Article (Périodiques scientifiques)
A predictive coding model of the N400.
Nour Eddine, Samer; Brothers, Trevor; Wang, Lin et al.
2024In Cognition, 246, p. 105755
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
2023.04.10.536279v1.full.pdf
Preprint Auteur (1.88 MB) Licence Creative Commons - Attribution, Pas d'Utilisation Commerciale, Pas de Modification
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Bayesian inference; Language comprehension; Orthographic; Prediction; Prediction error; Semantic; Cognitive Neuroscience; Linguistics and Language; Developmental and Educational Psychology; Language and Linguistics; Experimental and Cognitive Psychology; predictive coding
Résumé :
[en] The N400 event-related component has been widely used to investigate the neural mechanisms underlying real-time language comprehension. However, despite decades of research, there is still no unifying theory that can explain both its temporal dynamics and functional properties. In this work, we show that predictive coding - a biologically plausible algorithm for approximating Bayesian inference - offers a promising framework for characterizing the N400. Using an implemented predictive coding computational model, we demonstrate how the N400 can be formalized as the lexico-semantic prediction error produced as the brain infers meaning from the linguistic form of incoming words. We show that the magnitude of lexico-semantic prediction error mirrors the functional sensitivity of the N400 to various lexical variables, priming, contextual effects, as well as their higher-order interactions. We further show that the dynamics of the predictive coding algorithm provides a natural explanation for the temporal dynamics of the N400, and a biologically plausible link to neural activity. Together, these findings directly situate the N400 within the broader context of predictive coding research. More generally, they raise the possibility that the brain may use the same computational mechanism for inference across linguistic and non-linguistic domains.
Disciplines :
Neurosciences & comportement
Auteur, co-auteur :
Nour Eddine, Samer;  Department of Psychology and Center for Cognitive Science, Tufts University, United States of America. Electronic address: Samer.Nour_Eddine@tufts.edu
Brothers, Trevor;  Department of Psychology and Center for Cognitive Science, Tufts University, United States of America, Department of Psychology, North Carolina A&T, United States of America
Wang, Lin;  Department of Psychology and Center for Cognitive Science, Tufts University, United States of America, Department of Psychiatry and the Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, United States of America
SPRATLING, Michael  ;  University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > Department of Behavioural and Cognitive Sciences (DBCS) > Cognitive Science and Assessment ; Department of Informatics, King's College London, United Kingdom
Kuperberg, Gina R;  Department of Psychology and Center for Cognitive Science, Tufts University, United States of America, Department of Psychiatry and the Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, United States of America
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
A predictive coding model of the N400.
Date de publication/diffusion :
29 février 2024
Titre du périodique :
Cognition
ISSN :
0010-0277
eISSN :
1873-7838
Maison d'édition :
Elsevier BV, Pays-Bas
Volume/Tome :
246
Pagination :
105755
Peer reviewed :
Peer reviewed vérifié par ORBi
Organisme subsidiant :
National Institute of Child Health and Human Development
Disponible sur ORBilu :
depuis le 05 avril 2024

Statistiques


Nombre de vues
116 (dont 0 Unilu)
Nombre de téléchargements
57 (dont 0 Unilu)

citations Scopus®
 
30
citations Scopus®
sans auto-citations
28
citations OpenAlex
 
44

Bibliographie


Publications similaires



Contacter ORBilu