blockchain; data privacy; data sharing; EU Data Act; interoperability; smart contracts; Block-chain; Data Sharing; EU data act; European Commission; European union; Key technologies; Process data; Computer Science (all)
Résumé :
[en] The recent proposal of the European Union Data Act adopted by the European Commission has the goal to create fair rules for sharing and using data. An important role in this context is the one played by smart contracts, that are considered as a key technology to enable effective and consensual data sharing. For this purpose, the proposal sets up some requirements for smart contracts, specifically in the context of interoperability with applications that process data. There is a need for scientific work that explains which steps to take so that smart contracts comply with the proposal. This paper aims to begin addressing this gap by considering each one of the requirements and by providing a series of techniques from different areas of computer science to comply with them.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Olivieri, Luca ; Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, Venice, Italy
PASETTO, Luca ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Towards Compliance of Smart Contracts with the European Union Data Act
Date de publication/diffusion :
2023
Nom de la manifestation :
5th Workshop on Artificial Intelligence and Formal Verification, Logic, Automata, and Synthesis
European Commission, Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on harmonised rules on fair access to and use of data (Data Act), COM/2022/68 final, 2022. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2022:68:FIN.
F. Casolari, M. Taddeo, A. Turillazzi, L. Floridi, How to improve smart contracts in the European Union Data Act, Digital Society 2 (2023) 9. doi:10.1007/s44206-023-00038-2.
A. M. Antonopoulos, G. Wood, Mastering Ethereum: Building Smart Contracts and Dapps, O’Reilly, 2018.
P. Tolmach, Y. Li, S.-W. Lin, Y. Liu, Z. Li, A survey of smart contract formal specification and verification, ACM Comput. Surv. 54 (2021).
C. Patrick, Principles of Abstract Interpretation, MIT Press Academic, Cambridge, MA, USA, 2021.
E. M. Clarke, Jr., O. Grumberg, D. A. Peled, Model Checking, MIT Press, Cambridge, MA, USA, 1999.
J. H. Gallier, Logic for computer science: foundations of automatic theorem proving, Courier Dover Publications, Mineola, NY, USA, 2015.
H. G. Rice, Classes of Recursively Enumerable Sets and Their Decision Problems, Transactions of the American Mathemathical Society 74 (1953) 358–366. doi:10.1090/ s0002-9947-1953-0053041-6.
T. Genet., T. Jensen., J. Sauvage., Termination of ethereum’s smart contracts, in: Proceedings of the 17th International Joint Conference on e-Business and Telecommunications - SECRYPT, INSTICC, SciTePress, 2020, pp. 39–51. doi:10.5220/0009564100390051.
E. Albert, J. Correas, P. Gordillo, G. Román-Díez, A. Rubio, Gasol: Gas analysis and optimization for ethereum smart contracts, in: A. Biere, D. Parker (Eds.), Tools and Algorithms for the Construction and Analysis of Systems, Springer International Publishing, Cham, 2020, pp. 118–125.
J. Chen, X. Xia, D. Lo, J. Grundy, Why do smart contracts self-destruct? investigating the selfdestruct function on ethereum, ACM Trans. Softw. Eng. Methodol. 31 (2021). doi:10.1145/3488245.
L. Olivieri, F. Tagliaferro, V. Arceri, M. Ruaro, L. Negrini, A. Cortesi, P. Ferrara, F. Spoto, E. Talin, Ensuring determinism in blockchain software with golisa: an industrial experience report, in: L. Gonnord, L. Titolo (Eds.), SOAP’22: 11th ACM SIGPLAN International Workshop on the State Of the Art in Program Analysis, San Diego, CA, USA, 14 June 2022, ACM, 2022, pp. 23–29. URL: https://doi.org/10.1145/3520313.3534658. doi:10.1145/ 3520313.3534658.
O. Dib, K.-L. Brousmiche, A. Durand, E. Thea, E. B. Hamida, Consortium blockchains: Overview, applications and challenges, Int. J. Adv. Telecommun 11 (2018) 51–64.
A. Preukschat, D. Reed, Self-sovereign identity, Manning Publications, 2021.
M. Ul Hassan, M. H. Rehmani, J. Chen, Anomaly detection in blockchain networks: A comprehensive survey, IEEE Communications Surveys & Tutorials 25 (2023) 289–318. doi:10.1109/COMST.2022.3205643.
L. Negrini, P. Ferrara, V. Arceri, A. Cortesi, LiSA: A Generic Framework for Multilanguage Static Analysis, Springer Nature Singapore, 2023, pp. 19–42. doi:10.1007/ 978-981-19-9601-6_2.
S. Porru, A. Pinna, M. Marchesi, R. Tonelli, Blockchain-oriented software engineering: Challenges and new directions, in: 2017 IEEE/ACM 39th International Conference on Software Engineering Companion (ICSE-C), 2017, pp. 169–171. doi:10.1109/ICSE-C. 2017.142.
L. Yu, M. Zichichi, R. Markovich, A. Najjar, Enhancing trust in trust services: Towards an intelligent human-input-based blockchain oracle (ihibo), in: Proceedings of the 55th Annual Hawaii International Conference on System Sciences, CE - Commission Européenne [BE], January 2022. doi:10.5220/0010945300003116.
P. Ferrara, L. Olivieri, F. Spoto, Static Privacy Analysis by Flow Reconstruction of Tainted data, Int. J. Softw. Eng. Knowl. Eng. 31 (2021) 973–1016. doi:10.1142/ S0218194021500303.
P. Ferrara, F. Spoto, Static analysis for GDPR compliance, in: CEUR Workshop Proceedings - Proceedings of ITASEC’18, volume 2058, 2018, pp. 1–10.
P. Ferrara, L. Olivieri, F. Spoto, Tailoring Taint Analysis to GDPR, in: Privacy Technologies and Policy - 6th Annual Privacy Forum, APF 2018, Barcelona, Spain, June 13-14, 2018, Revised Selected Papers, volume 11079 of Lecture Notes in Computer Science, Springer, 2018, pp. 63–76. doi:10.1007/978-3-030-02547-2\_4.