Article (Périodiques scientifiques)
The applicability of a hybrid framework for automated phishing detection
van Geest, R.J.; Cascavilla, G.; HULSTIJN, Joris et al.
2024In Computers and Security, 139, p. 103736
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
1-s2.0-S0167404824000373-main.pdf
Postprint Auteur (935.57 kB) Licence Creative Commons - Transfert dans le Domaine Public
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Cybersecurity; Cyberthreat Intelligence; Fraud detection; Machine learning; Phishing; Phishing detection; Privacy and security; Security management; Cyber security; Cyberthreat intelligence; Cyberthreats; Hybrid framework; Machine-learning; Phishing detections; Computer Science (all); Law; General Computer Science
Résumé :
[en] Phishing attacks are a critical and escalating cybersecurity threat in the modern digital landscape. As cybercriminals continually adapt their techniques, automated phishing detection systems have become essential for safeguarding Internet users. However, many current systems rely on single-analysis models, making them vulnerable to sophisticated bypass attempts by hackers. This research delves into the potential of hybrid approaches, which combine multiple models to enhance both the robustness and effectiveness of phishing detection. It highlights existing hybrid models' limitations that focus primarily on effectiveness while ignoring broader applicability. To address these gaps, we introduce a novel framework explicitly designed for applicability in the real world, which poses the foundation for practical and robust phishing detection architectures. We develop a proof of concept to evaluate its effectiveness, robustness, and detection speed. Additionally, we introduce an innovative methodology for simulating bypass attacks on single-analysis base models. Our experiments demonstrate that the proposed hybrid framework outperforms individual models, displaying higher effectiveness, robustness against bypassing attempts, and real-time detection capabilities. Our proof of concept achieves an accuracy of 97.44% thereby outperforming the current state-of-the-art approach while requiring less computational time. The results provide insights into the multifaceted factors of hybrid models, extending beyond mere effectiveness, and emphasize the importance of holistic applicability in hybrid approaches to address the critical need for robust defenses against phishing attacks.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
van Geest, R.J.;  Eindhoven University of Technology, Jheronimus Academy of Data Science, Netherlands
Cascavilla, G. ;  Eindhoven University of Technology, Jheronimus Academy of Data Science, Netherlands
HULSTIJN, Joris  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
Zannone, N. ;  Eindhoven University of Technology, Netherlands
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
The applicability of a hybrid framework for automated phishing detection
Date de publication/diffusion :
avril 2024
Titre du périodique :
Computers and Security
ISSN :
0167-4048
Maison d'édition :
Elsevier Ltd
Volume/Tome :
139
Pagination :
103736
Peer reviewed :
Peer reviewed vérifié par ORBi
Disponible sur ORBilu :
depuis le 06 mars 2024

Statistiques


Nombre de vues
126 (dont 3 Unilu)
Nombre de téléchargements
150 (dont 1 Unilu)

citations Scopus®
 
23
citations Scopus®
sans auto-citations
23
citations OpenAlex
 
22

Bibliographie


Publications similaires



Contacter ORBilu