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Figure 1: Affective relevance accounts for subjective measurement of emotional responses. Here, a user is experiencing an
image of skiing, which evokes a positive exciting emotion, or a high-arousal high-valence response. This can be measured via
fNIRS neuroimaging, then predicted and mapped to the valence/arousal affective space. Images that are similar in the affective
space, such as extreme sports and the roller coaster ride in this example, can be retrieved based on their affective similarity
despite the fact that they have different visual and topical appearance.

ABSTRACT
Information retrieval (IR) relies on a general notion of relevance,
which is used as the principal foundation for ranking and evaluation
methods. However, IR does not account for more a nuanced affec-
tive experience. Here, we consider the emotional response decoded
directly from the human brain as an alternative dimension of rele-
vance. We report an experiment covering seven different scenarios
in which we measure and predict how users emotionally respond
to visual image contents by using functional near-infrared spec-
troscopy (fNIRS) neuroimaging on two commonly used affective
dimensions: valence (negativity and positivity) and arousal (bored-
ness and excitedness). Our results show that affective states can be
successfully decoded using fNIRS, and utilized to complement the
present notion of relevance in IR studies. For example, we achieved
0.39 Balanced accuracy and 0.61 AUC in 4-class classification of
affective states (vs. 0.25 Balanced accuracy and 0.5 AUC of a ran-
dom classifier). Likewise, we achieved 0.684 Precision@20 when
retrieving high-arousal images. Our work opens new avenues for
incorporating emotional states in IR evaluation, affective feedback,
and information filtering.
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1 INTRODUCTION
The present information retrieval (IR) paradigm relies on matching
information with representations reflecting the user’s perception of
relevance, typically estimated from textual or visual features [47],
click-through data [29], or other content-based and behavioral
data [1, 10, 32, 48]. However, previous approaches do not account
for what we call affective relevance. That is, the affective states
of users when they experience content. For example, consider a
user who receives content from a search engine, media feed, or
recommender system. After examining the content, the user might
feel positive, negative, excited, or bored about the content. However,
the present signals that are used for predicting whether the content
is relevant for a user would rely on dwell time or click-through rate,
which are not predictive for such affective experiences of users.
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The lack of affective features in IR is often referred to as the
‘affective gap’ [52]. It challenges models that rely only on content-
based or behavioral features, as opposed to predictions on how
users emotionally experience content. While researchers have pro-
posed feature engineering methods that would account for affective
content [34, 49–51], as well as deep learning to learn efficient rep-
resentations [4, 13, 25, 41], the affective gap has been turned out to
be challenging to address.

This observation has fundamental implications for user modeling
and information retrieval: we build ranking models, user models,
and user profiles by utilizing user signals, but our understanding
of whether and how they reflect the users’ emotional experiences
toward content remain elusive. As a result, the models may predict
user interest on information that users click or spend time on,
while users may still experience the information negatively or find
it appearing outrageous or even false.

Here, we propose a novelmethodology using brain signals recorded
with fNIRS to predict arousal (interesting or boring) and valence
(positivity or negativity) of information [5, 42]. Arousal indicates a
form of excitability and valence reflects the degree an emotion has
a pleasant or unpleasant quality [23].

Our work complements previous studies [7, 8, 24] that focused
on emotion decoding. For example, previous research has revealed
associations between emotional experiences or affective states of
users and behavioral and physiological correlates [3, 9, 30, 35–39,
43] and utilized physiological data for various interactive tasks [15,
18, 20, 21, 28, 31]. Nevertheless, the practical utilization of affective
states, as mesured from neural activity related to how content
is emotionally or affectively experienced, has not been previously
utilized in IR methodologies.

The use of fNIRS mitigates reliance on any explicit user inter-
action as a probe for affect and can directly measure the affective
processing as it occurs in the brain. Therefore, our methodology
only requires users to perceive stimuli information, and their sub-
jective mental processes can be continuously recorded. fNIRS re-
lies on the measurement of blood oxygenation using the dissocia-
ble levels of light-absorption for oxygenated and deoxygenated
hemoglobin [6, 11]. Thus, by measuring absorption at different
wavelengths of light, fNIRS may quantify cortical activity. While
fNIRS has previously been used to quantify mainly motor activ-
ity [26] and cognitive load [45], fNIRS has recently shown success
in measuring emotion-related activity in frontal areas as well [8, 27].
Other apporaches such as electroencephalography (EEG) and pe-
ripheral wearable sensors have been extensively studied, but their
use in realistic IR applications is still limited [16, 17].

We report initial results using data collected from participants
viewing images according to two predictive tasks: affect predic-
tion and affective ranking. For the former, we show that machine
learning models can predict the affective class with a reasonably
high accuracy in four-class and several two-class setups. For the
latter, we show that rankers utilizing the predictions for affective
similarity lead to a reasonably high precision rankings when re-
trieving affectively similar images. This result holds particularly
for high-arousal images, that can be understood as high-attention
grasping content. In summary, our contributions can be summa-
rized as follows:

(1) We present a novel affective relevance estimation methodology
from brain signals using fNIRS brain imaging.

(2) We show that affective states can be predicted from fNIRS in a
single-trial scenario.

(3) We show that the predicted affective states can be succesfully
used in ranking information according to their affective rele-
vance.

2 NEUROIMAGING DATA
2.1 Participants, stimuli, and procedure
Data were recorded from thirty-one volunteers (18 female, 12 male,
1 non-binary) aged M=31.2 years (SD=7.4). Participants were fully
informed about the nature of the experiment, and their rights as
participants, including the right to withdraw at any time without
fear of negative consequences. They signed informed consent prior
to the experiment’s commencement and were compensated with
a voucher to the local cinema. The study was approved by Ethical
Review Board of the University of Helsinki.

A sample of 120 images from the international affective pictures
system (IAPS) [33] were used as stimuli. The images represent the
entire range of emotional reactions associated with valence and
arousal scores. Each participant was presented a random sample of
40 images from the range of high/low valence and high/low arousal.
The experiment took about 45 minutes to complete, excluding par-
ticipant preparation and device setup.

Images were displayed usinng the E-Prime 3 (Psychology Soft-
ware Tools, Inc, Sharpsburg, PA) software. Synchronization was
conducted via the DCOM interface and fNIRS was recorded us-
ing the OxySoft (Artinis Medical Systems, Elst, The Netherlands)
software. Raw optical density (OD) data of fNIRS were recorded
using the Artinis Brite-24 device in a configuration with 10 diodes
transmitting light at two wavelengths (760 and 850 nm) and 8 pho-
todiodes. The diodes were positioned on an elastic cap and placed
such that the distance between receivers and optodes was ≈30mm.
Each receiver obtained light from three different transmitters, re-
sulting in OD signals from 12 sources, which weredigitized at 50Hz.

2.2 Data preprocessing
Raw OD data were exported from OxySoft and processed using
MNE.1 To determine artefactual channels, the scalp coupling index
(SCI) [40] was calculated for each channel and channels with poor
contact (SCI < 0.8) were replaced by interpolating from neighbor-
ing channels. Artefacts in the continuous signal were corrected
using temporal derivative distribution repair [22]. The OD data
were then converted to hemoglobin concentrations using the modi-
fied Beer-Lambert law [19] to derive oxy-hemoglobin (HbO) and
deoxy-hemoglobin (HbR) levels. A 0.1Hz low pass filter was ap-
plied to remove physiological noise, while a 0.01Hz high pass filter
was applied to remove signals that were unrelated to evoked ac-
tivity. Then, the continuous data were time-locked to the onset of
experimental stimuli and segmented into epochs of 17 s, including
5 s of pre-stimulus baseline activity, which was used to normalize
each epoch. The 12-second post-stimulus period of each epoch was

1https://mne.tools/stable/auto_tutorials/preprocessing/70_fnirs_processing.html
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divided into three 4-second windows, and the mean of each win-
dow was extracted for each channel to be used as input features
in the prediction experiments. Finally, features from HbR channels
were filtered out since HbO and HbR channel pairs are strongly
dependent [14].

3 AFFECT PREDICTION
The goal of our affective prediction experiments was to use the fea-
tures extracted from the fNIRS data as input to classify the presented
stimuli under seven different scenarios, starting with four-class clas-
sification into high/low arousal and high/low valence. Predictions
were also conducted for various two-class setups considering dif-
ferent data splits, as in many practical scenarios a downstream task
would benefit from identification of valence (whether the infor-
mation is positive or negative), arousal (whether the information
draws attention or not), or some combination, such as detecting e.g.
valence of high-arousal content (positivity or negativity of content
that draws attention).

3.1 Experimental setup
Individual models were trained and validated for each participant
with stratified 10-fold cross-validation. All features were normal-
ized to zero mean and unit variance within each training set split.
Two standard classifiers were used: Logistic Regression (LReg) and
Shrinkage Linear Discriminant Analysis (SLDA). Hyperparameters
were optimized using Optuna [2]. We report Balanced Accuracy
and AUC ROC score as evaluation metrics.

3.2 Classification results
As reported in Table 1, Balanced Accuracy and AUC ROC values
show classification performance varying from the worst-case sce-
nario of high/low arousal classification of all images (Acc=0.553 and
AUC=0.576with LReg) to the best-case scenario of high/low valence
classification of high-arousal images (Acc=0.654 and AUC=0.686
with SLDA). All results are statistically significant (𝑝 < .05) over a
random classifier using permutation testing. The results suggest
that classification of all images into either low/high arousal or
low/high valence is a challenging task, whereas classification of
different data splits (e.g. high-arousal images only) show higher
classification performance.

4 AFFECT SIMILARITY AND RANKING
We now focus on retrieving similar images in terms of their affective
content, for the same set of scenarios considered before. The data
from the participants who achieved a classification accuracy below
50% in our previous experiments were excluded, motivated by the
“BCI illiteracy” phenomenon, which states that brain-computer
interfacing does not work for a non-negligible portion of users,
estimated to be around 15–30% of the population [46]. This resulted
in valid data for 29 participants on average.

4.1 Experimental setup
We focus on the query-by-example setting: Each image at a time is
used as an input query 𝑥 to rank the rest of the images. An image
is considered relevant if it belongs to the same class as the query
image, and vice versa for non-relevant images.

Table 1: fNIRS classification results using Logistic Regression
(LReg) and Shrinkage Linear Discriminant Analysis (SLDA).
Mean ± Std. Err.

Model No. Classes Balanced Accuracy AUC ROC
high/low arousal and high/low valence classification of all images
LReg 4 0.372 ± 0.014 0.607 ± 0.011
SLDA 4 0.392 ± 0.015 0.610 ± 0.012

high/low valence classification of all images
LReg 2 0.582 ± 0.016 0.598 ± 0.022
SLDA 2 0.582 ± 0.014 0.596 ± 0.021

high/low arousal classification of all images
LReg 2 0.553 ± 0.015 0.576 ± 0.017
SLDA 2 0.555 ± 0.016 0.573 ± 0.017

high/low arousal classification of low-valence images
LReg 2 0.627 ± 0.023 0.628 ± 0.029
SLDA 2 0.625 ± 0.022 0.615 ± 0.027

high/low arousal classification of high-valence images
LReg 2 0.569 ± 0.025 0.579 ± 0.033
SLDA 2 0.575 ± 0.026 0.584 ± 0.034

high/low valence classification of low-arousal images
LReg 2 0.563 ± 0.017 0.579 ± 0.022
SLDA 2 0.574 ± 0.020 0.569 ± 0.022

high/low valence classification of high-arousal images
LReg 2 0.646 ± 0.019 0.692 ± 0.021
SLDA 2 0.654 ± 0.020 0.686 ± 0.022

We consider two distinct evaluation aspects: retrieval perfor-
mance and ranking similarity. Retrieval performance, informed
by Precision at different rank positions 𝐾 ∈ {1, 5, 10, 20}, indi-
cates whether the retrieved images evoke similar emotions as to a
given query image. Ranking similarity, as informed by Rank-biased
Overlap (RBO) at different rank positions 𝐾 , indicates whether the
provided rankings agree with the ground-truth IAPS rankings.

The ground-truth rankings are computed in a 2-dimensional
vector space (arousal and valence scores) using arousal and valence
scores from the original IAPS database [33] and Euclidean distance
as dissimilarity metric. The fNIRS rankings are computed based
on the softmax vectors provided by the classifier we trained in our
previous experiments. It estimates arousal and valence scores for
each image assessed by each user by deviating from the centroid
that represents the predicted class. Then, the final ranking will
comprise the closest images to these predicted arousal and valence
values according to the Euclidean distance to the query image 𝑥 .
Finally, we also report ranking results with a random classifier, to
provide an empirical lower bound for our experiments.

4.2 Ranking results
Table 2 summarizes the retrieval performance results. We can see
that fNIRS outperforms the random baselines by a large margin,
evidencing thus that human affective processing can be successfully
incorporated in retrieval models. Differences between any of the
fNIRS models and the random model are statistically significant
(𝑝 < .05) in all scenarios. Differences between the two classifiers for
fNIRS (LReg and SLDA) are not statistically significant. All signifi-
cance comparisons are done with the Chi-square test of proportions,
Bonferroni-Holm corrected for multiple comparisons.
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Table 2: Precision@K retrieval results: Mean ± Std. Err.

Model Prec@1 Prec@5 Prec@10 Prec@20
high/low arousal and high/low valence retrieval of all images

fNIRS LReg 0.450 ± 0.08 0.455 ± 0.08 0.455 ± 0.08 0.459 ± 0.08
fNIRS SLDA 0.525 ± 0.06 0.522 ± 0.06 0.520 ± 0.06 0.518 ± 0.06
Random 0.214 ± 0.05 0.229 ± 0.02 0.250 ± 0.01 0.247 ± 0.01

high/low valence retrieval of all images
fNIRS LReg 0.450 ± 0.08 0.455 ± 0.08 0.455 ± 0.08 0.459 ± 0.08
fNIRS SLDA 0.525 ± 0.06 0.522 ± 0.06 0.520 ± 0.06 0.518 ± 0.06
Random 0.214 ± 0.05 0.229 ± 0.02 0.250 ± 0.01 0.247 ± 0.01

high/low arousal retrieval of all images
fNIRS LReg 0.569 ± 0.02 0.568 ± 0.02 0.562 ± 0.02 0.561 ± 0.02
fNIRS SLDA 0.593 ± 0.02 0.592 ± 0.02 0.592 ± 0.02 0.592 ± 0.02
Random 0.458 ± 0.05 0.482 ± 0.02 0.488 ± 0.02 0.488 ± 0.01

high/low arousal retrieval of low-valence images
fNIRS LReg 0.588 ± 0.02 0.593 ± 0.02 0.594 ± 0.02 0.599 ± 0.02
fNIRS SLDA 0.649 ± 0.02 0.647 ± 0.02 0.648 ± 0.02 0.650 ± 0.02
Random 0.500 ± 0.07 0.470 ± 0.03 0.488 ± 0.02 0.509 ± 0.01

high/low arousal retrieval of high-valence images
fNIRS LReg 0.631 ± 0.02 0.628 ± 0.02 0.629 ± 0.02 0.628 ± 0.02
fNIRS SLDA 0.661 ± 0.02 0.659 ± 0.02 0.656 ± 0.02 0.655 ± 0.02
Random 0.417 ± 0.06 0.453 ± 0.03 0.455 ± 0.02 0.464 ± 0.01

high/low valence retrieval of low-arousal images
fNIRS LReg 0.624 ± 0.02 0.623 ± 0.02 0.621 ± 0.02 0.616 ± 0.02
fNIRS SLDA 0.617 ± 0.02 0.619 ± 0.02 0.620 ± 0.02 0.621 ± 0.02
Random 0.467 ± 0.06 0.490 ± 0.03 0.487 ± 0.02 0.473 ± 0.01

high/low valence retrieval of high-arousal images
fNIRS LReg 0.673 ± 0.02 0.671 ± 0.02 0.670 ± 0.02 0.671 ± 0.02
fNIRS SLDA 0.685 ± 0.02 0.684 ± 0.02 0.684 ± 0.02 0.684 ± 0.02
Random 0.433 ± 0.06 0.477 ± 0.03 0.480 ± 0.02 0.481 ± 0.01

Similarly, Table 3 summarizes the ranking similarity results. We
can see that fNIRS rankings overlap more with ground-truth IAPS
rankings as compared with the rankings provided by a random
model. Both fNIRS models increased their RBO scores with increas-
ing values of rank position 𝐾 , as expected. Meanwhile, the random
model increased way more slowly with increasing values of 𝐾 . As
per the Chi-square test of proportions, differences between any of
the fNIRS models and the random model are statistically signifi-
cant in all scenarios (𝑝 < .05) except RBO@1, where only the first
scenario (high/low arousal and high/low valence, all images) was
statistically significant, and RBO@5 for the second and third scenar-
ios (high/low valence and arousal, all images). Differences between
both fNIRS models are not statistically significant.All significance
comparisons are Bonferroni-Holm corrected.

5 DISCUSSION AND CONCLUSIONS
We have reported the first study where affective states were in-
corporated to the notion of relevance and directly decoded from
human brain activity. We also incorporated affective information
to ranking models for image search. The classification results from
single-trial decoding experiments show that affective states can be
decoded with reasonably high accuracy using fNIRS. The results
suggest that, while affective classification is overall a challenging
task, classification of different data splits, such as only high-arousal
images (that are generally relevant and attention grasping) and
low-arousal images (that is known to evoke diminutive emotional

Table 3: Rank-biased overlap results: Mean ± Std. Err.

Model RBO@1 RBO@5 RBO@10 RBO@20
Predict high/low arousal and high/low valence, all images
fNIRS LReg 0.00 ± 0.00 0.07 ± 0.03 0.14 ± 0.04 0.22 ± 0.05
fNIRS SLDA 0.04 ± 0.02 0.08 ± 0.02 0.13 ± 0.03 0.23 ± 0.03
Random 0.00 ± 0.00 0.03 ± 0.01 0.04 ± 0.01 0.09 ± 0.01

Predict high/low valence for all images
fNIRS LReg 0.00 ± 0.00 0.02 ± 0.00 0.05 ± 0.00 0.11 ± 0.01
fNIRS SLDA 0.00 ± 0.00 0.02 ± 0.00 0.05 ± 0.00 0.11 ± 0.01
Random 0.00 ± 0.00 0.02 ± 0.01 0.05 ± 0.01 0.09 ± 0.01

Predict high/low arousal for all images
fNIRS LReg 0.00 ± 0.00 0.02 ± 0.00 0.04 ± 0.00 0.09 ± 0.01
fNIRS SLDA 0.01 ± 0.00 0.02 ± 0.00 0.04 ± 0.00 0.08 ± 0.01
Random 0.00 ± 0.00 0.02 ± 0.01 0.04 ± 0.01 0.09 ± 0.01

Predict high/low arousal for low-valence images
fNIRS LReg 0.03 ± 0.01 0.06 ± 0.01 0.12 ± 0.01 0.24 ± 0.01
fNIRS SLDA 0.02 ± 0.01 0.07 ± 0.01 0.13 ± 0.01 0.27 ± 0.01
Random 0.02 ± 0.02 0.05 ± 0.01 0.09 ± 0.01 0.18 ± 0.01

Predict high/low arousal for high-valence images
fNIRS LReg 0.02 ± 0.01 0.07 ± 0.01 0.13 ± 0.01 0.27 ± 0.01
fNIRS SLDA 0.02 ± 0.01 0.06 ± 0.01 0.12 ± 0.01 0.26 ± 0.01
Random 0.02 ± 0.02 0.05 ± 0.01 0.09 ± 0.01 0.17 ± 0.01

Predict high/low valence for low-arousal images
fNIRS LReg 0.02 ± 0.01 0.07 ± 0.01 0.13 ± 0.01 0.24 ± 0.01
fNIRS SLDA 0.04 ± 0.01 0.07 ± 0.01 0.12 ± 0.01 0.23 ± 0.01
Random 0.00 ± 0.00 0.02 ± 0.01 0.06 ± 0.01 0.15 ± 0.01

Predict high/low valence for high-arousal images
fNIRS LReg 0.03 ± 0.01 0.09 ± 0.01 0.15 ± 0.01 0.28 ± 0.01
fNIRS SLDA 0.04 ± 0.01 0.10 ± 0.01 0.16 ± 0.01 0.28 ± 0.01
Random 0.03 ± 0.02 0.05 ± 0.01 0.08 ± 0.01 0.17 ± 0.01

responses), show higher classification performance. This is in-line
with previous findings [12] but our results show higher accuracy
than previously reported studies [44]. This finding is particularly
encouraging for IR research, as search engines are already good at
detecting topical matches, but less good at predicting which results
are likely to be associated with positive or negative experiences.

Our results rely on visual stimuli from a standard dataset that is
accepted and widely used by the scientific community for studying
emotional reactions of human subjects [33]. Despite this, there is
a possibility of bias related to the stimuli that cannot be fully ig-
nored, such that ground-truth values were collected from a different
participant population and that images were produced 15 years ago.

While our experiments are limited to a single data collection, our
results demonstrate that additional signals of human cognitive and
affective processing can be decoded via brain-computer interfacing,
and they allow incorporating a new affective dimension of relevance
in IR models. All in all, our work shows evidence that emotions and
affective dimensions of how information is experienced by users
may play a crucial role in future IR research and practice.
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