[en] Chronically activated microglia contribute to the development of neurodegenerative diseases such as Alzheimer's disease (AD) by the release of pro-inflammatory mediators that compromise neuronal function and structure. Modulating microglia functions could be instrumental to interfere with disease pathogenesis. Previous studies have shown anti-inflammatory effects of acetylcholine (ACh) or norepinephrine (NE), which mainly activates the β-receptors on microglial cells. Non-invasive vagus nerve stimulation (nVNS) is used in treatment of drug-resistant depression, which is a risk factor for developing AD. The vagus nerve projects to the brainstem's locus coeruleus from which noradrenergic fibers reach to the Nucleus Basalis of Meynert (NBM) and widely throughout the brain. Pilot studies showed first signs of cognitive-enhancing effects of nVNS in AD patients. In this study, the effects of nVNS on mouse microglia cell morphology were analyzed over a period of 280 min by 2-photon laser scanning in vivo microscopy. Total branch length, average branch order and number of branches, which are commonly used indicators for the microglial activation state were determined and compared between young and old wild-type and amyloid precursor protein/presenilin-1 (APP/PS1) transgenic mice. Overall, these experiments show strong morphological changes in microglia, from a neurodestructive to a neuroprotective phenotype, following a brief nVNS in aged animals, especially in APP/PS1 animals, whereas microglia from young animals were morphologically unaffected.
Disciplines :
Neurology
Author, co-author :
Kaczmarczyk, Robert; Department of Neurodegenerative Disease and Gerontopsychiatry, University of Bonn, Bonn, Germany
Tejera, Dario; Department of Neurodegenerative Disease and Gerontopsychiatry, University of Bonn, Bonn, Germany
Simon, Bruce J; electroCore LLC, Basking Ridge, New Jersey, USA
HENEKA, Michael ; Department of Neurodegenerative Disease and Gerontopsychiatry, University of Bonn, Bonn, Germany
External co-authors :
yes
Language :
English
Title :
Microglia modulation through external vagus nerve stimulation in a murine model of Alzheimer's disease.
The authors thank Professor Emeritus Russell V. Lenth from the Department of Statistics and Actuarial Science of the University of Iowa for the refinement of the lsmeans package according to our needs. This study was supported by the Deutsche Forschungsgemeinschaft (SFB 1089). Michael Heneka is an editor for the Journal of Neurochemistry. The other authors declare no conflict of interest. All experiments were conducted in compliance with the ARRIVE guidelines.The authors thank Professor Emeritus Russell V. Lenth from the Department of Statistics and Actuarial Science of the University of Iowa for the refinement of the lsmeans package according to our needs. This study was supported by the Deutsche Forschungsgemeinschaft (SFB 1089). Michael Heneka is an editor for the Journal of Neurochemistry. The other authors declare no conflict of interest.
Association A, Gaugler J., James B., Johnson T. and Weuve J. (2017) 2017 Alzheimer's disease facts and figures. Alzheimers Dement. 13, 325–373.
Ay I., Nasser R., Simon B. and Ay H. (2016) Transcutaneous cervical vagus nerve stimulation ameliorates acute ischemic injury in rats. Brain Stimul. 9, 166–173.
Bondareff W., Mountjoy C. Q., Roth M., Rossor M. N., Iversen L. L., Reynolds G. P. and Hauser D. L. (1987) Neuronal degeneration in locus ceruleus and cortical correlates of Alzheimer disease. Alzheimer Dis. Assoc. Disord. 1, 256–262.
Campbell A. (2004) Inflammation, neurodegenerative diseases, and environmental exposures. Ann. N. Y. Acad. Sci. 1035, 117–132.
Chen S.-P., Ay I., de Morais A. L., Qin T., Zheng Y., Sadeghian H., Oka F., Simon B., Eikermann-Haerter K. and Ayata C. (2016) Vagus nerve stimulation inhibits cortical spreading depression. Pain 157, 797–805.
Daria A., Colombo A., Llovera G., Hampel H., Willem M., Liesz A., Haass C. and Tahirovic S. (2017) Young microglia restore amyloid plaque clearance of aged microglia. EMBO J. 36, 583–603.
De Ridder D., Vanneste S., Engineer N. D. and Kilgard M. P. (2014) Safety and efficacy of vagus nerve stimulation paired with tones for the treatment of tinnitus: a case series. Neuromodulation 17, 170–179.
Dorr A. E. and Debonnel G. (2006) Effect of vagus nerve stimulation on serotonergic and noradrenergic transmission. J. Pharmacol. Exp. Ther. 318, 890–898.
Dubovický M., Császár E., Melicherčíková K., Kuniaková M. and Račková L. (2014) Modulation of microglial function by the antidepressant drug venlafaxine. Interdiscip. Toxicol. 7, 201–207.
Engineer C. T., Hays S. A. and Kilgard M. P. (2017) Vagus nerve stimulation as a potential adjuvant to behavioral therapy for autism and other neurodevelopmental disorders. J. Neurodev. Disord. 9, 20.
Follesa P., Biggio F., Gorini G., Caria S., Talani G., Dazzi L., Puligheddu M., Marrosu F. and Biggio G. (2007) Vagus nerve stimulation increases norepinephrine concentration and the gene expression of BDNF and bFGF in the rat brain. Brain Res. 1179, 28–34.
Förstl H., Levy R., Burns A., Luthert P. and Cairns N. (1994) Disproportionate loss of noradrenergic and cholinergic neurons as cause of depression in Alzheimer's disease–a hypothesis. Pharmacopsychiatry 27, 11–15.
Gellner A.-K., Reis J. and Fritsch B. (2016) Glia: a neglected player in non-invasive direct current brain stimulation. Front. Cell. Neurosci. 10, 188.
Genz A. and Bretz F. (2002) Comparison of methods for the computation of multivariate t probabilities. J. Comput. Graph. Stat. 11, 950–971.
Griffin W. S., Sheng J. G., Royston M. C., Gentleman S. M., McKenzie J. E., Graham D. I., Roberts G. W. and Mrak R. E. (1998) Glial-neuronal interactions in Alzheimer's disease: the potential role of a “cytokine cycle” in disease progression. Brain Pathol. 8, 65–72.
Grimonprez A., Raedt R., Portelli J., Dauwe I., Larsen L. E., Bouckaert C., Delbeke J. et al. (2015) The antidepressant-like effect of vagus nerve stimulation is mediated through the locus coeruleus. J. Psychiatr. Res. 68, 1–7.
Gyoneva S., Davalos D., Biswas D., Swanger S. A., Garnier-Amblard E., Loth F., Akassoglou K. and Traynelis S. F. (2014) Systemic inflammation regulates microglial responses to tissue damage in vivo. Glia 62, 1345–1360.
Han B., Li X. and Hao J. (2017) The cholinergic anti-inflammatory pathway: an innovative treatment strategy for neurological diseases. Neurosci. Biobehav. Rev. 77, 358–368.
Hassert D. L., Miyashita T. and Williams C. L. (2004) The effects of peripheral vagal nerve stimulation at a memory-modulating intensity on norepinephrine output in the basolateral amygdala. Behav. Neurosci. 118, 79–88.
Hays S. A. (2016) Enhancing rehabilitative therapies with vagus nerve stimulation. Neurotherapeutics 13, 382–394.
Hefendehl J. K., Milford D., Eicke D., Wegenast-Braun B. M., Calhoun M. E., Grathwohl S. A., Jucker M. and Liebig C. (2012) Repeatable target localization for long-term in vivo imaging of mice with 2-photon microscopy. J. Neurosci. Methods 205, 357–363.
Heneka M. T., Galea E., Gavriluyk V., Dumitrescu-Ozimek L., Daeschner J., O'Banion M. K., Weinberg G., Klockgether T. and Feinstein D. L. (2002) Noradrenergic depletion potentiates beta -amyloid-induced cortical inflammation: implications for Alzheimer's disease. J. Neurosci. 22, 2434–2442.
Heneka M. T., Gavrilyuk V., Landreth G. E., O'Banion M. K., Weinberg G. and Feinstein D. L. (2003) Noradrenergic depletion increases inflammatory responses in brain: effects on IκB and HSP70 expression: PPARγ agonist reduce brain inflammatory responses. J. Neurochem. 85, 387–398.
Heneka M. T., Nadrigny F., Regen T., Martinez-Hernandez A., Dumitrescu-Ozimek L., Terwel D., Jardanhazi-Kurutz D. et al. (2010) Locus ceruleus controls Alzheimer's disease pathology by modulating microglial functions through norepinephrine. Proc. Natl Acad. Sci. 107, 6058–6063.
Hoeijmakers L., Heinen Y., van Dam A.-M., Lucassen P. J. and Korosi A. (2016) Microglial priming and Alzheimer's disease: a possible role for (early) immune challenges and epigenetics? Front. Hum. Neurosci. 10, 398.
Holtmaat A., Bonhoeffer T., Chow D. K., Chuckowree J., De Paola V., Hofer S. B., Hübener M. et al. (2009) Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat. Protoc. 4, 1128–1144.
Hulsey D. R., Hays S. A., Khodaparast N., Ruiz A., Das P., Rennaker R. L. and Kilgard M. P. (2016) Reorganization of motor cortex by vagus nerve stimulation requires cholinergic innervation. Brain Stimulat. 9, 174–181.
Hulsey D. R., Riley J. R., Loerwald K. W., Rennaker R. L., Kilgard M. P. and Hays S. A. (2017) Parametric characterization of neural activity in the locus coeruleus in response to vagus nerve stimulation. Exp. Neurol. 289, 21–30.
Jardanhazi-Kurutz D., Kummer M. P., Terwel D., Vogel K., Dyrks T., Thiele A. and Heneka M. T. (2010) Induced LC degeneration in APP/PS1 transgenic mice accelerates early cerebral amyloidosis and cognitive deficits. Neurochem. Int. 57, 375–382.
Jardanhazi-Kurutz D., Kummer M. P., Terwel D., Vogel K., Thiele A. and Heneka M. T. (2011) Distinct adrenergic system changes and neuroinflammation in response to induced locus ceruleus degeneration in APP/PS1 transgenic mice. Neuroscience 176, 396–407.
Kalinin S., Gavrilyuk V., Polak P. E., Vasser R., Zhao J., Heneka M. T. and Feinstein D. L. (2007) Noradrenaline deficiency in brain increases beta-amyloid plaque burden in an animal model of Alzheimer's disease. Neurobiol. Aging 28, 1206–1214.
(Kandel E. R., ed.) (2013) Principles of neural science. McGraw-Hill, New York.
Krahl S. E., Clark K. B., Smith D. C. and Browning R. A. (1998) Locus coeruleus lesions suppress the seizure-attenuating effects of vagus nerve stimulation. Epilepsia 39, 709–714.
Lenth R. V. (2016) Least-squares means: the R package lsmeans. J. Stat. Softw. 69, 1–33.
Merrill C. A., Jonsson M. A. G., Minthon L., Ejnell H., C-son Silander H., Blennow K., Karlsson M. et al. (2006) Vagus nerve stimulation in patients with Alzheimer's disease: additional follow-up results of a pilot study through 1 year. J. Clin. Psychiatry 67, 1171–1178.
Miyamoto A., Wake H., Moorhouse A. J. and Nabekura J. (2013) Microglia and synapse interactions: fine tuning neural circuits and candidate molecules. Front. Cell. Neurosci. 7, 70.
Mourao R. J., Mansur G., Malloy-Diniz L. F., Castro Costa E. and Diniz B. S. (2016) Depressive symptoms increase the risk of progression to dementia in subjects with mild cognitive impairment: systematic review and meta-analysis. Int. J. Geriatr. Psychiatry 31, 905–911.
Nichols J. A., Nichols A. R., Smirnakis S. M., Engineer N. D., Kilgard M. P. and Atzori M. (2011) Vagus nerve stimulation modulates cortical synchrony and excitability through the activation of muscarinic receptors. Neuroscience 189, 207–214.
O'Donnell J., Zeppenfeld D., McConnell E., Pena S. and Nedergaard M. (2012) Norepinephrine: a neuromodulator that boosts the function of multiple cell types to optimize CNS performance. Neurochem. Res. 37, 2496–2512.
Oshinsky M. L., Murphy A. L., Hekierski H., Cooper M. and Simon B. J. (2014) Noninvasive vagus nerve stimulation as treatment for trigeminal allodynia. Pain 155, 1037–1042.
Phillips C., Fahimi A., Das D., Mojabi F. S., Ponnusamy R. and Salehi A. (2016) Noradrenergic system in down syndrome and Alzheimer's disease a target for therapy. Curr. Alzheimer Res. 13, 68–83.
Pinheiro J., Bates D., DebRoy S. and Sarkar D.; R Core Team (2017) nlme: Linear and Nonlinear Mixed Effects Models. Available at https://cran.r-project.org/web/packages/nlme/nlme.pdf.
R Core Team (2016) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
Raedt R., Clinckers R., Mollet L., Vonck K., El Tahry R., Wyckhuys T., De Herdt V. et al. (2011) Increased hippocampal noradrenaline is a biomarker for efficacy of vagus nerve stimulation in a limbic seizure model. J. Neurochem. 117, 461–469.
Ransohoff R. M. (2016) How neuroinflammation contributes to neurodegeneration. Science 353, 777–783.
Roosevelt R. W., Smith D. C., Clough R. W., Jensen R. A. and Browning R. A. (2006) Increased extracellular concentrations of norepinephrine in cortex and hippocampus following vagus nerve stimulation in the rat. Brain Res. 1119, 124–132.
Rosas-Ballina M., Olofsson P. S., Ochani M., Valdés-Ferrer S. I., Levine Y. A., Reardon C., Tusche M. W. et al. (2011) Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334, 98–101.
Sjögren M. J. C., Hellström P. T. O., Jonsson M. A. G., Runnerstam M., Silander H. C.-S. and Ben-Menachem E. (2002) Cognition-enhancing effect of vagus nerve stimulation in patients with Alzheimer's disease: a pilot study. J. Clin. Psychiatry 63, 972–980.
Smiley J. F., Subramanian M. and Mesulam M. M. (1999) Monoaminergic-cholinergic interactions in the primate basal forebrain. Neuroscience 93, 817–829.
Tynan R. J., Weidenhofer J., Hinwood M., Cairns M. J., Day T. A. and Walker F. R. (2012) A comparative examination of the anti-inflammatory effects of SSRI and SNRI antidepressants on LPS stimulated microglia. Brain Behav. Immun. 26, 469–479.
Vida G., Peña G., Kanashiro A., Thompson-Bonilla Mdel R., Palange D., Deitch E. A. and Ulloa L. (2011) β2-Adrenoreceptors of regulatory lymphocytes are essential for vagal neuromodulation of the innate immune system. FASEB J. 25, 4476–4485.
Vonck K., Raedt R., Naulaerts J., De Vogelaere F., Thiery E., Van Roost D., Aldenkamp B., Miatton M. and Boon P. (2014) Vagus nerve stimulation…25 years later! What do we know about the effects on cognition? Neurosci. Biobehav. Rev. 45, 63–71.
Yakunina N., Kim S. S. and Nam E.-C. (2017) Optimization of transcutaneous vagus nerve stimulation using functional MRI. Neuromodulation 20, 290–300.
Zarow C., Lyness S. A., Mortimer J. A. and Chui H. C. (2003) Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch. Neurol. 60, 337–341.
Zhang Q., Lu Y., Bian H., Guo L. and Zhu H. (2017) Activation of the α7 nicotinic receptor promotes lipopolysaccharide-induced conversion of M1 microglia to M2. Am. J. Transl. Res. 9, 971–985.