[en] Degeneration of locus ceruleus neurons and subsequent reduction of norepinephrine concentration in locus ceruleus projection areas represent an early pathological indicator of Alzheimer's disease. In order to model the pathology of the human disease and to study the effects of norepinephrine-depletion on amyloid precursor protein processing, behaviour, and neuroinflammation, locus ceruleus degeneration was induced in mice coexpressing the swedish mutant of the amyloid precursor protein and the presenilin 1 DeltaExon 9 mutant (APP/PS1) using the neurotoxin N-(2-chloroethyl)-N-ethyl-bromo-benzylamine (dsp4) starting treatment at 3 months of age. Norepinephrine transporter immunolabelling demonstrated severe loss of locus ceruleus neurons and loss of cortical norepinephrine transporter starting as early as 4.5 months of age and aggravating over time. Of note, dsp4-treated transgenic mice showed elevated amyloid beta levels and impaired spatial memory performance at 6.5 months of age compared to control-treated APP/PS1 transgenic mice, indicating an accelerating effect on cerebral amyloidosis and cognitive deficits. Likewise, norepinephrine-depletion increased neuroinflammation compared to transgenic controls as verified by macrophage inflammatory protein-1alpha and -1beta gene expression analysis. Exploratory activity and memory retention was compromised by age in APP/PS1 transgenic mice and further aggravated by induced noradrenergic deficiency. In contrast, novel object recognition was not influenced by norepinephrine deficiency, but by the APP/PS1 transgene at 12 months. Overall, our data indicate that early loss of noradrenergic innervation promotes amyloid deposition and modulates the activation state of inflammatory cells. This in turn could have had impact on the acceleration of cognitive deficits observed over time.
We thank Michael Hermes for his scientific advice regarding behavioural studies and Manuela Brand for excellent technical support. The authors thank Jochen Walter for the generous gift of the 140 antibody directed against APP. The investigations were funded by Bayer Schering Pharma AG, Berlin, Germany.
Arendash G.W., King D.L., Gordon M.N., Morgan D., Hatcher J.M., Hope C.E., Diamond D.M. Progressive, age-related behavioral impairments in transgenic mice carrying both mutant amyloid precursor protein and presenilin-1 transgenes. Brain Res. 2001, 891:42-53.
Bondareff W., Mountjoy C.Q., Roth M., Rossor M.N., Iversen L.L., Reynolds G.P., Hauser D.L. Neuronal degeneration in locus ceruleus and cortical correlates of Alzheimer disease. Alzheimer Dis. Assoc. Disord. 1987, 1:256-262.
Cheetham S.C., Viggers J.A., Butler S.A., Prow M.R., Heal D.J. [3H]nisoxetine-a radioligand for noradrenaline reuptake sites: correlation with inhibition of [3H]noradrenaline uptake and effect of DSP-4 lesioning and antidepressant treatments. Neuropharmacology 1996, 35:63-70.
Chen G., Chen K.S., Knox J., Inglis J., Bernard A., Martin S.J., Justice A., McConlogue L., Games D., Freedman S.B., Morris R.G. A learning deficit related to age and beta-amyloid plaques in a mouse model of Alzheimer's disease. Nature 2000, 408:975-979.
Feinstein D.L., Heneka M.T., Gavrilyuk V., Dello Russo C., Weinberg G., Galea E. Noradrenergic regulation of inflammatory gene expression in brain. Neurochem. Int. 2002, 41:357-365.
Förstl H., Levy R., Burns A., Luthert P., Cairns N. Disproportionate loss of noradrenergic and cholinergic neurons as cause of depression in Alzheimer's disease-a hypothesis. Pharmacopsychiatry 1994, 27:11-15.
Fritschy J.M., Grzanna R. Immunohistochemical analysis of the neurotoxic effects of DSP-4 identifies two populations of noradrenergic axon terminals. Neuroscience 1989, 30:181-197.
German D.C., Manaye K.F., White C.L., Woodward D.J., McIntire D.D., Smith W.K., Kalaria R.N., Mann D.M. Disease-specific patterns of locus coeruleus cell loss. Ann. Neurol. 1992, 32:667-676.
Grudzien A., Shaw P., Weintraub S., Bigio E., Mash D.C., Mesulam M.M. Locus coeruleus neurofibrillary degeneration in aging, mild cognitive impairment and early Alzheimer's disease. Neurobiol. Aging 2007, 28:327-335.
Heneka M.T., Ramanathan M., Jacobs A.H., Dumitrescu-Ozimek L., Bilkei-Gorzo A., Debeir T., Sastre M., Galldiks N., Zimmer A., Hoehn M., Heiss W.D., Klockgether T., Staufenbiel M. Locus ceruleus degeneration promotes Alzheimer pathogenesis in amyloid precursor protein 23 transgenic mice. J. Neurosci. 2006, 26:1343-1354.
Heneka M.T., O'Banion M.K. Inflammatory processes in Alzheimer's disease. J. Neuroimmunol. 2007, 184:69-91.
Howlett D.R., Richardson J.C., Austin A., Parsons A.A., Bate S.T., Davies D.C., Gonzalez M.I. Cognitive correlates of Aβ deposition in male and female mice bearing amyloid precursor protein and presenilin-1 mutant transgenes. Brain Res. 2004, 1017:130-136.
Iversen L.L., Rossor M.N., Reynolds G.P., Hills R., Roth M., Mountjoy C.Q., Foote S.L., Morrison J.H., Bloom F.E. Loss of pigmented dopamine-beta-hydroxylase positive cells from locus coeruleus in senile dementia of Alzheimer's type. Neurosci. Lett. 1983, 39:95-100.
Jaim-Etcheverry G., Zieher L.M. DSP-4: a novel compound with neurotoxic effects on noradrenergic neurons of adult and developing rats. Brain Res. 1980, 188:513-523.
Kalinin S., Gavrilyuk V., Polak P.E., Vasser R., Zhao J., Heneka M.T., Feinstein D.L. Noradrenaline deficiency in brain increases beta-amyloid plaque burden in an animal model of Alzheimer's disease. Neurobiol. Aging 2007, 28:1206-1214.
Khakpour-Taleghani B., Lashgari R., Motamedi F., Naghdi N. Effect of reversible inactivation of locus ceruleus on spatial reference and working memory. Neuroscience 2009, 158:1284-1291.
Lalonde R., Kim H.D., Fukuchi K. Exploratory activity, anxiety, and motor coordination in bigenic APPswe+PS1/DeltaE9 mice. Neurosci. Lett. 2004, 369:156-161.
Lapiz M.D., Mateo Y., Parker T., Marsden C. Effects of noradrenaline depletion in the brain on response on novelty in isolation-reared rats. Psychopharmacology 2000, 152:312-320.
Leverenz J.B., Miller M.A., Dobie D.J., Peskind E.R., Raskind M.A. Increased alpha 2-adrenergic receptor binding in locus coeruleus projection areas in dementia with Lewy bodies. Neurobiol. Aging 2001, 22:555-561.
Lippoldt A., Jansson A., Kniesel U., Andbjer B., Andersson A., Wolburg H., Fuxe K., Haller H. Phorbol ester induced changes in tight and adherens junctions in the choroid plexus epithelium and in the ependyma. Brain Res. 2000, 854:197-206.
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001, 25:402-408.
Lord A., Englund H., Söderberg L., Tucker S., Clausen F., Hillered L., Gordon M., Morgan D., Lannfelt L., Pettersson F.E., Nilsson L.N. Amyloid-beta protofibril levels correlate with spatial learning in Arctic Alzheimer's disease transgenic mice. FEBS J. 2009, 276:995-1006.
Mann D.M. The locus coeruleus and its possible role in ageing and degenerative disease of the human central nervous system. Mech. Ageing Dev. 1983, 23:73-94.
Mann D.M., Yates P.O., Hawkes J. The pathology of the human locus ceruleus. Clin. Neuropathol. 1983, 2:1-7.
Mann D.M., Yates P.O., Marcyniuk B. Correlation between senile plaque and neurofibrillary tangle counts in cerebral cortex and neuronal counts in cortex and subcortical structures in Alzheimer's disease. Neurosci. Lett. 1985, 56:51-55.
Marien M.R., Colpaert F.C., Rosenquist A.C. Noradrenergic mechanisms in neurodegenerative diseases: a theory. Brain Res. Brain Res. Rev. 2004, 45:38-78.
Paxinos G., Franklin K.B.J. The Mouse Brain in Stereotaxic Coordinates 2001, Academic Press, New York. Second edition.
Pugh P.L., Vidgeon-Hart M.P., Ashmeade T., Culbert A.A., Seymour Z., Perren M.J., Joyce F., Bate S.T., Babin A., Virley D.J., Richardson J.C., Upton N., Sunter D. Repeated administration of the noradrenergic neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) modulates neuroinflammation and amyloid plaque load in mice bearing amyloid precursor protein and presenilin-1 mutant transgenes. J. Neuroinflamm. 2007, 4:8.
Schroeter S., Apparsundaram S., Wiley R.G., Miner L.H., Sesack S.R., Blakely R.D. Immunolocalization of the cocaine- and antidepressant-sensitive l-norepinephrine transporter. J. Comp. Neurol. 2000, 420:211-232.
Szot P., White S.S., Greenup J.L., Leverenz J.B., Peskind E.R., Raskind M.A. Compensatory changes in the noradrenergic nervous system in the locus ceruleus and hippocampus of postmortem subjects with Alzheimer's disease and dementia with Lewy bodies. J. Neurosci. 2006, 26:467-478.
Szot P., White S.S., Greenup J.L., Leverenz J.B., Peskind E.R., Raskind M.A. Changes in adrenoreceptors in the prefrontal cortex of subjects with dementia: evidence of compensatory changes. Neuroscience 2007, 146:471-480.
Tejani-Butt S.M., Yang J., Zaffar H. Norepinephrine transporter sites are decreased in the locus coeruleus in Alzheimer's disease. Brain Res. 1993, 631:147-150.
Trinchese F., Liu S., Battaglia F., Walter S., Mathews P.M., Arancio O. Progressive age-related development of Alzheimer-like pathology in APP/PS1 mice. Ann. Neurol. 2004, 55:801-814.
Wahle T., Thal D.R., Sastre M., Rentmeister A., Bogdanovic N., Famulok M., Heneka M.T., Walter J. GGA1 is expressed in the human brain and affects the generation of amyloid beta-peptide. J. Neurosci. 2006, 26:12838-12846.
Weberpals M., Hermes M., Hermann S., Kummer M.P., Terwel D., Semmler A., Berger M., Schäfers M., Heneka M.T. NOS2 gene deficiency protects from sepsis-induced long-term cognitive deficits. J. Neurosci. 2009, 29:14177-14184.
Wenge B., Bönisch H. Interference of the noradrenergic neurotoxin DSP4 with neuronal and nonneuronal monoamine transporters. Naunyn Schmiedebergs Arch. Pharmacol. 2009, 380:523-529.
Zarow C., Lyness S.A., Mortimer J.A., Chui H.C. Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch. Neurol. 2003, 60:337-341.