This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
[en] Exosomes are promising therapeutics for tissue repair and regeneration to induce and guide appropriate immune responses in dystrophic pathologies. However, manipulating exosomes to control their biodistribution and targeting them in vivo to achieve adequate therapeutic benefits still poses a major challenge. Here we overcome this limitation by developing an externally controlled delivery system for primed annexin A1 myo-exosomes (Exomyo). Effective nanocarriers are realized by immobilizing the Exomyo onto ferromagnetic nanotubes to achieve controlled delivery and localization of Exomyo to skeletal muscles by systemic injection using an external magnetic field. Quantitative muscle-level analyses revealed that macrophages dominate the uptake of Exomyo from these ferromagnetic nanotubes in vivo to synergistically promote beneficial muscle responses in a murine animal model of Duchenne muscular dystrophy. Our findings provide insights into the development of exosome-based therapies for muscle diseases and, in general, highlight the formulation of effective functional nanocarriers aimed at optimizing exosome biodistribution.
Research center :
Luxembourg Centre for Systems Biomedicine (LCSB): Biomedical Data Science (Glaab Group)
Disciplines :
Biotechnology
Author, co-author :
VILLA, Chiara; UNIMI - Università degli Studi di Milano [IT] > Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation
SECCHI, Valeria; Università degli Studi di Milano Bicocca [IT] > Department of Materials Science
MACCHI, Mirco ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Biomedical Data Science
TRIPODI, Luana; UNIMI - Università degli Studi di Milano [IT] > Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation
TROMBETTA, Elena; Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy > Flow Cytometry Service, Clinical Pathology
ZAMBRONI, Desiree; San Raffaele Scientific Institute – OSR, Milan, Italy > Advanced Light and Electron Microscopy Bioimaging Center ALEMBIC
PADELLI, Francesco; IRCCS Foundation Neurological Institute ‘Carlo Besta’, Milan, Italy > Department of Neuroradiology
MAURI, Michele; University of Milano Bicocca, Milan, Italy > Department of Materials Science
MOLINARO, Monica; UNIMI - Università degli Studi di Milano [IT] > Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation
ODDONE, Rebecca; UNIMI - Università degli Studi di Milano [IT] > Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation
FARINI, Andrea; Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy > Neurology Unit
DE PALMA, Antonella; National Research Council of Italy > Proteomics and Metabolomics Unit > Institute for Biomedical Technologies, ITB-CNR, Segrate, Milan, Italy ; ITB-CNR, Elixir, Milan, Italy > Clinical Proteomics Laboratory, > CNR.Biomics Infrastructure,
SANTARELLI, Federica; UNIMI - Università degli Studi di Milano [IT] > Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation
SIMONUTTI, Roberto; Università degli Studi di Milano Bicocca [IT] > Department of Materials Science
MAURI, PierLuigi; National Research Council of Italy, Institute for Biomedical Technologies, ITB-CNR, Segrate, Milan, Italy > Proteomics and Metabolomics Unit ; ITB-CNR, CNR.Biomics Infrastructure, Elixir, Milan, Italy > Clinical Proteomics Laboratory
PORRETTI, Laura; Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy > Clinical Pathology > Flow Cytometry
CAMPIONE, Marcello; NANOMIB, Nanomedicine Center, University of Milano Bicocca, Milan, Italy ; University of Milano Bicocca, Milano, Italy > Department of Earth and Environmental Sciences
AQUINO, Domenico; IRCCS Foundation Neurological Institute ‘Carlo Besta’, Milan, Italy > Department of Neuroradiology
MONGUZZI, Angelo ✱; University of Milano Bicocca, Milan, Italy > Department of Materials Science ; University of Milano Bicocca, Milan, Italy > NANOMIB, Nanomedicine Center
TORRENTE, Yvan ✱; UNIMI - Università degli Studi di Milano [IT] > Dino Ferrari Center, Department of Pathophysiology and Transplantation > Stem Cell Laboratory ; Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy > Neurology Unit
G. Raposo W. Stoorvogel Extracellular vesicles: exosomes, microvesicles, and friends J. Cell Biol. 2013 200 373 383 1:CAS:528:DC%2BC3sXjtFCnsbk%3D 23420871 3575529 10.1083/jcb.201211138
D.K. Jeppesen et al. Reassessment of exosome composition Cell 2019 177 428 445 e418 1:CAS:528:DC%2BC1MXmvFSmtrk%3D 30951670 6664447 10.1016/j.cell.2019.02.029
M. Monguio-Tortajada C. Galvez-Monton A. Bayes-Genis S. Roura F.E. Borras Extracellular vesicle isolation methods: rising impact of size-exclusion chromatography Cell. Mol. Life Sci. 2019 76 2369 2382 1:CAS:528:DC%2BC1MXms1GrsLg%3D 30891621 11105396 10.1007/s00018-019-03071-y
M. Gartz A. Darlington M.Z. Afzal J.L. Strande Exosomes exert cardioprotection in dystrophin-deficient cardiomyocytes via ERK1/2-p38/MAPK signaling Sci. Rep. 2018 8 30410044 6224575 10.1038/s41598-018-34879-6
M. Yanez-Mo et al. Biological properties of extracellular vesicles and their physiological functions J. Extracell. Vesicles 2015 4 25979354 10.3402/jev.v4.27066
L. Alvarez-Erviti et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes Nat. Biotechnol. 2011 29 341 345 1:CAS:528:DC%2BC3MXjsVKqsLw%3D 21423189 10.1038/nbt.1807
Cano, A. et al. Exosomes-based nanomedicine for neurodegenerative diseases: current insights and future challenges. Pharmaceuticshttps://doi.org/10.3390/pharmaceutics15010298 (2023).
L. Yedigaryan M. Sampaolesi Extracellular vesicles and Duchenne muscular dystrophy pathology: modulators of disease progression Front. Physiol. 2023 14 36891137 9987248 10.3389/fphys.2023.1130063
A.G. Yates et al. In sickness and in health: the functional role of extracellular vesicles in physiology and pathology in vivo: part II: pathology J. Extracell. Vesicles 2022 11 1:CAS:528:DC%2BB38XhtFOqsbfF 35041301 8765328 10.1002/jev2.12190
S. Liu et al. Treatment of infarcted heart tissue via the capture and local delivery of circulating exosomes through antibody-conjugated magnetic nanoparticles Nat. Biomed. Eng. 2020 4 1063 1075 1:CAS:528:DC%2BB3cXitlWksbjM 33159193 10.1038/s41551-020-00637-1
J.W. McGreevy C.H. Hakim M.A. McIntosh D. Duan Animal models of Duchenne muscular dystrophy: from basic mechanisms to gene therapy Dis. Models Mech. 2015 8 195 213 1:CAS:528:DC%2BC2MXlt1Kjur4%3D 10.1242/dmm.018424
G. Annibalini et al. Muscle and systemic molecular responses to a single flywheel based iso-inertial training session in resistance-trained men Front. Physiol. 2019 10 554 31143128 6521220 10.3389/fphys.2019.00554
A.M. Coenen-Stass et al. Selective release of muscle-specific, extracellular microRNAs during myogenic differentiation Hum. Mol. Genet. 2016 25 3960 3974 1:CAS:528:DC%2BC2sXpsFaktbY%3D 27466195 5291232 10.1093/hmg/ddw237
C.S. Fry T.J. Kirby K. Kosmac J.J. McCarthy C.A. Peterson Myogenic progenitor cells control extracellular matrix production by fibroblasts during skeletal muscle hypertrophy Cell Stem Cell 2017 20 56 69 1:CAS:528:DC%2BC28XhvVeqsLrP 27840022 10.1016/j.stem.2016.09.010
C. Thery et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines J. Extracell. Vesicles 2018 7 30637094 6322352 10.1080/20013078.2018.1535750
M.A. Sugimoto J.P. Vago M.M. Teixeira L.P. Sousa Annexin A1 and the resolution of inflammation: modulation of neutrophil recruitment, apoptosis, and clearance J. Immunol. Res. 2016 2016 26885535 4738713 10.1155/2016/8239258
S. McArthur et al. Annexin A1 drives macrophage skewing to accelerate muscle regeneration through AMPK activation J. Clin. Invest. 2020 130 1156 1167 1:CAS:528:DC%2BB3cXnsFGktrs%3D 32015229 7269594 10.1172/JCI124635
G. Leoni et al. Annexin A1-containing extracellular vesicles and polymeric nanoparticles promote epithelial wound repair J. Clin. Invest. 2015 125 1215 1227 25664854 4362251 10.1172/JCI76693
L.H. Lim S. Pervaiz Annexin 1: the new face of an old molecule FASEB J. 2007 21 968 975 1:CAS:528:DC%2BD2sXksVSqt7k%3D 17215481 10.1096/fj.06-7464rev
M. Scannell et al. Annexin-1 and peptide derivatives are released by apoptotic cells and stimulate phagocytosis of apoptotic neutrophils by macrophages J. Immunol. 2007 178 4595 4605 1:CAS:528:DC%2BD2sXjt1WksLw%3D 17372018 10.4049/jimmunol.178.7.4595
G. Fenteany S. Zhu Small-molecule inhibitors of actin dynamics and cell motility Curr. Top. Med. Chem. 2003 3 593 616 1:CAS:528:DC%2BD3sXhtF2lsrw%3D 12570855 10.2174/1568026033452348
M. Orecchioni Y. Ghosheh A.B. Pramod K. Ley Macrophage polarization: different gene signatures in M1(LPS+) vs classically and M2(LPS-) vs alternatively activated macrophages Front. Immunol. 2019 10 1084 1:CAS:528:DC%2BB3cXhs1ahsrg%3D 31178859 6543837 10.3389/fimmu.2019.01084
O.P. Wiklander et al. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting J. Extracell. Vesicles 2015 4 25899407 10.3402/jev.v4.26316
I. Villa et al. Functionalized scintillating nanotubes for simultaneous radio- and photodynamic therapy of cancer ACS Appl. Mater. Interfaces 2021 13 12997 13008 1:CAS:528:DC%2BB3MXmtlSrtr0%3D 33719410 8153399 10.1021/acsami.1c02504
E. Beit-Yannai S. Tabak W.D. Stamer Physical exosome:exosome interactions J. Cell. Mol. Med. 2018 22 2001 2006 29377463 5824382 10.1111/jcmm.13479
Z. Nizamudeen et al. Rapid and accurate analysis of stem cell-derived extracellular vesicles with super resolution microscopy and live imaging Biochim. Biophys. Acta Mol. Cell. Res. 2018 1865 1891 1900 1:CAS:528:DC%2BC1cXhvVOjtrzM 30290236 6203808 10.1016/j.bbamcr.2018.09.008
A. Gorgens et al. Optimisation of imaging flow cytometry for the analysis of single extracellular vesicles by using fluorescence-tagged vesicles as biological reference material J. Extracell. Vesicles 2019 8 30949308 6442110 10.1080/20013078.2019.1587567
Berkmann, J. C. et al. Early pH changes in musculoskeletal tissues upon injury—aerobic catabolic pathway activity linked to inter-individual differences in local pH. Int. J. Mol. Sci.https://doi.org/10.3390/ijms21072513 (2020).
C.H. Johnson J. Ivanisevic G. Siuzdak Metabolomics: beyond biomarkers and towards mechanisms Nat. Rev. Mol. Cell Biol. 2016 17 451 459 1:CAS:528:DC%2BC28XktlCnsrY%3D 26979502 5729912 10.1038/nrm.2016.25
I. Parolini et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells J. Biol. Chem. 2009 284 34211 34222 1:CAS:528:DC%2BD1MXhsVymu7fN 19801663 2797191 10.1074/jbc.M109.041152
U.I. Tromsdorf et al. Size and surface effects on the MRI relaxivity of manganese ferrite nanoparticle contrast agents Nano Lett. 2007 7 2422 2427 1:CAS:528:DC%2BD2sXnvFegt70%3D 17658761 10.1021/nl071099b
C.A. Bellissimo M.C. Garibotti C.G.R. Perry Mitochondrial stress responses in Duchenne muscular dystrophy: metabolic dysfunction or adaptive reprogramming? Am. J. Physiol. Cell Physiol. 2022 323 C718 C730 1:CAS:528:DC%2BB38XislarsLbF 35816642 10.1152/ajpcell.00249.2022
T.M. Iverson P.K. Singh G. Cecchini An evolving view of complex II-noncanonical complexes, megacomplexes, respiration, signaling, and beyond J. Biol. Chem. 2023 299 1:CAS:528:DC%2BB3sXhtFShs7jF 37119852 10238741 10.1016/j.jbc.2023.104761
C. Sanchez-Gonzalez et al. Dysfunctional oxidative phosphorylation shunts branched-chain amino acid catabolism onto lipogenesis in skeletal muscle EMBO J. 2020 39 1:CAS:528:DC%2BB3cXhtVKmsbnF 32488939 7360968 10.15252/embj.2019103812
Careccia, G. et al. Rebalancing expression of HMGB1 redox isoforms to counteract muscular dystrophy. Sci. Transl. Med.https://doi.org/10.1126/scitranslmed.aay8416 (2021).
D. Tang et al. Endogenous HMGB1 regulates autophagy J. Cell Biol. 2010 190 881 892 1:CAS:528:DC%2BC3cXhtFygsr7N 20819940 2935581 10.1083/jcb.200911078
J. Xue et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation Immunity 2014 40 274 288 1:CAS:528:DC%2BC2cXisFWjtLc%3D 24530056 3991396 10.1016/j.immuni.2014.01.006
H. Zhang et al. Exosomes as smart drug delivery vehicles for cancer immunotherapy Front. Immunol. 2022 13 1:CAS:528:DC%2BB3sXivVemtbw%3D 36733388 10.3389/fimmu.2022.1093607
J. Dai et al. Exosomes: key players in cancer and potential therapeutic strategy Signal Transduct. Target. Ther. 2020 5 145 1:CAS:528:DC%2BB3cXhsFKltLzL 32759948 7406508 10.1038/s41392-020-00261-0
H. Luo et al. Exosome-based nanoimmunotherapy targeting TAMs, a promising strategy for glioma Cell Death Dis. 2023 14 235 1:CAS:528:DC%2BB3sXntVSit78%3D 37012233 10070666 10.1038/s41419-023-05753-9
A. Safdar A. Saleem M.A. Tarnopolsky The potential of endurance exercise-derived exosomes to treat metabolic diseases Nat. Rev. Endocrinol. 2016 12 504 517 1:CAS:528:DC%2BC28XovFWitrg%3D 27230949 10.1038/nrendo.2016.76
L. Cheng A.F. Hill Therapeutically harnessing extracellular vesicles Nat. Rev. Drug Discov. 2022 21 379 399 1:CAS:528:DC%2BB38Xlsleju7w%3D 35236964 10.1038/s41573-022-00410-w
G. Leoni A. Nusrat Annexin A1: shifting the balance towards resolution and repair Biol. Chem. 2016 397 971 979 1:CAS:528:DC%2BC28Xhs1SjtrrN 27232634 5361892 10.1515/hsz-2016-0180
J. Dalli et al. Annexin 1 mediates the rapid anti-inflammatory effects of neutrophil-derived microparticles Blood 2008 112 2512 2519 1:CAS:528:DC%2BD1cXhtFCru7zE 18594025 10.1182/blood-2008-02-140533
C.Y. Soo et al. Nanoparticle tracking analysis monitors microvesicle and exosome secretion from immune cells Immunology 2012 136 192 197 1:CAS:528:DC%2BC38XntV2nsbc%3D 22348503 3403268 10.1111/j.1365-2567.2012.03569.x
E. van der Pol et al. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing J. Thromb. Haemost. 2014 12 1182 1192 24818656 10.1111/jth.12602
C. Thery S. Amigorena G. Raposo A. Clayton Isolation and characterization of exosomes from cell culture supernatants and biological fluids Curr. Protoc. Cell Biol. 2006 10.1002/0471143030.cb0322s30 18228490
Bari, E. et al. Pilot production of mesenchymal stem/stromal freeze-dried secretome for cell-free regenerative nanomedicine: a validated GMP-compliant process. Cellshttps://doi.org/10.3390/cells7110190 (2018).
S. Gessulat et al. Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning Nat. Methods 2019 16 509 518 1:CAS:528:DC%2BC1MXhtVCitLzP 31133760 10.1038/s41592-019-0426-7
J.A. Vizcaino et al. 2016 update of the PRIDE database and its related tools Nucleic Acids Res. 2016 44 D447 D456 1:CAS:528:DC%2BC2sXhtV2gu7vF 26527722 10.1093/nar/gkv1145
V. Secchi et al. Energy partitioning in multicomponent nanoscintillators for enhanced localized radiotherapy ACS Appl. Mater. Interfaces 2023 15 24693 24700 1:CAS:528:DC%2BB3sXpvVeitL8%3D 37172016 10214376 10.1021/acsami.3c00853
G. De Luca et al. Self-organizing functional materials via ionic self assembly: porphyrins H- and J-aggregates on synthetic chrysotile nanotubes J. Am. Chem. Soc. 2009 131 6920 6921 19405531 10.1021/ja901273h
S. Sun H. Zeng Size-controlled synthesis of magnetite nanoparticles J. Am. Chem. Soc. 2002 124 8204 8205 1:CAS:528:DC%2BD38Xks1arurY%3D 12105897 10.1021/ja026501x
S. Dey K. Mohanta A.J. Pal Magnetic-field-assisted layer-by-layer electrostatic assembly of ferromagnetic nanoparticles Langmuir 2010 26 9627 9631 1:CAS:528:DC%2BC3cXmtVynsLk%3D 20469859 10.1021/la101132z
M. Mauri et al. Time domain nuclear magnetic resonance: a key complementary technique for the forensic differentiation of foam traces Anal. Methods 2013 5 4336 4344 1:CAS:528:DC%2BC3sXht1Kht73K 10.1039/c3ay40330k
M. Mauri Y. Thomann H. Schneider K. Saalwächter Spin-diffusion NMR at low field for the study of multiphase solids Solid State Nucl. Mag. 2008 34 125 141 1:CAS:528:DC%2BD1cXhtFCjtb3K 10.1016/j.ssnmr.2008.07.001
A. Farini et al. Therapeutic potential of immunoproteasome inhibition in Duchenne muscular dystrophy Mol. Ther. 2016 24 1898 1912 1:CAS:528:DC%2BC28XhsFymtr7J 27506451 5154478 10.1038/mt.2016.162
K.M. Graham et al. Excessive collagen accumulation in dystrophic (mdx) respiratory musculature is independent of enhanced activation of the NF-κB pathway J. Neurol. Sci. 2010 294 43 50 1:CAS:528:DC%2BC3cXnsVamtL0%3D 20471037 2885500 10.1016/j.jns.2010.04.007
G. Pegoli F. Lucini C. Mozzetta C. Lanzuolo Single myofiber isolation and culture from a murine model of Emery–Dreifuss muscular dystrophy in early post-natal development J. Vis. Exp. 2020 10.3791/61516 32716379
T. Metsalu J. Vilo ClustVis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap Nucleic Acids Res. 2015 43 W566 W570 1:CAS:528:DC%2BC2sXhtVymtLjK 25969447 4489295 10.1093/nar/gkv468