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Abstract

The N400 event-related component has been widely used to investigate the neural
mechanisms underlying real-time language comprehension. However, despite decades of
research, there is still no unifying theory that can explain both its temporal dynamics and
functional properties. In this work, we show that predictive coding — a biologically plausible
algorithm for approximating Bayesian inference — offers a promising framework for
characterizing the N400. Using an implemented predictive coding computational model, we
demonstrate how the N400 can be formalized as the lexico-semantic prediction error produced as
the brain infers meaning from linguistic form of incoming words. We show that the magnitude of
lexico-semantic prediction error mirrors the functional sensitivity of the N400 to various lexical
variables, priming, contextual effects, as well as their higher-order interactions. We further show
that the dynamics of the predictive coding algorithm provide a natural explanation for the
temporal dynamics of the N400, and a biologically plausible link to neural activity. Together,
these findings directly situate the N400 within the broader context of predictive coding research,
and suggest that the brain may use the same computational mechanism for inference across
linguistic and non-linguistic domains.

Keywords: Language comprehension; prediction; prediction error; orthographic; semantic;
Bayesian inference
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Introduction

A key discovery in the history of psycholinguistics was the presence of a neural signature
of online language processing — the N400 event-related potential (ERP; Kutas & Hillyard,
1980, 1984). While there has been considerable interest in developing a theoretical framework
for understanding the N400, this has proved a formidable challenge. Many theories and
computational models have provided compelling explanations for its functional properties.
However, a unifying, biologically plausible account remains elusive. In this study, we show that
the N400 can be understood as lexico-semantic prediction error, which is computed as a key step
of predictive coding — a computational algorithm that has been proposed to carry out perceptual
inference in the brain (Rao & Ballard, 1999; Mumford, 1992; Friston, 2005; Spratling, 2016b).
Using an implemented predictive coding model of lexico-semantic processing, we show that the
magnitude of lexico-semantic prediction error tracks the temporal dynamics of the N400 as well
as its functional sensitivity to both bottom-up lexical and top-down contextual information.

The N400 ERP is a negative-going waveform that is detected at the scalp surface using
both electroencephalography (EEG) and magnetoencephalography (MEG) between 300-500ms
following the onset of any meaningful stimulus, such as a word or a picture (see Kutas &
Federmeier, 2011, for a review). During language processing, the N400 is highly sensitive to the
relationship between a word and its prior context, regardless of whether this context is a single
word (in semantic and repetition priming paradigms, e.g. Bentin, McCarthy & Wood, 1985;
Rugg, 1985), or a more extended sentence or discourse context (e.g., Kutas & Hillyard, 1984;
DeLong, Urbach & Kutas, 2005; Van Berkum, Hagoort & Brown, 1999). The N400 is also

elicited by words presented out of context where its amplitude is sensitive to several lexical
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variables, including orthographic neighborhood size (e.g. core > kiwi; Holcomb, Grainger &
O’Rourke, 2002; Laszlo & Federmeier, 2011), lexical frequency (e.g. wart < cold; Rugg, 1990;
Van Petten & Kutas, 1990), and concreteness/semantic richness (e.g. lime > know; Kounios &
Holcomb, 1994; Holcomb, Kounios, Anderson & West, 1999; Rabovsky, Sommer & Abdel
Rahman, 2012b).

Despite extensive work on the N400, there is still no general consensus on its functional
significance. In the early 2000s, two competing theories dominated the debate: a lexical access
and an integration account. Briefly, the lexical access account interpreted the N400 as reflecting
the difficulty of accessing or “recognizing” a unique lexical item (e.g. Lau, Phillips, & Poeppel,
2008), while the integration account interpreted it as a “post-lexical” process that links the fully
accessed item with its prior context (Brown & Hagoort, 1993; Hagoort, 2009). However, as
several researchers pointed out, this type of dichotomy between “access” and “integration” has
difficulty in explaining the sensitivity of the N400 to both lexical and contextual factors (Kutas
& Federmeier, 2011; Baggio & Hagoort, 2011; Kuperberg 2016). More generally, this
dichotomy rests on the somewhat questionable assumption that lexical access and semantic
integration are distinct, separable cognitive processes that occur in a fixed sequence (see Laszlo
& Federmeier, 2011; Kuperberg, Brothers & WIlotko, 2020 for discussion).

These shortcomings led to the more general proposal that the N40O reflects the impact of
stimulus-driven activation on the current state of semantic memory (Kutas & Federmeier, 2011).
In this framework, semantic memory is conceptualized as a dynamic multimodal system that is
interactively influenced by both the high-level incremental interpretation of the prior context, as
well as the linguistic form of each incoming word. This theory therefore intuitively explains a

number of top-down and bottom-up influences on the amplitude of the N400. For example, as
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new bottom-up input activates overlapping orthographic neighbors, the co-activation of their
semantic features would result in an enhanced N400 response to both words and non-words (see
Laszlo & Federmeier, 2011), and the amplitude of the N400 would be reduced to the degree that
the input matches semantic features had been pre-activated by the prior context, even if these
inputs were lexically unexpected (e.g. Federmeier & Kutas, 1999). On the other hand, the
theory’s flexibility leaves a number of cognitive mechanisms unspecified. How do particular
stimuli activate the correct set of semantic features in long-term memory? Why does lexical
processing result in the partial activation of orthographic and semantic neighbors, and how does
the brain ultimately suppress these to settle on a “correct” interpretation of the bottom-up input?
What determines the characteristic rise and fall of the N400 response? Most importantly, how are
these processes implemented in a biologically plausible fashion in the brain?

One way of addressing these questions is through the development of explicit
computational models. Several researchers have risen to this challenge, and a number of
connectionist models of the N400 have been described (Laszlo & Plaut, 2012; Laszlo &
Armstrong, 2014; Cheyette & Plaut, 2016; Rabovsky & McRae, 2014; Brouwer, Crocker,
Venhuizen & Hoeks, 2017; Rabovsky, Hansen & McClelland, 2018; Rabovsky, 2020; Fitz &
Chang, 2019), which we comprehensively review elsewhere (Nour Eddine, Brothers &
Kuperberg, 2022). Broadly, these models of the N400 fall into two classes: word-level and
sentence-level.

The word-level models were trained to map a single word-form input (e.g., a letter-
string), clamped at the input layer, on to a pattern of activation that represented the word’s
meaning at the top (output) layer (Laszlo & Plaut, 2012; Laszlo & Armstrong, 2014; Cheyette &

Plaut, 2017; Rabovsky & McRae, 2014). In one set of studies, Laszlo, Plaut, Armstrong and
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Cheyette used a biologically motivated Semantic Activation architecture to simulate the N400 as
the total activity produced within its semantic (output) layer (Laszlo & Plaut, 2012; Laszlo &
Armstrong, 2014; Cheyette & Plaut, 2017). This model was able to simulate the effects of
several lexical variables on the N400 produced by words presented in isolation, including the
effects of orthographic neighborhood size (Laszlo & Plaut, 2012), lexical frequency (Cheyette &
Plaut, 2017), and semantic richness (Cheyette & Plaut, 2017). It was also able to simulate the
attenuation of the N400 to target inputs in both repetition (Laszlo & Armstrong, 2014) and

semantic priming paradigms (Cheyette & Plaut, 2017), see Table 1.
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Table 1 — Phenomena simulated by computational models of the N400. An overview of the range of N400 phenomena that have been modeled
in the literature.
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In another word-level model, Rabovsky and McRae (2014) simulated the N400 as the
difference (cross-entropy error) between the activity produced within the model’s semantic
(output) layer and an ideal “correct” semantic target presented to the model. They showed that
this operationalization of the N40O could account for a similar range of findings as above (see
Table 1).

The sentence-level models were trained to map a sequence of word inputs onto a higher
event-level representation (Brouwer, Crocker, Venhuizen & Hoeks, 2017; Rabovsky, Hansen &
McClelland, 2018), or onto the model’s prediction of a subsequent word (Fitz & Chang, 2019).
These training goals required the model to retain a representation of the full sequence of prior
inputs as well as to implicitly predict upcoming information. This was achieved by including a
recurrent element in the network (cf. EIman & McClelland, 1984; ElIman, 1990). The N400 was
modeled either as “change in state” — the amount of change that the input induced within a
particular hidden layer within the network (Brouwer, Crocker, Venhuizen & Hoeks, 2017;
Rabovsky, Hansen & McClelland, 2018; Rabovsky, 2020), or as the difference between a next-
word prediction that was explicitly generated by the model, and the word that was subsequently
presented, termed “prediction error” (Fitz & Chang, 2019). Together, these models were able to
simulate multiple effects of a prior context on the N400 evoked by incoming words (see Table 1,
and Nour Eddine, Brothers & Kuperberg, 2022 for a detailed review).

The architectures and assumptions of these different computational models of the N400
are quite different from one another. However, it is worth emphasizing that in all except the
Semantic Activation model (Laszlo & Plaut, 2012; Laszlo & Armstrong, 2014; Cheyette & Plaut,
2017), the N400 was operationalized as a difference that was computed by the modeler outside

the model’s architecture. This difference value was conceptualized either as a prediction error
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(Rabovsky & McRae, 2014; Fitz & Chang, 2019, or as a change-in-state (Brouwer et al., 2017;
Rabovsky et al., 2018) that emerged either as a byproduct of other computations (Brouwer et al.,
2017) and/or served as a signal for downstream learning (Rabovsky et al., 2018; Rabovsky &
McRae, 2014; Fitz & Chang, 2019). In no case, however, did it play a direct functional role in
comprehension itself. This is in contrast with predictive coding, which proposes that prediction
error, computed locally at each level of representation, plays an integral role in the optimization
algorithm that the brain uses to approximate inference, i.e., the process of inferring meaning
from an input’s linguistic form®.

Predictive coding was initially proposed to explain extra-classical receptive field effects
in the visual cortex (Rao & Ballard, 1999; see also Mumford, 1992), and was later expanded into
a more general account of perceptual inference in the brain (Friston, 2005; Clark, 2013; see also
Spratling, 2016b). In predictive coding, prediction error is defined as the residual information
observed at a given level of the cortical hierarchy that cannot be explained by top-down
predictions (or “reconstructions’) that are generated by the level above. This error is encoded
within “error units”, and is passed up to the level above where it is used to modify
representations encoded within functionally distinct “state units”. As a result, these higher-level
state units generate more accurate top-down predictions on the next iteration of the algorithm,
which suppress the lower-level prediction error. This process takes place at each level of the
hierarchy such that, over multiple iterations, the magnitude of prediction error — the total
activity produced by the error units — gradually decreases as the state units converge upon the

representation that best explains the bottom-up input.

! As we elaborate further in the Discussion section, in predictive coding, prediction error can also, in principle, be
used for downstream learning (Whittington & Bogacz, 2017; Millidge, Tschantz & Buckley, 2020; Song,
Lukasiewicz, Xu, & Bogacz, 2020).
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The idea that higher levels of a representational hierarchy generate top-down predictions
that facilitate the processing of inputs at lower levels is largely consistent with how prediction is
typically framed in more general psycholinguistic and neurobiological frameworks of language
processing. According to these accounts, during incremental language comprehension, the brain
continually generates top-down predictions, based on a high-level interpretation of the prior
context, which facilitate the processing of incoming words whose semantic features match these
predictions (DeLong, Urbach, & Kutas, 2005; Federmeier, 2007; Kuperberg & Jaeger, 2016,
section 3.5). The amplitude of the N400 can be conceptualized as reflecting the ease of accessing
the semantic features of these incoming words (i.e., the ease of lexico-semantic access or
retrieval), or as the amount of unpredicted lexico-semantic information encoded within the
bottom-up input (see Kuperberg, 2016 for discussion). Indeed, some researchers have explicitly
appealed to the principles of predictive coding to explain the functional role of the N400 (e.g.
Xiang & Kuperberg, 2015; Rabovsky & McRae, 2014; Bornkessel-Schlesewsky & Schlesewsky,
2019; Kuperberg, Brothers, & Wlotko, 2020). To date, however, there have been no attempts to
simulate the N400 (or any other language ERP component) using an implemented computational

model of predictive coding.

In the present work, we built a computational model of lexico-semantic processing that
was based on the same predictive coding principles as those used to simulate low-level neural
phenomena in the visual system (Rao & Ballard, 1999; Spratling, 2012; Spratling, 2013;
Spratling, 2014). We operationalized the N400 as lexico-semantic prediction error — the total
activity produced by error units at the semantic and lexical levels on each iteration of the
algorithm, as the model inferred the meaning of orthographic inputs. We carried out a series of

simulations to determine whether the principles of predictive coding can account for the
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temporal dynamics of the N400, as well as its functional sensitivity to (1) various lexical

variables, (2) priming, (3) contextual effects, and (4) their higher-order interactions.

Methods

Model Architecture

The basic structure of the hierarchical predictive coding model used in all simulations is
shown in Figure 1. It consisted of four layers — three levels of linguistic representation
(orthographic, lexical, semantic) and a fourth “dummy” layer at the top, which was used to
simulate the top-down effects of context.

Consistent with predictive coding principles, each of the three levels of linguistic
representation had two populations of connectionist units — state units, which encode the internal
representations being inferred by the predictive coding algorithm, and error units, which encode
the difference in information (i.e., residual information) between that represented by state units at
this level and top-down predictions (otherwise referred to as “reconstructions’) generated by state
units at the level above. We incorporated two types of error units (Spratling, 2016b): (a) “bottom-
up error units”, which represent the residual information encoded in the state units that was not
encoded in the top-down reconstructions (known as “prediction error”), and (b) “top-down error
units”, which represent the residual information encoded in the top-down reconstructions that was
not encoded in the state units (termed “top-down bias”). As discussed further below, prediction
error and top-down bias each play a different role in the predictive coding algorithm.

The lowest orthographic level included 104 sets of state/error units, each encoding one
of 26 letter identities (A-Z) at one of four possible spatial positions (following McClelland &
Rumelhart, 1981). The middle lexical level included 1,579 sets of state/error units, each

9
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representing a four-letter word in the model’s lexicon (e.g., baby, lime). 512 of these lexical units
corresponded to the 512 critical words that we used for most of our simulations. By design, the
orthographic neighborhood size, frequency and semantic richness (operationalized as described
below) of these critical words were uncorrelated. The third semantic level included 12,929
state/error units, each representing a unique semantic feature (e.g., <small>, <human>; following
Cheyette & Plaut, 2017; Rabovsky & McRae, 2014). Finally, the highest dummy layer of the
hierarchy, which only had state units, collectively represented a probability-like distribution over
the lexicon, allowing the modeler to provide the model with pre-activation to simulate the top-
down effects of context.

The connections within and across layers of the model were prescribed by predictive
coding principles. Within each linguistic level, the state and error units shared one-to-one
connections. Across successive levels, each state unit was connected to error units via many-to-
many feedback/feedforward connections. In other words, across levels, state units communicated

exclusively through error units.

10
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Figure 1 — Predictive coding model architecture. State units at three levels of linguistic representation

(Orthographic, Lexical and Semantic) and at the highest dummy layer are depicted as small circles within

the large ovals. Error units at each of the three levels of linguistic representation are depicted as small

circles within the half arcs. Dotted arrows indicate one-to-one connections between error and state units at

the same level of representation. Solid arrows indicate many-to-many connections between error and state

units across levels of representation. These many-to-many connections were specified using hand-coded

weight matrices: W (feedforward) and V (feedback). Vio/Wo.: Connections between the lexical and

orthographic level; Vs /Wys: Connections between the semantic and lexical level; Vps/Wsp: Connections

between dummy and semantic level. We schematically depict the activity pattern of the model’s state
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units after it has settled on the representation of the item, “ball”. Different shades of yellow are used to
indicate each state unit’s strength of activity. At the Orthographic level, four state units are activated: B in
the first position, A in the second position, and L in the final two positions. At the Lexical level, the unit
corresponding to ball is mostly strongly activated, and its orthographic neighbor gall is partly activated
because it shares three letters with ball. At the Semantic level, the units corresponding to the semantic
features of ball (<bouncy>, etc.) are shown with different levels of activation. At the highest Dummy
layer, the unit corresponding to the representation of “ball” is most strongly activated. Because the model

has settled, activity within error units at all levels is minimal.

The many-to-many connections that link state units at a higher level with error units at a
lower level were hand-coded using two matrices, V and W. The feedback connections were
specified by matrix V, which specified the generative parameters of the model; that is, each
column of the V matrix specified how a given higher-level “latent cause” generated an idealized
noise-free pattern of observations at the lower level. The feedforward connections were specified
by matrix W, which was simply the transpose of matrix V.

The orthographic-lexical matrices connected lower-level orthographic error units with
higher-level lexical state units. These matrices specified the spelling of each word; that is, each
column in the V matrix specified the mapping between a particular lexical item and the correct
position of each letter (e.g., ball — B in position 1, A in position 2, L in position 3, and L in
position 4; see Figure 2). This resulted in each lexical item having a particular orthographic
neighborhood size. For the purpose of our simulations, we defined the orthographic
neighborhood size of each item as the number of lexical units with which it shared 3 letters. For

example, ball and gall are orthographic neighbors because they share A>, L3 and L, see Figure 2.

12
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Figure 2 — Schematic illustration of the feedback connections for two words in the model’s lexicon.
Each circle indicates a representational node, and the blue arrows indicate feedback connections between
layers. Note that, for simplification, this diagram does not distinguish between state and error units. In the
model itself, however, the feedback connections linked higher-level state units with lower-level error
units. To specify the frequency of each lexical item, we modified the connection strengths of its unique
set of feedback connections. This is depicted schematically using arrow thickness. For example, the
arrows are thicker for ball than gall because ball is more frequent. Although each lexical item has its own
unique set of connections, these connections can terminate on shared nodes. For example, the lexical-
orthographic feedback connections for ball and gall both terminate on the same A, Ls, and L4 nodes, and
the semantic-lexical feedback connections for the semantic features, <round>, <game>, <small> and
<bouncy>, all terminate on the same lexical node, ball. In the model itself, this resulted in each lexical
item having a particular “orthographic neighborhood size” and a particular “semantic richness”. For
example, ball and gall are orthographic neighbors, and the semantic richness of the word ball is greater
than gall because the former lexical item is connected to more semantic features (4 vs. 2). For the purpose
of our simulations, we defined each lexical item’s orthographic neighborhood size as the number of
lexical units with which it shared 3 letters. We defined “semantically rich” items as those that were

connected to 18 features, and “non-rich” items as those that were connected to 9 features.

13
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The lexico-semantic matrices connected lower-level lexical error units with higher-level
semantic state units. These matrices specified the meaning of each word; that is, each row in the
V matrix specified the mappings between each lexical unit and its particular set of semantic
features (e.g., ball — <round>, <bouncy>, etc.). To define the semantic richness of each of the
512 critical lexical units used in most of the simulations, we assigned half of these items 18
semantic features (semantically rich items) and the other half 9 semantic features (non-rich items),
based on a median split on their concreteness ratings taken from Brysbaert, Warriner, and
Kuperman (2014). Each of these 512 words shared between 0 and 8 semantic features with at least
one other lexical unit, allowing us to simulate effects of semantic relatedness on the N400. Each
of the remaining 1,067 lexical units was assigned 9 unique semantic features.

In order to set the frequency of lexical items within the model, we modified the strength of
each item’s unique set of feedback connections (see Figure 2). This is because lexical frequency
information is acquired gradually over time, and is thought to bias perceptual inference by
providing a top-down prior (Norris, 2006). Specifically, we increased the value of each word’s
entries in the V matrices with a value that was proportional to its SUBTLEX-US frequency
(Brysbaert & New, 2009)). This score was obtained by shifting and scaling the log frequencies of
all 1,579 words in the model lexicon so that they fell into the [0, 0.1] range. This range was selected
so that the addition of frequency scores did not dramatically alter the mean and maximum value
of the connections in any matrix.

The Predictive Coding Algorithm

Predictive coding is an optimization algorithm for approximating Bayesian inference. In
the current setting, this involves finding the combination of latent causes (i.e., columns of V

matrices) that yields the actual observed pattern (see Spratling, 2017; Spratling, 2016a). Here we
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implemented a modified version of the Predictive Coding/Biased Competition-Divisive Input
Modulation algorithm (Spratling, 2008; Spratling, 2016b). This algorithm shares many
processing principles with the influential predictive coding approach developed by Rao &
Ballard (1999). However, the error units compute the residual information via element-wise
division rather than element-wise subtraction (see Spratling, 2008). This ensures rapid
convergence of the algorithm and guarantees that the activity across all units remains non-
negative, similar to biological neurons.

At each iteration, n, of the predictive coding algorithm, the following processes occur in
sequence at each level of the hierarchy. This is illustrated schematically in Figure 3.

1) The updating of state units

The state units at each level represent the information that is being inferred, regardless of
its predictability. At each level, state units are updated based on (a) the bottom-up input on the
current iteration (n) and (b) a top-down bias (tdB) that was computed on the previous iteration (n-
1). At the orthographic level, the bottom-up input is the orthographic vector provided by the
modeler; at higher levels, the input is the prediction error (PE) that is computed at the level below
on the current iteration of the algorithm. The updated state is computed through element-wise
multiplication: ST, = STh.1 © (tdBn-1 + PNEn).

Note that prediction error and top-down bias each play different roles in this state update.
Prediction error, which is computed at the level below on the same iteration of the algorithm,
allows these states to be updated so that they will generate more accurate top-down reconstructions
of activity at the level below on the subsequent iteration of the algorithm. In contrast, the top-down
bias, which was computed at the same level on the previous iteration of the algorithm, modifies

the state pattern such that it is brought closer to the top-down reconstruction that was generated by
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the level above on the previous iteration, i.e., so that this state pattern serves as a better “target”
for these higher-level reconstructions/predictions on the current iteration of the algorithm.
2) The computation of residual information. Prediction error and Top-down bias

The error units at each level represent the residual difference in information between the
top-down reconstruction that w