Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Affective Relevance Inferring Emotional Responses via fNIRS Neuroimaging
Ruotsalo, Tuukka; Spapé, Michiel M.; Mäkelä, Kalle et al.
2023In SIGIR 2023 - Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval
Peer reviewed
 

Documents


Texte intégral
3539618.3591946.pdf
Postprint Éditeur (3.67 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Affective computing; Affective feedback; Emotion detection; Affective state; Emotional response; Evaluation methods; Functional near infrared spectroscopy; Human brain; Ranking methods; Information Systems
Résumé :
[en] Information retrieval (IR) relies on a general notion of relevance, which is used as the principal foundation for ranking and evaluation methods. However, IR does not account for more a nuanced affective experience. Here, we consider the emotional response decoded directly from the human brain as an alternative dimension of relevance. We report an experiment covering seven different scenarios in which we measure and predict how users emotionally respond to visual image contents by using functional near-infrared spectroscopy (fNIRS) neuroimaging on two commonly used affective dimensions: valence (negativity and positivity) and arousal (bored-ness and excitedness). Our results show that affective states can be successfully decoded using fNIRS, and utilized to complement the present notion of relevance in IR studies. For example, we achieved 0.39 Balanced accuracy and 0.61 AUC in 4-class classification of affective states (vs. 0.25 Balanced accuracy and 0.5 AUC of a random classifier). Likewise, we achieved 0.684 Precision@20 when retrieving high-arousal images. Our work opens new avenues for incorporating emotional states in IR evaluation, affective feedback, and information filtering.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Ruotsalo, Tuukka ;  University of Copenhagen, Denmark ; University of Helsinki, Finland
Spapé, Michiel M. ;  University of Helsinki, Finland
Mäkelä, Kalle ;  University of Helsinki, Finland
LEIVA, Luis A.  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Affective Relevance Inferring Emotional Responses via fNIRS Neuroimaging
Date de publication/diffusion :
19 juillet 2023
Nom de la manifestation :
Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval
Organisateur de la manifestation :
ACM
Lieu de la manifestation :
Taipei, Twn
Date de la manifestation :
23-07-2023 => 27-07-2023
Manifestation à portée :
International
Titre de l'ouvrage principal :
SIGIR 2023 - Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval
Maison d'édition :
Association for Computing Machinery, Inc
ISBN/EAN :
978-1-4503-9408-6
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Projet européen :
HE - 101071147 - SYMBIOTIK - Context-aware adaptive visualizations for critical decision making
Projet FnR :
FNR15722813 - Brainsourcing For Affective Attention Estimation, 2021 (01/02/2022-31/01/2025) - Luis Leiva
Organisme subsidiant :
Union Européenne
Subventionnement (détails) :
This work is supported by the Academy of Finland (grants 352915, 350323, 336085, 322653), the Horizon 2020 FET program of the European Union (BANANA, grant CHIST-ERA-20-BCI-001), and the EIC Pathfinder program (SYMBIOTIK, grant 101071147).
Disponible sur ORBilu :
depuis le 20 mars 2024

Statistiques


Nombre de vues
49 (dont 4 Unilu)
Nombre de téléchargements
34 (dont 0 Unilu)

citations Scopus®
 
7
citations Scopus®
sans auto-citations
4
OpenCitations
 
1
citations OpenAlex
 
7
citations WoS
 
4

Bibliographie


Publications similaires



Contacter ORBilu