementia due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's & Dementia, 7(3), 263–269. https://doi.org/10.1016/J.JALZ.2011.03.005
Nagler, M., Palkowitsch, L., Rading, S., Moepps, B., & Karsak, M. (2016). Cannabinoid receptor 2 expression modulates Gβ1γ2 protein interaction with the activator of G protein signalling 2/dynein light chain protein Tctex-1. Biochemical Pharmacology, 99, 60–72. https://doi.org/10.1016/J.BCP.2015.09.017
Paloneva, J., Mandelin, J., Kiialainen, A., Böhling, T., Prudlo, J., Hakola, P., … Peltonen, L. (2003). DAP12/TREM2 deficiency results in impaired osteoclast differentiation and osteoporotic features. The Journal of Experimental Medicine, 198(4), 669–675. https://doi.org/10.1084/jem.20030027
Park, J. S., Ji, I. J., An, H. J., Kang, M. J., Kang, S. W., Kim, D. H., & Yoon, S. Y. (2015). Disease-associated mutations of TREM2 alter the processing of N-linked oligosaccharides in the Golgi apparatus. Traffic, 16(5), 510–518. https://doi.org/10.1111/tra.12264
Peng, Q., Malhotra, S., Torchia, J. A., Kerr, W. G., Coggeshall, K. M., & Humphrey, M. B. (2010). TREM2- and DAP12-dependent activation of PI3K requires DAP10 and is inhibited by SHIP1. Science Signaling, 3(122), ra38. https://doi.org/10.1126/scisignal.2000500
Poliani, P. L., Wang, Y., Fontana, E., Robinette, M. L., Yamanishi, Y., Gilfillan, S., & Colonna, M. (2015). TREM2 sustains microglial expansion during aging and response to demyelination. Journal of Clinical Investigation, 125(5), 2161–2170. https://doi.org/10.1172/JCI77983
Prager, K., Wang-Eckhardt, L., Fluhrer, R., Killick, R., Barth, E., Hampel, H., … Walter, J. (2007). A structural switch of presenilin 1 by glycogen synthase kinase 3β-mediated phosphorylation regulates the interaction with β-catenin and its nuclear signaling. Journal of Biological Chemistry, 282(19), 14083–14093. https://doi.org/10.1074/jbc.M608437200
Ramirez, A., van der Flier, W. M., Herold, C., Ramonet, D., Heilmann, S., Lewczuk, P., … Nöthen, M. M. (2014). SUCLG2 identified as both a determinator of CSF Aβ1–42 levels and an attenuator of cognitive decline in Alzheimer's disease. Human Molecular Genetics, 23(24), 6644–6658. https://doi.org/10.1093/hmg/ddu372
Receveur-Bréchot, V., Bourhis, J. M., Uversky, V. N., Canard, B., & Longhi, S. (2006). Assessing protein disorder and induced folding. Proteins: Structure, Function, and Bioinformatics, 62(1), 24–45. https://doi.org/10.1002/prot.20750
Schlepckow, K., Kleinberger, G., Fukumori, A., Feederle, R., Lichtenthaler, S. F., Steiner, H., & Haass, C. (2017). An Alzheimer-associated TREM2 variant occurs at the ADAM cleavage site and affects shedding and phagocytic function. EMBO Molecular Medicine, 9(10), 1356–1365. https://doi.org/10.15252/emmm.201707672
Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. https://doi.org/10.1038/nmeth.2089
Shi, Y., & Holtzman, D. M. (2018). Interplay between innate immunity and Alzheimer disease: APOE and TREM2 in the spotlight. Nature Reviews Immunology, 18(12), 759–772. https://doi.org/10.1038/s41577-018-0051-1
Sims, R., Van DerLee, S. J., Naj, A. C., Bellenguez, C., Badarinarayan, N., Jakobsdottir, J., … Daniilidou, M. (2017). Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease. Nature Genetics, 49(9), 1373–1384. https://doi.org/10.1038/ng.3916
Sirkis, D. W., Bonham, L. W., Aparicio, R. E., Geier, E. G., Ramos, E. M., Wang, Q., … Yokoyama, J. S. (2016). Rare TREM2 variants associated with Alzheimer's disease display reduced cell surface expression. Acta Neuropathologica Communications, 4(1), 98. https://doi.org/10.1186/s40478-016-0367-7
Takahashi, K., Rochford, C. D. P., & Neumann, H. (2005). Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. The Journal of Experimental Medicine, 201(4), 647–657. https://doi.org/10.1084/jem.20041611
Ulland, T. K., & Colonna, M. (2018). TREM2 — a key player in microglial biology and Alzheimer disease. Nature Reviews Neurology, 14, 667–675. https://doi.org/10.1038/s41582-018-0072-1. November 28. Nature Publishing Group.
Uversky, N. (2009). Intrinsic disorder in proteins associated with neurodegenerative diseases. Frontiers in Bioscience, 14, 5188–5238. https://doi.org/10.2741/3594
Uversky, V. N. (2015). Intrinsically disordered proteins and their (disordered) proteomes in neurodegenerative disorders. Frontiers in Aging Neuroscience, 7, 18. https://doi.org/10.3389/fnagi.2015.00018
Villegas-Llerena, C., Phillips, A., Garcia-Reitboeck, P., Hardy, J., & Pocock, J. M. (2016). Microglial genes regulating neuroinflammation in the progression of Alzheimer's disease. Current Opinion in Neurobiology, 36, 74–81. https://doi.org/10.1016/j.conb.2015.10.004. February 1. Elsevier Current Trends.
Walter, J. (2016). The triggering receptor expressed on myeloid cells 2: A Molecular link of neuroinflammation and neurodegenerative diseases. Journal of Biological Chemistry, 291, 4334–4341. https://doi.org/10.1074/jbc.R115.704981. February 26. American Society for Biochemistry and Molecular Biology.
Wright, P. E., & Dyson, H. J. (2015). Intrinsically disordered proteins in cellular signalling and regulation. Nature Reviews Molecular Cell Biology, 16(1), 18–29. https://doi.org/10.1038/nrm3920
Wunderlich, P., Glebov, K., Kemmerling, N., Tien, N. T., Neumann, H., & Walter, J. (2013). Sequential proteolytic processing of the triggering receptor expressed on myeloid cells-2 (TREM2) protein by ectodomain shedding and γ-secretase-dependent intramembranous cleavage. Journal of Biological Chemistry, 288(46), 33027–33036. https://doi.org/10.1074/jbc.M113.517540
Yeh, F. L., Hansen, D. V., & Sheng, M. (2017). TREM2, microglia, and neurodegenerative diseases. Trends in Molecular Medicine, 23(6), 512–533. https://doi.org/10.1016/J.MOLMED.2017.03.008