[en] Alzheimer's disease (AD) is a neurodegenerative condition that leads to neuronal death and memory dysfunction. In the past, specific peroxisome proliferator-activated receptor (PPAR)γ-agonists, such as pioglitazone, have been tested with limited success to improve AD pathology. Here, we investigated the therapeutic efficacy of GFT1803, a novel potent PPAR agonist that activates all the three PPAR isoforms (α/δ/γ) in the APP/PS1 mouse model in comparison to the selective PPARγ-agonist pioglitazone. Both compounds showed similar brain/plasma partitioning ratios, although whole body and brain exposure to GFT1803 was significantly lower as compared to pioglitazone, at doses used in this study. Oral treatment of APP/PS1 mice with GFT1803 decreased microglial activation, amyloid β (Aβ) plaque area, Aβ levels in sodium dodecyl sulfate- and formic acid-soluble fractions in a concentration-dependent manner. With a single exception of Aβ38 and Aβ40 levels, measured by ELISA, these effects were not observed in mice treated with pioglitazone. Both ligands decreased glial fibrillary acidic protein (GFAP) expression to similar extent and did not affect ApoE expression. Finally, GFT1803 increased insulin-degrading enzyme expression. Analysis of spatial memory formation in the Morris water maze demonstrated that both compounds were able to partially revert the phenotype of APP/PS1 mice in comparison to wild-type mice with GFT1803 being most effective. As compared to pioglitazone, GFT1803 (pan-PPAR agonist) produced both quantitatively superior and qualitatively different therapeutic effects with respect to amyloid plaque burden, insoluble Aβ content, and neuroinflammation at significantly lower whole body and brain exposure rates.
Disciplines :
Neurology
Author, co-author :
Kummer, Markus P; Clinical Neuroscience Unit, Department of Neurology, University of Bonn, Sigmund-Freud-Strasse 25, 53127, Bonn, Germany
Schwarzenberger, Rafael; Clinical Neuroscience Unit, Department of Neurology, University of Bonn, Bonn, Germany
Sayah-Jeanne, Sakina; Genfit, Parc Eurasante, Loos, France
Dubernet, Mathieu; Genfit, Parc Eurasante, Loos, France
Walczak, Robert; Genfit, Parc Eurasante, Loos, France
Hum, Dean W; Genfit, Parc Eurasante, Loos, France
Schwartz, Stephanie; Clinical Neuroscience Unit, Department of Neurology, University of Bonn, Bonn, Germany
Axt, Daisy; Clinical Neuroscience Unit, Department of Neurology, University of Bonn, Bonn, Germany
HENEKA, Michael ; Clinical Neuroscience Unit, Department of Neurology, University of Bonn, Bonn, Germany ; German Center for Neurodegenerative Diseases, Bonn, Germany
External co-authors :
yes
Language :
English
Title :
Pan-PPAR modulation effectively protects APP/PS1 mice from amyloid deposition and cognitive deficits.
The E7 antibody developed by M. Klymkowsky was obtained from the Developmental Studies Hybridoma Bank. This study was supported by the Deutsche Forschungsgemeinschaft (KFO177, TP4) to MTH and by grants of the INMiND project of the European Union. MTH is member of the DFG Cluster of Excellence ImmunoSensation.Sakina Sayah-Jeanne, Mathieu Dubernet, Robert Walczak, and Dean W. Hum are employees of GENFIT SA. This study was in part sponsored by GENFIT SA.
Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362:329–344. doi:10.1056/NEJMra0909142
Jack CR Jr, Knopman DS, Jagust WJ et al (2013) Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 12:207–216. doi:10.1016/S1474-4422(12)70291-0
Palop JJ, Mucke L (2010) Amyloid-β induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nat Neurosci 13:812–818. doi:10.1038/nn.2583
Benilova I, Karran E, De Strooper B (2012) The toxic Aβ oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat Neurosci 15:349–357. doi:10.1038/nn.3028
In t’ Veld BA, Ruitenberg A, Hofman A et al (2001) Nonsteroidal antiinflammatory drugs and the risk of Alzheimer’s disease. N Engl J Med 345:1515–1521. doi:10.1056/NEJMoa010178
Heneka MT, Landreth GE, Feinstein DL (2001) Role for peroxisome proliferator-activated receptor-gamma in Alzheimer’s disease. Ann Neurol 49:276
Lehmann JM, Lenhard JM, Oliver BB et al (1997) Peroxisome proliferator-activated receptors alpha and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J Biol Chem 272:3406–3410
Jiang C, Ting AT, Seed B (1998) PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 391:82–86. doi:10.1038/34184
Ricote M, Li AC, Willson TM et al (1998) The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 391:79–82. doi:10.1038/34178
Heneka MT, Landreth GE (2007) PPARs in the brain. Biochim Biophys Acta 1771:1031–1045. doi:10.1016/j.bbalip.2007.04.016
Yan Q, Zhang J, Liu H et al (2003) Anti-inflammatory drug therapy alters beta-amyloid processing and deposition in an animal model of Alzheimer’s disease. J Neurosci Off J Soc Neurosci 23:7504–7509
Heneka MT, Sastre M, Dumitrescu-Ozimek L et al (2005) Acute treatment with the PPARgamma agonist pioglitazone and ibuprofen reduces glial inflammation and Abeta1-42 levels in APPV717I transgenic mice. Brain J Neurol 128:1442–1453. doi:10.1093/brain/awh452
Combs CK, Johnson DE, Karlo JC et al (2000) Inflammatory mechanisms in Alzheimer’s disease: inhibition of beta-amyloid-stimulated proinflammatory responses and neurotoxicity by PPARgamma agonists. J Neurosci Off J Soc Neurosci 20:558–567
Kim EJ, Kwon KJ, Park JY et al (2002) Effects of peroxisome proliferator-activated receptor agonists on LPS-induced neuronal death in mixed cortical neurons: associated with iNOS and COX-2. Brain Res 941:1–10
Luna-Medina R, Cortes-Canteli M, Alonso M et al (2005) Regulation of inflammatory response in neural cells in vitro by thiadiazolidinones derivatives through peroxisome proliferator-activated receptor gamma activation. J Biol Chem 280:21453–21462. doi:10.1074/jbc.M414390200
Sastre M, Dewachter I, Landreth GE et al (2003) Nonsteroidal anti-inflammatory drugs and peroxisome proliferator-activated receptor-gamma agonists modulate immunostimulated processing of amyloid precursor protein through regulation of beta-secretase. J Neurosci Off J Soc Neurosci 23:9796–9804
Sastre M, Dewachter I, Rossner S et al (2006) Nonsteroidal anti-inflammatory drugs repress beta-secretase gene promoter activity by the activation of PPARgamma. Proc Natl Acad Sci U S A 103:443–448. doi:10.1073/pnas.0503839103
De la Monte SM, Tong M, Lester-Coll N et al (2006) Therapeutic rescue of neurodegeneration in experimental type 3 diabetes: relevance to Alzheimer’s disease. J Alzheimers Dis JAD 10:89–109
Hiukka A, Maranghi M, Matikainen N, Taskinen M-R (2010) PPARalpha: an emerging therapeutic target in diabetic microvascular damage. Nat Rev Endocrinol 6:454–463. doi:10.1038/nrendo.2010.89
Yin K-J, Deng Z, Hamblin M et al (2011) Vascular PPARδ protects against stroke-induced brain injury. Arterioscler Thromb Vasc Biol 31:574–581. doi:10.1161/ATVBAHA.110.221267
Polak PE, Kalinin S, Dello Russo C et al (2005) Protective effects of a peroxisome proliferator-activated receptor-beta/delta agonist in experimental autoimmune encephalomyelitis. J Neuroimmunol 168:65–75. doi:10.1016/j.jneuroim.2005.07.006
Kalinin S, Richardson JC, Feinstein DL (2009) A PPARdelta agonist reduces amyloid burden and brain inflammation in a transgenic mouse model of Alzheimer’s disease. Curr Alzheimer Res 6:431–437
Iwashita A, Muramatsu Y, Yamazaki T et al (2007) Neuroprotective efficacy of the peroxisome proliferator-activated receptor delta-selective agonists in vitro and in vivo. J Pharmacol Exp Ther 320:1087–1096. doi:10.1124/jpet.106.115758
Paterniti I, Esposito E, Mazzon E et al (2010) Evidence for the role of peroxisome proliferator-activated receptor-beta/delta in the development of spinal cord injury. J Pharmacol Exp Ther 333:465–477. doi:10.1124/jpet.110.165605
Jankowsky JL, Slunt HH, Ratovitski T et al (2001) Co-expression of multiple transgenes in mouse CNS: a comparison of strategies. Biomol Eng 17:157–165
Jardanhazi-Kurutz D, Kummer MP, Terwel D et al (2010) Induced LC degeneration in APP/PS1 transgenic mice accelerates early cerebral amyloidosis and cognitive deficits. Neurochem Int 57:375–382. doi:10.1016/j.neuint.2010.02.001
Jäger S, Leuchtenberger S, Martin A et al (2009) Alpha-secretase mediated conversion of the Amyloid Precursor Protein derived membrane stub C99 to C83 limits Abeta generation. J Neurochem. doi:10.1111/j.1471-4159.2009.06420.x
Klunk WE, Bacskai BJ, Mathis CA et al (2002) Imaging Abeta plaques in living transgenic mice with multiphoton microscopy and methoxy-X04, a systemically administered Congo red derivative. J Neuropathol Exp Neurol 61:797–805
Wahle T, Thal DR, Sastre M et al (2006) GGA1 is expressed in the human brain and affects the generation of amyloid beta-peptide. J Neurosci Off J Soc Neurosci 26:12838–12846. doi:10.1523/JNEUROSCI.1982-06.2006
Terwel D, Steffensen KR, Verghese PB et al (2011) Critical role of astroglial apolipoprotein E and liver X receptor-α expression for microglial Aβ phagocytosis. J Neurosci Off J Soc Neurosci 31:7049–7059. doi:10.1523/JNEUROSCI.6546-10.2011
Cramer PE, Cirrito JR, Wesson DW et al (2012) ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models. Science 335:1503–1506. doi:10.1126/science.1217697
Diab A, Deng C, Smith JD et al (1950) (2002) Peroxisome proliferator-activated receptor-gamma agonist 15-deoxy-Delta(12,14)-prostaglandin J(2) ameliorates experimental autoimmune encephalomyelitis. J Immunol Baltim Md 168:2508–2515
Dehmer T, Heneka MT, Sastre M et al (2004) Protection by pioglitazone in the MPTP model of Parkinson’s disease correlates with I kappa B alpha induction and block of NF kappa B and iNOS activation. J Neurochem 88:494–501
Hiatt WR, Kaul S, Smith RJ (2013) The cardiovascular safety of diabetes drugs—insights from the rosiglitazone experience. N Engl J Med 369:1285–1287. doi:10.1056/NEJMp1309610
Combs CK, Bates P, Karlo JC, Landreth GE (2001) Regulation of beta-amyloid stimulated proinflammatory responses by peroxisome proliferator-activated receptor alpha. Neurochem Int 39:449–457
Yamanaka M, Ishikawa T, Griep A et al (2012) PPARγ/RXRα-induced and CD36-mediated microglial amyloid-β phagocytosis results in cognitive improvement in amyloid precursor protein/presenilin 1 mice. J Neurosci Off J Soc Neurosci 32:17321–17331. doi:10.1523/JNEUROSCI.1569-12.2012
Mawuenyega KG, Sigurdson W, Ovod V et al (2010) Decreased clearance of CNS β-amyloid in Alzheimer’s disease. Science 330:1774. doi:10.1126/science.1197623
Reed-Geaghan EG, Savage JC, Hise AG, Landreth GE (2009) CD14 and toll-like receptors 2 and 4 are required for fibrillar A{beta}-stimulated microglial activation. J Neurosci Off J Soc Neurosci 29:11982–11992. doi:10.1523/JNEUROSCI.3158-09.2009
Heneka MT, Sastre M, Dumitrescu-Ozimek L et al (2005) Focal glial activation coincides with increased BACE1 activation and precedes amyloid plaque deposition in APP[V717I] transgenic mice. J Neuroinflammation 2:22. doi:10.1186/1742-2094-2-22
Kummer MP, Hermes M, Delekarte A et al (2011) Nitration of tyrosine 10 critically enhances amyloid β aggregation and plaque formation. Neuron 71:833–844. doi:10.1016/j.neuron.2011.07.001
Daynes RA, Jones DC (2002) Emerging roles of PPARs in inflammation and immunity. Nat Rev Immunol 2:748–759. doi:10.1038/nri912
Devchand PR, Keller H, Peters JM et al (1996) The PPARalpha-leukotriene B4 pathway to inflammation control. Nature 384:39–43. doi:10.1038/384039a0
Pesant M, Sueur S, Dutartre P et al (2006) Peroxisome proliferator-activated receptor delta (PPARdelta) activation protects H9c2 cardiomyoblasts from oxidative stress-induced apoptosis. Cardiovasc Res 69:440–449. doi:10.1016/j.cardiores.2005.10.019
D’ Uscio LV, Das P, Santhanam AVR et al (2012) Activation of PPARδ prevents endothelial dysfunction induced by overexpression of amyloid-β precursor protein. Cardiovasc Res 96:504–512. doi:10.1093/cvr/cvs266
Nalbantoglu J, Tirado-Santiago G, Lahsaini A et al (1997) Impaired learning and LTP in mice expressing the carboxy terminus of the Alzheimer amyloid precursor protein. Nature 387:500–505. doi:10.1038/387500a0
Walsh DM, Klyubin I, Fadeeva JV et al (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539. doi:10.1038/416535a