
Computers & Security 139 (2024) 103736

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

The applicability of a hybrid framework for automated phishing detection

R.J. van Geest a, G. Cascavilla a,∗, J. Hulstijn b, N. Zannone c

a Eindhoven University of Technology, Jheronimus Academy of Data Science, the Netherlands
b University of Luxembourg, Luxembourg
c Eindhoven University of Technology, the Netherlands

A R T I C L E I N F O A B S T R A C T

Keywords:

Phishing

Phishing detection

Machine learning

Privacy and security

Fraud detection

Security management

Cybersecurity

Cyberthreat Intelligence

Phishing attacks are a critical and escalating cybersecurity threat in the modern digital landscape. As
cybercriminals continually adapt their techniques, automated phishing detection systems have become essential
for safeguarding Internet users. However, many current systems rely on single-analysis models, making them
vulnerable to sophisticated bypass attempts by hackers. This research delves into the potential of hybrid
approaches, which combine multiple models to enhance both the robustness and effectiveness of phishing
detection. It highlights existing hybrid models’ limitations that focus primarily on effectiveness while ignoring
broader applicability. To address these gaps, we introduce a novel framework explicitly designed for applicability
in the real world, which poses the foundation for practical and robust phishing detection architectures.
We develop a proof of concept to evaluate its effectiveness, robustness, and detection speed. Additionally,
we introduce an innovative methodology for simulating bypass attacks on single-analysis base models. Our
experiments demonstrate that the proposed hybrid framework outperforms individual models, displaying higher
effectiveness, robustness against bypassing attempts, and real-time detection capabilities. Our proof of concept
achieves an accuracy of 97.44% thereby outperforming the current state-of-the-art approach while requiring less
computational time. The results provide insights into the multifaceted factors of hybrid models, extending beyond
mere effectiveness, and emphasize the importance of holistic applicability in hybrid approaches to address the
critical need for robust defenses against phishing attacks.
1. Introduction

Cybercrime is a major problem that keeps growing. Cybersecurity
Ventures (Morgan 2020) expects the global cybercrime costs to be over
$10 trillion by 2025, which would be the history largest transfer in eco-

nomic wealth. Among the different types of cybercrimes, phishing is
the most common cyber attack according to Abbate (2022). A phish-

ing attack aims to inject malware or obtain sensitive data, such as
login credentials, from Internet users. These objectives make phishing a
valuable weapon for ransomware attacks and cyber espionage posing a
significant threat to all Internet users. On the other hand, many Inter-

net users do not have the experience or skills to distinguish a phishing
website from a legitimate one (Peng et al., 2019). This inability keeps
increasing since attackers employ increasingly sophisticated techniques
to avoid detection (Al Halaseh and Alqatawna 2016; Allodi et al. 2020).
Therefore, we need novel solutions to protect Internet users against the
dangers of phishing.

* Corresponding author.

E-mail addresses: jobvangeest@gmail.com (R.J. van Geest), g.cascavilla@tue.nl (G. Cascavilla), joris.hulstijn@uni.lu (J. Hulstijn), n.zannone@tue.nl

Existing research has suggested various solutions for the automated
detection of phishing websites, ranging from block-listing (Cao et al.
2008) and heuristic-based methods (Zhang et al. 2007) to more ad-

vanced machine learning (Zhang et al. 2007) and deep learning ap-

proaches (Do et al. 2022). In particular, the latter have the potential to
effectively distinguish phishing websites from legitimate ones. They can
classify phishing websites with high accuracy within a short time (Tang
and Mahmoud 2021). More interestingly, they can process unstructured
data types such as images and texts. This factor is useful for automated
phishing detection as the best-performing algorithms analyze only a
single website feature, being the URL (Le et al. 2018), HTML (Opara
et al. 2020) or a screenshot (Abdelnabi et al. 2020). Although these
single analysis-based models achieve high accuracy, they have signifi-

cant limitations. Research has exposed their vulnerability to bypassing
(AlEroud and Karabatis 2020), meaning a phisher can fool the detection
algorithm by creating adversarial phishing websites that exploit the al-

gorithm’s flaws. The main drawback lies in the fact that these models
Available online 22 January 2024
0167-4048/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access

(N. Zannone).

https://doi.org/10.1016/j.cose.2024.103736

Received 6 February 2023; Received in revised form 8 January 2024; Accepted 17 J
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

anuary 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cose
mailto:jobvangeest@gmail.com
mailto:g.cascavilla@tue.nl
mailto:joris.hulstijn@uni.lu
mailto:n.zannone@tue.nl
https://doi.org/10.1016/j.cose.2024.103736
https://doi.org/10.1016/j.cose.2024.103736
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2024.103736&domain=pdf
http://creativecommons.org/licenses/by/4.0/

R.J. van Geest, G. Cascavilla, J. Hulstijn et al.

only analyze a single website feature, making it easier for the phisher
to manipulate and bypass the detection.

To address these limitations, Do et al. (2022) propose a hybrid ap-

proach combining different models. Each algorithm has strengths and
weaknesses, so their combination can leverage the strengths of each
model and mitigate their weaknesses. Furthermore, it allows for more
comprehensive website analysis, as the different models can each assess
a different website feature. Altogether, this would result in more robust
phishing detection models.

Some studies have already combined two or multiple single analysis-

based models, revealing improved performance (Feng et al. 2020b; Van
Dooremaal et al. 2021; Venugopal et al. 2021). Thereby, they show the
potential benefit of a hybrid approach. However, these studies measure
only the increased accuracy of their approach, i.e., effectiveness. How-

ever, they ignore other relevant factors for a phishing detection model
to be applicable in the real world.

From the literature, we identify six factors for a real-world model to
be applicable in practice (Do et al. 2022; Sahoo et al. 2017): effective-

ness, speed of detection, scalability, adaptation, flexibility, and robustness.
Together, these factors are the most important for designing and build-

ing a real-world automated phishing detection algorithm. Whereas an
ideal model would satisfy all these factors, a more realistic one requires
a trade-off based on the desired results. These desired results may vary
based on the type of application and end-user (Sahoo et al. 2017). From
the six applicability factors, the current existing hybrid approaches only
measure effectiveness (Feng et al. 2020b; Vecliuc et al. 2021; Venugopal
et al. 2021), creating a challenge in gauging the comprehensive appli-

cability of such an approach. Additionally, there is a lack of agreement
among these studies regarding the extent to which the hybrid approach
improves effectiveness.

This study aims to bridge this gap by assessing the practical appli-

cability of a hybrid approach for detecting phishing pages. We do so by
building a framework that focuses on the six factors of applicability. We
meet the call for more robust models while also considering the other
factors required for a real-world detection algorithm. The goal of this
study translated into the following research question:

RQ: To what extent is a hybrid framework suitable for automated phish-

ing detection?

We answer this research question with a two-fold approach. First,
we construct a general hybrid framework that takes all factors of ap-

plicability into account. Secondly, we build a proof of concept of the
hybrid framework and test it on effectiveness, robustness, and detec-

tion speed. We test for only these three factors as the other three factors
of applicability (scalability, adaptation, flexibility) are, in principle, en-

hanced by a modular architecture. Furthermore, these factors depend
on the factors of the individual models. Therefore, these factors cannot
be measured explicitly and fall outside the scope of our experiments.
This results in the following sub-questions:

RQ1: How effective is a hybrid framework for automated phishing detec-

tion?

RQ2: What is the speed of detection of a hybrid framework to detect
phishing in an automated system?

RQ3: To what degree is a hybrid framework for automated phishing de-

tection robust to bypassing efforts?

This study assesses effectiveness as it is the applicability factor used
by other studies. Furthermore, effectiveness regards the core task of a
phishing detection algorithm: distinguishing phishing websites from le-

gitimate ones. We add robustness, as the literature urges the importance
of this applicability factor because of the risk of bypassing (Do et al.
2

2022). Finally, we measure detection speed. In particular, we are inter-
Computers & Security 139 (2024) 103736

ested in the difference in detection time between the hybrid approach
and the individual models incorporated.

Our framework combines predictions of different single analysis-

based models. To do so, we use a stacking function. This function takes
each model’s prediction as input and mathematically combines them
into one prediction. By applying various stacking functions to the proof
of concept, we determine which stacking function yields the highest ap-

plicability of a hybrid framework and works best for detecting phishing
websites.

RQ4: Which stacking function performs best in a hybrid framework for
automated phishing detection?

This research contributes to the field of automated phishing detection
by advancing our understanding of hybrid approaches, assessing their
applicability, and evaluating their potential to enhance the robustness
of detection models. Fig. 1 shows a schematic overview of the frame-

work. The study introduces a novel bypass simulation method, revealing
the hybrid approach’s resilience against sophisticated phishing attempts
and reducing internet users’ vulnerability to such attacks. By examining
multiple applicability factors, including robustness and detection speed,
the research offers a more comprehensive perspective on the strengths
and limitations of hybrid models. We devise and test a proof of con-

cept consisting of three specific deep learning models, each analyzing
a different website feature: URL, HTML content, and HTML DOM tree
structure. The URL-based model processes the URL as a piece of text.
It assesses the interrelationships between the words and the separate
characters in the URL (Le et al. 2018). The HTML content-based model
uses a similar approach to analyze the HTML code (Opara et al. 2020).
For the HTML DOM tree analysis, the model first extracts the DOM tree
structure out of the HTML and then analyses this as a text sequence
(Feng et al. 2020a). Each model makes a prediction for each website in
the test set, which we use as input for various stacking functions. We
assess the effectiveness by how well the model classifies websites it has
never seen before. The time it takes the proof of concept to make pre-

dictions shows us the detection speed. For robustness, we simulate a
bypass of one of the incorporated models. We measure the impact this
has on the performance of the proof of concept. Based on the results of
these tests, we determine the applicability of the proof of concept and
the framework. Thus, our framework provides a general basis for appli-

cable and robust phishing detection architectures. Our findings provide
practical implications for strengthening cybersecurity defenses and pose
the foundation for developing more effective and resilient phishing de-

tection architectures, addressing a critical cybersecurity challenge.

The remainder of the paper is structured as follows. Section 2 intro-

duces the contribution of our research and the related societal impact.
Section 3 presents background information on phishing and machine
learning and discusses related work on automated phishing detection.
In Section 4, we devise the hybrid framework optimized for applicabil-

ity and explain the implementation of the proof of concept. Section 5

discusses the experiments to evaluate the proof of concept. We discuss
the findings of these experiments in Section 6. The paper ends with con-

clusions and suggestions for future research in Section 7 and Section 8.
The dataset used for the experiments and the replication package are
available at https://doi .org /10 .5281 /zenodo .8358925.

2. Research contribution

Our study’s primary contribution lies in its multifaceted approach
to the evaluation of a hybrid framework for phishing detection, empha-

sizing real-world applicability and robustness. This research stems from
critical gaps identified in existing literature, where prior studies have
often fallen short in adequately addressing these dimensions of applica-

bility and robustness in the context of phishing detection.

By conducting a comprehensive evaluation of the hybrid framework,

we bridge these gaps and provide concrete evidence that the hybrid ap-

https://doi.org/10.5281/zenodo.8358925

R.J. van Geest, G. Cascavilla, J. Hulstijn et al.

Fig. 1. Schematic overview of the hybrid framework aimed at applicability for
automated phishing detection.

proach offers a robust and effective alternative to single-analysis-based
models. We go beyond the typical emphasis on effectiveness alone,
expanding our assessment to encompass various factors that define real-

world utility. In doing so, we contribute to advancing knowledge in the
field and offer practical insights for deploying phishing detection sys-

tems.

Our research serves as a stepping stone for future investigations that
can extend beyond the boundaries of our current study. Specifically, we
propose the exploration of additional dimensions of applicability, in-

cluding flexibility, adaptability, and scalability. These dimensions, often
overlooked in previous research, represent crucial factors of real-world
applicability. For instance, assessing the framework’s flexibility can val-

idate our hypothesis that implementing a stacking function enhances
adaptability compared to integrating models into a single neural net-

work. The introduction of online learning, using datasets with evolving
behaviors over time, offers a promising avenue to evaluate adaptability,
allowing for the creation of more dynamic and resilient systems. Fur-

thermore, investigating scalability, as indicated by Sahoo et al. (2017),
is essential to understanding how the framework performs under in-

creased data volumes, a consideration of utmost importance in today’s
data-rich environment.

In summary, our study highlights the existing gaps in phishing de-

tection research and takes significant strides toward filling them. By
focusing on applicability and robustness and conducting a thorough
evaluation of a hybrid framework, we contribute to a more compre-

hensive understanding of hybrid approaches and their real-world po-

tential. Our research serves as a foundation for future studies, offering
a roadmap to explore these dimensions further and ultimately enhance
the practical deployment of phishing detection systems.

2.1. Societal impact

An automated phishing website detection algorithm can improve
the quality of life of an underprivileged or vulnerable part of society by
providing a way to avoid being phished. Scammers often create phish-

ing websites to trick people into giving them personal information or
money. These websites can be difficult to spot, but an automated phish-
3

ing website detection algorithm can help identify and protect internet
Computers & Security 139 (2024) 103736

users from being scammed. This can help improve the quality of life of
those vulnerable to these scams, as they will be less likely to fall victim
to them. With our study, we aim to make these detection models better
applicable. Thereby guiding research to better fulfill the societal needs
for real-life detection algorithms (Sahoo et al. 2017).

The key contribution to societal impact is the data-backed robust-

ness of this hybrid framework. Where a bypass would disarm a single
analysis-based model, the hybrid approach remains to function. This
makes internet users less vulnerable to bypassing the efforts of phish-

ers.

3. Background & related work

Phishing is a form of social engineering that uses fraudulent mes-

sages to trick people into revealing their personal information or cre-

dentials (Abbate 2022). Phishing is a type of online fraud in which
scammers send emails or messages that look like they are from a le-

gitimate company or website. These messages often contain a link that
takes the victim to a fake website that looks like the real one. The vic-

tim is asked to enter personal information on the fake website, such
as their credit card number or password. The scammers then use this
information to steal the victim’s money or identity.

The first relevant method for detecting phishing websites is block-

listing, where a moderator places websites suspected of phishing on a
list of websites to be blocked (Cao et al. 2008). However, this only
works for already detected websites, while attackers can keep regis-

tering new domains and exploiting them until they are compromised.
These new and yet undetected phishing websites are called zero days.
To detect zero-days, research proposes heuristic-based methods that
check multiple aspects of a website, such as hostname and lifetime (Ter-

aguchi and Mitchell 2004). However, these approaches result in many
false positives (websites incorrectly classified as phishing). To tackle
this, Zhang et al. (2007) developed CANTINA: a heuristic-based method
that also analyzes the content of a website. This algorithm recognizes
common signs of phishing. For example, linking back to the legitimate
website from the phishing website creates a discrepancy between the
domains. This approach decreases the false positives. Nevertheless, the
heuristics are still relatively straightforward. This makes it easy for an
attacker to understand the heuristics and create bypassing methods.

Machine Learning allows for much more sophisticated and power-

ful classification algorithms. This enables the analysis of a wide range
of website features. Xiang et al. (2011) used this method to develop
CANTINA+: an algorithm that analyses fifteen different website features
obtained from the website’s URL and HTML content. Therefore, it was
the most comprehensive analysis at that time. Each feature represents
a website characteristic that the authors believe indicates phishing.
CANTINA+ is one of many machine learning models that use the URL
and HTML (Hou et al. 2010; Odeh et al. 2021; Sahingoz et al. 2019) as
input. These data types easily translate into functional features such as
the length and number of unique symbols. Another commonality among
the machine learning approaches is the use of supervised learning. This
preference is due to the existence of labeled datasets. Platforms exist
that maintain publicly available databases of phishing websites (Open-

Phish 2022; PhishTank 2022).

Deep learning, a sub-field of machine learning, takes this concept a
step further by incorporating neural networks. One advantage of deep
learning is its scalability, which can handle large amounts of data, lead-

ing to more accurate predictions (Alom et al. 2019; Ejaz et al. 2023).
Another advantage is that deep learning can learn from not linearly sep-

arable data. This means the data does not have to be in a specific format.
We can input it, for example, as an image or text. Finally, deep learn-

ing is less likely to overfit the data. This means that the algorithm will
not learn from the noise in the data, which can lead to more accurate
predictions (LeCun et al. 2015). Combining these benefits makes deep
learning models detect hidden correlations in the data. Moreover, data

can be provided to the algorithm with only minor preparation steps.

R.J. van Geest, G. Cascavilla, J. Hulstijn et al.

This is contrary to supervised machine learning methods, which require
expert knowledge to select the appropriate features (Do et al. 2022).

URL base models

As a URL is interpretable as a piece of text, we can analyze it with Natu-

ral Language Processing. One way to do so is by embedding the URL into
a mathematically understandable format. There are two types of URL
embedding: character-level and word-level embedding. Character-level
embedding considers the URL as a sequence of individual characters,
while word-level embedding regards it as a sequence of words. Yang
et al. (2021) found that using character-level embedding in combina-

tion with Convolutional Neural Networks (CNN) and multiple Random
Forest classifiers resulted in a detection accuracy of 99%. However,
solely using Character-level CNNs also comes with limitations. This
approach is unable to capture semantic or sequential patterns effec-

tively. Hence, structural information contained in words gets lost. As
a solution, URLNet integrates the character-level embedding into the
word-level embedding (Le et al. 2018). Instead of discarding rare words,
it represents them by character-level embedding. Next, it integrates the
obtained information back into the Word-level embedding. The ben-

efit is that information of rare words is kept, without raising memory
issues. The successful performance and clear reproducibility made URL-

Net the benchmark model for URL-based phishing detection (Bu and
Cho 2021a,b; Bu and Kim 2022; Dutta 2021; Kexin et al. 2021; Maner-

iker et al. 2021).

HTML based models

Opara et al. (2020) are the first to use the HTML content of a website
as input for a Deep Learning algorithm. They feed it as a single text
string to their HTMLphish model. Similarly to the previously described
URL methods, it consists of a character-level CNN and word-level CNN.
The authors obtained a 93% accuracy on their test data. This method is
third-party independent and can detect phishing websites regardless of
their language. Although HTML content is valuable for phishing detec-

tion, it loses the structural information, which is represented in a HTML
DOM tree structure. Ouyang and Zhang (2021) use this data type for a
Graph Neural Network (GNN). They input the HTML as a graph via its
inherent DOM tree structure. This approach results in a phishing detec-

tion accuracy of 96%. Feng et al. (2020a) also analyse the HTML DOM
tree structure. However, they regard them as a natural language. They
use Doc2Vec to learn the structural semantics to detect phishing web
pages automatically. Finally, Bilot et al. (2022) analyse the HTML con-

tent based on the hyperlink graph structure of a website. Many phishing
websites redirect to legitimate websites, so each link pointing to these
websites has a different domain. Legitimate websites, on the other hand,
typically have many links redirecting to the same domain. This referring
difference creates a discrepancy that can be detected.

Limitations

Although Deep Learning shows advantages for the automated detection
of phishing websites, it has limitations. First, these models operate in a
black-box fashion, making it difficult to understand the reasoning be-

hind the prediction. This problem is compounded when errors occur, as
it is hard to diagnose and identify the root cause of an error when the
output results are largely uninterpretable (Do et al. 2022).

Furthermore, AlEroud and Karabatis (2020) show that carefully
crafted inputs can deceive Deep Learning models. They present a
method for bypassing an URL-analysis-based detection model using
Generative Adversarial Networks (GANs). The proposed method gener-

ates phishing URLs that are visually similar to legitimate URLs, making
them difficult to detect. The GAN is trained on a dataset of legitimate
and phishing URLs and can generate new phishing URLs that are not in
the training set. The generated URLs are then evaluated against a phish-

ing detection system. The results show that the proposed method can
bypass the detection of phishing URLs with high success rates. From
this, we can conclude that detection algorithms that are not robust
against such adversarial attacks will not be applicable in the real world,
4

as hackers will always try to find new methods to bypass protection.
Computers & Security 139 (2024) 103736

3.1. Applicability

In a hybrid approach, we can combine models in different ways.
To find the optimal way, we first determine the goal of the algorithm.
In our case, this is applicability, with a focus on robustness. To deter-

mine applicability, we look at the current literature. Sahoo et al. (2017)

identify five design principles for building a real-life automated phish-

ing detection algorithm:

Accuracy The predictive performance of the algorithm refers to its
ability to classify phishing and legitimate websites accurately.
Researchers use the term Accuracy to refer to this factor;
however, it is important to note that it is a general term for
predictive performance and not limited to just the Accuracy
metric. Therefore, we refer to this design principle as Effec-

tiveness.

Speed of Detection The time it takes to classify a webpage. An archi-

tecture that takes too long is not suitable for live classification
within a web browser. Therefore, this requirement greatly in-

fluences the usability for end-users. According to Sahoo et al.
(2017), real-time detection requires a classification within a
couple of milliseconds. We measure the speed of detection by
the time it takes the model to make a prediction. This counts
from the moment it starts analyzing until it gives an output.

Scalability The architecture’s capacity to process large amounts of
data. To obtain this, it should prevent memory constraints.

Adaptation The ability to detect and adapt to changes in the data. In
particular, the ability to detect new types of phishing pages.
Researchers believe better adaptability improves the robust-

ness of the architecture.

Flexibility Flexibility requires the system to allow for easy improve-

ments and extensions. This regards the broadness of the archi-

tecture, as well as the performance. New types of data inputs
should be implementable easily. Furthermore, the architec-

ture should allow for implementing new developments found
in the literature.

While adhering to these principles, we differentiate between Adapt-

ability, which focuses on the algorithm’s proficiency in identifying and
accommodating data changes, and Robustness, which pertains to the
algorithm’s capacity to offset potential flaws or vulnerabilities within
its components. We advocate that this distinction provides a more nu-

anced and precise understanding of a phishing detection algorithm’s
effectiveness. In particular, we gain the ability to specifically evaluate
an algorithm’s capability to identify and adjust to changes in the data
it encounters. Adaptability, in this context, focuses on the algorithm’s
agility in recognizing new types of phishing pages and accommodating
variations in the data landscape. It essentially measures the algorith-

m’s responsiveness to evolving threats and its capacity to adapt swiftly,
reflecting the dynamic nature of the cybersecurity landscape. On the
other hand, Robustness assesses the algorithm’s resilience against po-

tential weaknesses, vulnerabilities, or adversarial attempts to bypass
its defenses. This factor is vital for ensuring the algorithm’s ability to
maintain its effectiveness even in the face of sophisticated attacks or un-

foreseen challenges. It measures the algorithm’s ability to withstand and
counteract flaws in its components, further reinforcing its real-world
applicability. In essence, this division provides a more comprehensive
view of an algorithm’s applicability by considering its adaptability to
evolving threats and its robustness in the face of potential vulnera-

bilities. Therefore, we add Robustness as a sixth, separate factor of
applicability.

These principles of applicability serve as valuable guidelines to iden-

tify issues and gaps in the current approaches and literature on auto-

mated phishing detection. We can pinpoint areas where the literature
may fall short by evaluating existing research through the lenses of Ef-
fectiveness, Speed of Detection, Scalability, Adaptation, Flexibility and

Computers & Security 139 (2024) 103736R.J. van Geest, G. Cascavilla, J. Hulstijn et al.

Table 1

The expected impact of a hybrid approach on current challenges in automated phishing detection. The challenges originate from a study by Sahoo et
al. (2017). The impact column shows a hybrid approach’s expected impact on these challenges: negative, neutral, or positive. The explanation column
motivates the expected impact.

Challenge Impact Explanation

High volume and high-velocity data Neutral There are no signs that a hybrid approach is more efficient than other approaches.

Difficulty acquiring labels Neutral A hybrid approach does not generate new labels.

Difficulty in collecting features Neutral This depends on the models implemented in the hybrid approach.

Feature Representation Positive A hybrid approach can process multiple website features via different implemented models (Feng et al. 2020b).

Concept drifting Neutral This depends on the models implemented in the hybrid approach.

Interpretability of Models Positive Combining different predictions give insights into the influence of the different models (Do et al. 2022).

Adversarial Attacks Positive Combining multiple models makes it harder for an attacker to deceive the entire system (Venugopal et al. 2021).
Robustness. For instance, if a substantial body of work predominantly
emphasizes effectiveness but neglects speed of detection or scalabil-

ity factors, it suggests a potential research gap in addressing real-time,
resource-efficient detection methods. Similarly, if there is limited focus
on the risk of bypassing by adversarial attacks, it highlights opportu-

nities for future research to enhance the robustness and practicality of
phishing detection algorithms. Therefore, the application of these prin-

ciples aids in identifying research avenues that can contribute to a more
comprehensive and effective automated phishing detection framework.

3.2. Hybrid approach

Do et al. (2022) recommend using a hybrid approach to address
multiple challenges in automated phishing detection. This approach
combines different models into a single algorithm to optimize their
strengths and weaknesses, enabling more robust detection. According
to Feng et al. (2020b), it also facilitates comprehensive website analysis
by allowing various models to assess different website features websites.

Sahoo et al. (2017) identify various challenges in the automated de-

tection of phishing websites, including the issue of detecting malicious
websites despite evasion techniques. Table 1 outlines these challenges
and highlights the positive impact of using a hybrid approach. First, this
approach leverages the strengths and mitigates the weaknesses of dif-

ferent detection algorithms, enhancing overall capabilities and making
it harder for attackers to evade detection. Secondly, it enables com-

prehensive website analysis by distributing the evaluation of diverse
website features among individual models, thereby improving accuracy.
Lastly, hybrid approaches enhance robustness against evolving evasion
tactics, enhancing cybersecurity capabilities by effectively identifying
anomalies and discrepancies employed by attackers and reinforcing the
system’s resilience.

3.3. Existing hybrid approaches

As discussed in Section 3, existing research has commonly studied
the performance of models using just raw URLs (Al-Ahmadi et al., 2022;
Chinnasamy et al., 2022; Elsadig et al., 2022; Kim et al., 2022; Ozcan et
al., 2023) or HTML content (Aljofey et al., 2022; Ejaz et al., 2023; Lee
et al., 2020; Vishva and Aju, 2021). However, based on our studies, ex-

periments, and research, we highlight that the information in different
parts of a web page can provide different information and characteris-

tics when detecting phishing pages. The HTML provides the semantics
of the page, the URL gives information regarding the web page’s inter-

net address, and the DOM (Document Object Model) tree is a tree-like
representation of the web page and furnishes details of the backbone of
an HTML document, such as tags. Therefore, leveraging all this infor-

mation is essential to detect phishing.

In assessing the landscape of existing hybrid approaches, we ap-

ply the design principles of applicability as established by Sahoo et al.
(2017). These principles, presented in 3.1, offer valuable insights into
current hybrid models’ strengths, weaknesses, and overall limitations,
5

shedding light on their effectiveness in automated phishing detection.
These applicability principles serve as essential guidelines to assist
us in pinpointing potential gaps in the current literature or areas where
existing research may need to be improved.

Opara et al. (2023) present WebPhish, which implements a deep
neural network trained using embedded raw URLs and HTML to detect
phishing attacks. WebPhish showed an accuracy of 98.1%. However,
WebPhish can only detect zero-day phishing attacks containing known
HTML and URL content. If the attack involves manipulation of the web
page content, WebPhish cannot recognize the attack as this approach is
strictly dependent on the training set. Similarly, Venugopal et al. (2021)

conducted a study testing various machine learning models within a
hybrid framework. These models analyzed different manually obtained
features from the HTML and URL of a website. Notably, each model
was evaluated using a different dataset, revealing a substantial varia-

tion in accuracy (from 73.8 to 99.98). In their hybrid configuration,
they combined the output predictions of these models using a deci-

sion tree and assessed them on an ensemble dataset. Surprisingly, this
hybrid approach resulted in an accuracy of 95.3%, which fell below
the performance of some individual integrated models. This contrasts
with our expectation that a hybrid approach improves effectiveness.
The only other design principle discussed by the authors is robustness.
They claim their framework makes it harder for hackers to infiltrate the
system. However, they do not give any proof of that. Another interesting
hybrid approach is presented by Aljofey et al. (2022) where the authors
leverage URL and HTML features. The proposed approach achieved an
accuracy of 96.76%. However, the proposed approach needs a long
training session and depends on the English language. Different lan-

guage causes an error in the classification.

Vecliuc et al. (2021) presented a contrasting outcome on effective-

ness. They tested a similar approach on a website’s URL, HTML content,
and logo. This resulted in a corresponding accuracy of 96.5% for their
hybrid model, which is slightly higher than their best-performing in-

dividual model, which was the ULR-based model with 96%. Thereby
suggesting that a hybrid approach can improve the effectiveness, al-

though it does not seem to make a large difference. Again, no other
principles of applicability were discussed.

In contrast to these findings, Feng et al. (2020b) introduced a dif-

ferent perspective with their Web2Vec hybrid model. This model in-

corporated the URL, HTML content, and DOM tree structure as input
features. Their study involved comparing performance across different
input feature combinations. While they obtained an accuracy of respec-

tively 94.72%, 97.56%, and 91.71% for the URL, HTML content, and
DOM tree structure, they acquired an accuracy of 99.05% for the com-

bination of the three. This achievement was attributed to their method
of extracting feature representations and processing them through a
CNN and LSTM. Instead of obtaining separate predictions from this and
combining these with a stacking function, they combined the neural
network layers as input for one larger hidden layer. Hence, this layer
contains processed information from each of the input features. This
step merges the different models into one large neural network with
one output layer that gives the final prediction.

Besides the improvement in effectiveness, it is important to note that

the Web2Vec approach also has limitations, primarily its black-box na-

R.J. van Geest, G. Cascavilla, J. Hulstijn et al.

ture, making it harder to understand the reasoning behind a prediction
and identify errors when they occur. As bypassing by an attacker is an
error of the model, we could deduce from this that this approach is less
robust. We cannot verify this as the authors state nothing about the
robustness of their model. Another limitation is that its design lacked
flexibility. As their hybrid approach consists of one interconnected neu-

ral network, it hinders easy adaptation to evolving requirements or
the integration of new models or algorithms. Compared to this, the
approaches of Venugopal et al. (2021) and Vecliuc et al. (2021) are
more flexible, as they use the predictions of individual models, which
can be more easily replaced with the predictions of a different model
without significant disruption to the overall system. Regarding detec-

tion speed, the researchers state that their approach spends the longest
running time compared to other approaches. They attribute this to the
use of deep learning algorithms. This reasoning indicates that detection
speed highly depends on the selection of the individual models. Lastly,
Valiyaveedu et al. (2021) revealed that different input features might
benefit from distinct models, suggesting a potential avenue for further
improvement.

Recent works such as (Lin et al., 2021; Liu et al., 2022) imple-

mented a similar approach. In (Lin et al., 2021), similarly to other
less recent works (Abdelnabi et al., 2020; Afroz and Greenstadt, 2011;
Wang, 2010), the authors use logos and web pages screenshots from
the website to recognize phishing pages. Even if the authors claim that
Phishpedia can recognize 87.46% of phishing web pages, it is worth
noting the high rate of false positives related to logos looking like a well-

known legitimate brand logo. Furthermore, the authors explain how
Phishpedia is not suitable for large-scale evaluations due to its high rate
of false negatives. The same authors proposed PishIntention Liu et al.
(2022), which generates 86.5% less false alerts. The proposed approach
receives a URL, screenshot, and HTML code and extracts the Abstract
Webpage Layout for detecting brand and credential-taking intentions.
However, as specified by the authors, it fails when the web pages im-

plement an uncommon login-keyword. Furthermore, the robustness of
this approach drops significantly in front of HTML obfuscation. Lastly,
the authors explicitly explain that although this approach has a lower
false positive rate than Phishpedia, the problem remains due to logo
similarities.

To conclude our literature review, it is important to highlight Ran-

dom Forest provides the best classifier when adopting a URL or HTML-

based approach in the context of phishing page detection (Almousa et
al., 2022; Chinnasamy et al., 2022; Liu, 2021; Ripa et al., 2021). How-

ever, as mentioned in Chinnasamy et al. (2022); Shah et al. (2022),
future research should focus on hybrid approaches and technologies
to detect phishing websites more accurately and improve their robust-

ness. Indeed, machine learning-based phishing URL detectors have been
extensively proposed and explored. However, the robustness of these
models against adversarial manipulation remains unknown. Sabir et
al. (2022) unveiled several security vulnerabilities and evaluation chal-

lenges of the machine and deep learning models.

Our approach can bypass the limitations of the previous works by
considering three different features for the phishing classification: URL,
HTML, and DOMtree. These three features improve the overall robust-

ness of our approach, making it able to bypass limitations such as lan-

guage, training session time, easier to go through the system flow, the
system not working as a black box, easier to catch errors and problems,
improved the overall robustness against possible bypass. Moreover, our
proof of concept provides a wide margin of customization and flexibil-

ity. Indeed, although our proof of concept of our framework leverages
the three aforementioned features for the detection of phishing web-

sites, it can be easily extended to include other features such as images
6

and meta-data.
Computers & Security 139 (2024) 103736

3.4. Gaps in literature

While the existing literature provides valuable insights into auto-

mated phishing detection and hybrid approaches, we observed sev-

eral gaps related to various factors of applicability. First, the litera-

ture presents conflicting results regarding the effectiveness of hybrid
approaches compared to individual models. Venugopal et al. (2021)

observed that their hybrid approach underperformed some individual
models, while Vecliuc et al. (2021) found a modest improvement in ef-

fectiveness. Feng et al. (2020b) demonstrated significant improvement,
but their approach lacked transparency. The approaches proposed in
(Lin et al., 2021; Liu et al., 2022) suffer from a high rate of false alerts.
Ejaz et al. (2023) explicitly mention the need to improve phishing tech-

niques to be robust against advanced evasion techniques. However,
their approach based on continual learning suffers from catastrophic for-

getting when the model is trained on new data. Other works (Alhogail
and Alsabih, 2021; Aljofey et al., 2020; Su, 2020; Wei et al., 2020;
Xiao et al., 2021) do not consider (nor test) the robustness of their
approaches against side attacks during their experiments. Regarding
effectiveness, further research is needed to provide a clearer under-

standing of when and how hybrid models impact this factor.

Furthermore, the speed of phishing detection for a hybrid frame-

work is currently unclear. While Venugopal et al. (2021) mentioned the
importance of real-time detection, there is a lack of detailed exploration
of the trade-offs between detection speed and model accuracy in hybrid
approaches. With the current research, we cannot conclude whether a
hybrid approach allows fast enough detection.

Robustness, while briefly discussed, also remains underexplored in
the current literature. To assess the real-world applicability of a detec-

tion algorithm, it is crucial to evaluate the resilience of hybrid models
against evasion techniques, adversarial attacks, and unforeseen chal-

lenges. While hybrid approaches are potentially more robust than single
analysis-based approaches, no study has researched this to date.

None of the current hybrid approaches mention how they ensure
their models’ Scalability, Adaptation, and Flexibility. Nevertheless, a
hybrid approach should do so to be suited for applicability in the real
world.

Based on these observations, the applicability of hybrid approaches
in automated phishing detection remains an open research question.
The lack of consensus in the results from different studies motivates our
hybrid framework. This framework combines multiple single-analysis-

based models and consolidates their predictions using a stacking func-

tion. Our approach allows us to assess its applicability compared to
individual models and provides a means to measure the increase in ro-

bustness, contributing to the ongoing exploration of hybrid models in
this field.

4. Experimental setup

This section outlines the design and implementation of our experi-

mental framework aimed at assessing the applicability of a hybrid ap-

proach to automated phishing detection. The framework encompasses
various factors of applicability, including effectiveness, robustness, and
speed of detection. The following sections detail our framework design,
model selection process, and the proof of concept implementation.

4.1. Framework

From the literature section, we conclude that current studies on
hybrid approaches often lack comprehensive discussions about their
applicability. Instead, they tend to primarily focus on effectiveness,
overlooking other crucial factors such as speed of detection, scalability,
adaptation, flexibility, and robustness. Our objective is to construct a
holistic framework that accounts for all factors of applicability. Among
the six factors, effectiveness, robustness, and flexibility are mostly in-
fluenced by the architecture design. For instance, the choice of stacking

Computers & Security 139 (2024) 103736R.J. van Geest, G. Cascavilla, J. Hulstijn et al.

Table 2

Summary of the relationship between the factors of applicability and the design of the hybrid framework.

Applicability Factor Relationship to Framework Design

Effectiveness Influenced by stacking function choice; design impacts prediction quality.

Robustness Enhanced by incorporating multiple input data types; design influences evasion resistance.

Flexibility Design enables easy model replacement or enhancement, enhancing adaptability.

Speed of Detection Dependent on the choice of individual models; framework design supports model selection for desired speed.

Scalability Primarily influenced by individual models; framework architecture allows for scalability through model choices.

Adaptation Predominantly driven by individual models; framework’s adaptability supports model-based adaptation.
function has an impact on the effectiveness (Vecliuc et al. 2021), while
robustness improves with the integration of multiple input data types
(Venugopal et al. 2021). Additionally, ensuring flexibility necessitates
the ease of implementing enhancements and extensions (Sahoo et al.
2017). In contrast, the framework’s impact on the speed of detection,
scalability, and adaptation appears limited compared to the influence
of individual models. These factors mainly depend on the individual
model designs (Sahoo et al. 2017). Consequently, fulfilling these crite-

ria depends on the selection of models by the user.

The framework is arranged into three layers. The initial layer, the
data layer, regards the types of data acquired from a website. These
encompass elements such as the URL, HTML code, and other perti-

nent website attributes. For performance and robustness reasons, the
data should maximize the website’s information coverage to maximize
the probability of finding useful information (Venugopal et al. 2021).
This, in turn, enhances the framework’s capability to detect potential
phishing websites and reduces the likelihood of successful bypass at-

tempts. However, it is worth noting that incorporating a greater variety
of data inputs entails higher processing demands. Consequently, this
may potentially lead to trade-offs in terms of flexibility, scalability,
and speed of detection (Sahoo et al. 2017). Therefore, developers must
thoughtfully balance these design principles while implementing their
framework.

The second layer regards the individual models employed in the
framework. The literature shows that different types of models perform
better for different types of input features (Valiyaveedu et al. 2021).
For this reason, we advocate for the integration of tailored models spe-

cific to each input feature rather than relying on a single generic model.
This approach enhances the framework’s flexibility as each model can
be readily substituted with a superior alternative. Moreover, this strat-

egy empowers customization to suit each end user’s requirements. For
instance, the choice of models significantly influences the speed of
detection (Feng et al. 2020b). This flexibility accommodates users prior-

itizing the speed of detection and those emphasizing other applicability
factors.

The framework’s third layer combines the individual models’ pre-

dictions using a stacking function. This function trains a meta-model
that takes the predictions of the base models as inputs and produces the
final prediction. Using a stacking function enhances the framework’s
flexibility by facilitating effortless replacements or improvements to
its implementation. Moreover, the stacking function contributes to the
framework’s transparency, providing insight into its decision-making
process (Do et al. 2022). A visual representation of the complete frame-

work can be found in Fig. 1.

In conclusion, our hybrid framework strives to encompass a wider
range of applicability factors as these are neglected by other hybrid
approaches. By making deliberate design decisions, we impact effec-

tiveness, robustness, and flexibility. Concurrently, the selection of indi-

vidual models assumes a critical role in achieving the goals of speedy
detection, scalability, and adaptability. This holistic approach acknowl-

edges the intricate balance between design choices and model selection,
ultimately shaping the framework’s ability to cater to varying user
needs. To illustrate the interplay between the six factors of applica-

bility and the design of our hybrid framework, we present a summary
7

in Table 2.
4.2. Proof of concept

To validate our framework, we create and test a proof of concept.
This allows us to answer the research questions. We first elaborate on
the scope of the proof of concept concerning the applicability of a hy-

brid approach. Next, we discuss the design choices for the proof of
concept, which models we selected, and how we implemented them.

Since the framework allows us to incorporate all types of models, we
first define the scope of our proof of concept. The applicability consists
of six different factors that can result in a trade-off. For example, deep
learning models tend to obtain a better performance but take a longer
time for detection (Feng et al. 2020b). Since this is, to the best of our
knowledge, the first study into the applicability of a hybrid approach,
we scope our research down to three of the six factors: effectiveness,
robustness, and speed of detection. Effectiveness is the factor mainly
focused on by other studies. Furthermore, current hybrid approaches
do not agree on the influence of a hybrid approach on effectiveness.
The second factor we focus on is robustness. This tells us to what ex-

tent the proof of concept can withstand attackers’ evasion techniques.
Thereby, we can verify whether a hybrid approach is indeed a solu-

tion for more robust algorithms (Do et al. 2022). Finally, we evaluate
the time required for detection, specifically examining the additional
time taken by the hybrid framework compared to the individual models
it comprises. We do not focus on the other factors of applicability for
the proof of concept. These require a more extensive and qualitative-

oriented analysis, which falls outside the scope of this study. This proof
of concept aims to obtain initial findings regarding the applicability of
a hybrid framework.

The first design choice for the proof of concept is which input fea-

tures to incorporate. This choice depends on the availability and char-

acteristics of models suitable for each type of input feature. Literature
shows that most visual analysis-based models use a black- and whitelist
approach (Abdelnabi et al. 2020; Dunlop et al. 2010; Khandelwal and
Das 2022). To apply this, they use a dataset containing only a limited
number of brands for the model to classify. As we want our proof of
concept to be able to analyze each website on the Internet, we do not
incorporate such an approach. Van Dooremaal et al. (2021) propose
a visual-based approach but do not focus only on a limited number
of brands. However, their method analyses phishing websites that are
still online. Since phishing websites have a short lifespan of 21 days
on average (Oest et al. 2020), this approach is unsuitable for most of-

fline datasets. Therefore, we do not incorporate this or another visual
analysis-based model into our proof of concept.

As we do not use visual features of a website as an input, there
remain three other types of features for the proof of concept to an-

alyze: the URL, HTML content, and HTML DOM tree structure. The
URL and HTML content have shown to be effective in previous research
(Valiyaveedu et al. 2021). The HTML DOM tree is a less explored topic.
Nevertheless, it widens the information analyzable by the proof of con-

cept. Although both the HTML content and HTML DOM tree structure
originate from the HTML of a website, we assume they extract different
insights from it. We base this assumption on how these models ana-

lyze the HTML code. The DOM tree analysis extracts the tree structure
and tags from the HTML, leaving out the other content. Meanwhile, the
content analysis analyses the complete HTML code but truncates it to a

certain length to reduce the data size. Thereby, it loses information on

R.J. van Geest, G. Cascavilla, J. Hulstijn et al.

the DOM tree structure. As a robustness check for this assumption, we
compare the performances of the HTML content and HTML DOM tree
model in the experiments section.

With our input features clarified, the next critical step is selecting
appropriate models that align with the distinct website feature types.
Given our aim of analyzing the URL, HTML content, and HTML DOM
tree structure, we need three tailored models, each uniquely suited to
their respective input features. For each model, we discuss the selec-

tion reasons and method of implementation. The outputs generated by
these models serve as the input for our stacking function. In our ex-

periments, we evaluate six distinct stacking functions within our proof
of concept framework. This comprehensive assessment allows us to ad-

dress our sub-question regarding the optimal stacking function for our
hybrid framework. The experimental results guide us in determining
the most suitable stacking function for our framework, enhancing its
real-world applicability.

Model 1 - URL

The first model we implement in our prototype takes the URL as input.
Such models obtain the highest scores within the fastest amount of time.
Multiple studies claim an accuracy above 99% (Maneriker et al. 2021;
Tang and Mahmoud 2021; Yang et al. 2021). However, these scores do
depend on the datasets used. Therefore, no outspoken top-performing
algorithm exists. Nevertheless, the URLnet algorithm stands as a bench-

mark (Le et al. 2018). We implement this model in our framework as it
best represents the URL-based models.

The URLnet algorithm uses a combination of Character-based and
Word-based embedding. This structure maintains the information con-

tained in rare words while not hitting memory constraints. This is
relevant since URLs contain high amounts of non-sensical terms. The
algorithm’s structure consists of the Character-level CNN and the Word-

level CNN.

For the Character-level CNN, we convert the URL to a matrix rep-

resentation. This data structure makes the URL analyzable as an image
for the algorithm. To do so, we transpose each URL into a sequence of
characters with a length of 200. We cut off URLs that are longer than
200, and we pad the ones that are shorter. Next, we embed each charac-

ter in a 32-dimensional vector. Since we do this for all 200 characters,
we obtain a 32 x 200 matrix. We pass this matrix through the convolu-

tional layers, the main building block of a CNN. A convolutional layer
consists of multiple filters. Each creates a different feature map, indicat-

ing the presence of detected features in the input matrix. Next, we add
a Max-pooling layer. Max-pooling shrinks the size of the matrix while
maintaining the essential features. We do so to save computational costs
and avoid overfitting. Overfitting arises when the algorithm adjusts too
much on the training data and fails to function well on the test data. Af-

ter the Max-pooling layer, we put a fully connected layer with dropout.
Dropout also helps prevent overfitting by randomly shutting off connec-

tions in the network. We concatenate the result of this with that of the
Word-level embedding part.

The Word-level CNN is somewhat similar to Character-level CNN.
The difference is that we have vector representations of words instead
of characters. Since the different potential words in a URL are countless,
this requires a different approach. First, we split the URL into a list of
words. We do so based on the special characters (‘/’, ’.’ etc.). We remain
the special characters ‘-’ and ‘_’ within the words. We use padding to
give each list of words the same length of 200. Similar to character-level
embedding, each vector representation is 32-dimensional. Accordingly,
we express each URL as a 32 x 200 matrix. Since the algorithm has
to store each different word, we can run into memory constraints. We
replace all single-occurring words with an ‘unknown’ token to prevent
this.

The single-occurring words, removed for word-level embedding, can
still obtain information. Therefore, we add another part to the word-

level embedding: a character-level embedding of rare words and special
8

characters. This addition allows us to represent them by a fixed amount
Computers & Security 139 (2024) 103736

Table 3

Parameter settings for the URL-

based model.

Parameter Value

Length words 200

Length characters 200

Learning rate 0.001

Batch size 128

Table 4

Parameter settings for the HTML
Content-based model.

Parameter Value

Length words 200

Length characters 200

Learning rate 0.0015

Batch size 20

Dimensions 100

Number of words 400000

Number of characters 360

of characters. Hence, we maintain some information within these words
while not facing memory constraints. We pad or truncate all words
in the URL to a length of 20 characters. Each character gets a 32-

dimensional vector representation. These steps result in a 32 x 20 matrix
for each word. Next, we add those together for all 200 words in the URL
to get a 200 x 32 matrix. We can add this to the matrix obtained from
the word-level embedding since they have the same size. This leaves us
with one word-level matrix containing information from the frequently
occurring and unique words. We input this resulting matrix in a CNN
identical to the one described for character-level embedding.

Finally, we concatenate the results from the character-level and
word-level-based CNNs. We follow this with fully connected layers and
a final layer, which gives a prediction. We use backward propagation to
adjust the weights during the training phase. Table 3 shows the exact
hyper-parameters we use for the model. We incorporate this for repro-

ducibility purposes.

Model 2 - HTML content

We assess HTMLphish by Opara et al. (2020) to analyze the HTML con-

tent. This model is most suitable for HTML content analysis based on
our literature review. Although Bilot et al. (2022) obtain better accu-

racy, we prefer HTMLphish over their model because their approach
requires a crawler to extract features from the webpages recursively,
making it incompatible with currently existing datasets.

The method employed by HTMLphish is similar to URLnet. It uses
a CNN on both character and word-level embedding. To use this, we
first transform the HTML code into a string using the Beautiful Soup li-
brary (Richardson 2022), a Python package for parsing HTML and XML
documents. We consider special characters as separate tokens at the
word level split, as these are common in HTML. For the character level
split, we split on each character, for both approaches, we pad and trun-

cate to a certain length. Although this step loses information, obtaining
equal-length vectors for the embedding is required. Furthermore, it han-

dles the capacity problem for long HTML files. We concatenate the
character- and word-level embedding layers as the next step. In the re-

sulting concatenated layer, we parse through the CNN. Table 4 shows
the exact hyperparameter settings to reproduce this model.

Model 3 - HTML DOM tree

Our proof of concept also supports the HTML DOM tree as input. This
data type contains information embedded in the structure of the HTML.
The literature section discusses two single-analysis-based models that
use this input type (Feng et al. 2020a; Ouyang and Zhang 2021).
Ouyang and Zhang (2021) obtain the highest accuracy with their ap-

proach by combining an RNN with a GNN. Although GNNs seem a

promising research direction, they show limitations in terms of appli-

R.J. van Geest, G. Cascavilla, J. Hulstijn et al.

Table 5

Parameter settings for the HTML
DOM tree-based model.

Parameter Value

Vector size 300

Learning rate 0.065

cability. These models consume significant amounts of memory, which
goes at the expense of Scalability and Speed of detection Zhang et al.
(2022). As we prioritized the practical utility and real-world applicabil-

ity of our framework, we opted for a different approach that aligns more
seamlessly with our research objectives. The method proposed by Feng
et al. (2020a) uses Doc2Vec, a commonly used model (Le and Mikolov
2014). As this latter method is better applicable, we implement this ap-

proach for the DOM tree analysis (Table 5).

In this section, we devised the hybrid framework aimed at applica-

bility. Furthermore, we created a proof of concept of the framework that
contains three single analysis-based models. These analyze the URL,
HTML content, and HTML DOM tree structure. In the next section, we
assess the proof of concept on effectiveness, speed of detection, and ro-

bustness. Also, we compare different stacking functions for the proof of
concept.

5. Experiment

This section presents the experiments performed to assess the ap-

plicability of the proof of concept. In particular, we aim to answer the
following sub-research questions:

RQ1: How effective is a hybrid framework for automated phishing detec-

tion?

RQ2: What is the speed of detection of a hybrid framework to detect
phishing in an automated system?

RQ3: To what degree is a hybrid framework for automated phishing de-

tection robust to bypassing efforts?

RQ4: Which stacking function performs best in a hybrid framework for
automated phishing detection?

By answering these questions, we comprehensively understand the hy-

brid framework’s potential for automated phishing detection. Our ex-

periments contribute to assessing the applicability of the proof of con-

cept and shed light on the nuances of its effectiveness, detection speed,
robustness, and different stacking functions. These insights are crucial
for evaluating the practicality and reliability of the hybrid framework
in real-world scenarios, ultimately contributing to the advancement of
automated phishing detection methodologies.

We conducted our experiments on an Ubuntu 22.04.1 virtual ma-

chine boasting 24 GB of RAM. Our setup did not involve a GPU but
focused on CPU performance. Moreover, the hardware employed for the
experiments is relatively basic: An HP ZBook Power G8 with i7-11800H
CPU operating at 2.3 GHz for our evaluations. As with Experiment 2,
we split the data for the machine-learning-based model into a training
and test set. We used relatively cheap hardware to test our experiments
since we decided to implement a system that could run in a real-life
environment and use easily affordable and available hardware.

Next, we present the dataset used for the experiment. Then, we
present the setting of each experiment along with the results.

5.1. Dataset

For our experiments, we targeted a publicly available dataset that
9

provides a complete representation of websites and is recent. This
Computers & Security 139 (2024) 103736

is because models trained on an outdated dataset can decrease per-

formance when tested on more recent ones (Sánchez-Paniagua et
al. 2022a). Among the existing datasets, the PILWD-134 K dataset
(Sánchez-Paniagua et al. 2022b) includes the URL, HTML, screenshots,
and metadata of phishing websites. Although this seems to be the most
suitable dataset, it was unavailable when conducting this work. Another
dataset that contains a comprehensive representation of the websites
was proposed by Chiew et al. (2018). However, this dataset has two lim-

itations. First, the data is rather old. The scraping took place between
March and April 2016. Second, the URL data is not representative of
the real world. The legitimate class contains only the second-level and
top-level domains of the URL, while the phishing class also includes the
scheme, subdomain, and sub-directories. The use of this dataset can in-

troduce bias as the detection model can only check for the presence of
the scheme in the URL. However, in real life, both phishing and legiti-

mate websites contain the scheme. Therefore, this dataset is unsuitable
for our study.

To the best of our knowledge, PILWD-134 K and the dataset pre-

sented by Chiew et al. (2018) are the only ones providing a comprehen-

sive representation of websites. As these are unavailable or unsuitable,
we require a different dataset that might contain fewer website fea-

tures. The Phishing Website Dataset contains a recent collection of
the URL and HTML of legitimate and phishing websites (Ariyadasa et
al. 2021). Both these website characteristics show good predictabil-

ity when analyzed. Furthermore, they allow for supervised learning
without requiring brand labeling. The dataset contains 80,000 website
samples, divided into 50,000 legitimate and 30,000 phishing, scraped
from December 2020 to November 2021. The legitimate websites orig-

inate from the Ebbu2017 phishing dataset and the top Google search
results for simple keywords (Sahingoz et al. 2019). The phishing web-

sites come from PhishTank (PhishTank 2022), OpenPhish (OpenPhish
2022) and PhishRepo (Ariyadasa et al. 2022).

We download this dataset from the Mendeley Dataset repository
(Ariyadasa et al. 2021). For training, we split them into a training
(70%), validation (20%) and testing (10%) subset. Furthermore, we cre-

ate three different representations, each containing 80,000 samples. The
first one consists of the URLs. The other two contain the HTML code, of
which one includes the complete content and the second only the DOM
tree structure.

5.2. Experiments

5.2.1. Experiment 1: effectiveness

In the first experiment, we delve into a key factor of our research—

evaluating the effectiveness of our hybrid framework for automated
phishing detection. Within this study’s scope, effectiveness is defined
as the framework’s capacity to distinguish phishing websites from their
legitimate counterparts accurately. As this is the core task of a detection
model, most research focuses solely on this factor. However, we want to
stress that an effective approach does not directly mean it is applicable
and, therefore, suitable for real-world use.

As different evaluation criteria for predictive performance exist, we
determine the most suitable based on what they represent. Fig. 2 shows
the four classes of prediction that the model can make. If predictions are
correct, only True Positive (TPs) and True Negative (TNs) occur. Hence,
the goal is to minimize False Positive (FPs) and False Negative (FNs).
An FP prediction means an Internet user is warned not to trust a legiti-

mate website. The danger of receiving frequent FPs is that users might
question the system’s reliability. The occurrence of an FN allows an at-

tacker to phish successfully. Considering the consequences of phishing,
we conclude that minimizing the FNs is more important than reducing
the FPs.

Other metrics commonly used are (Alshingiti et al. 2023; Bu and

Cho 2021a; Feng et al. 2018; Wang et al. 2019):

R.J. van Geest, G. Cascavilla, J. Hulstijn et al.

True

positive

(TP)

𝐩′

𝐩

False

negative

(FN)

n

False

positive

(FP)

𝐧′
True

negative

(TN)

actual

class

prediction class

Fig. 2. Prediction outcomes of binary classification.

• Accuracy: The ratio of correct predictions over the total amount of
predictions.

• Precision: The ratio of correctly classified phishing websites over
the total number of predicted ones.

• Recall: The ratio of correctly classified phishing websites over the
total amount of actual phishing websites.

• F1-score: The weighted average of Precision and Recall

• ROC curve: The Receiver Operating Characteristics curve shows the
trade-off between the TPR and the FPR.

• ROC AUC: The Area Under the ROC Curve quantifies the ROC
curve. It shows the ability to classify the correct label. This met-

ric is used for the comparison of ROC curves.

Accuracy is typically used for classification purposes. However, it is
not optimal in our case because we are more interested in the detection
of phishing pages than legitimate ones. Therefore, F1-score best fits our
needs, as it balances Precision and Recall.

To enable a meaningful performance comparison between our proof
of concept and established models, we evaluated them alongside the
three single analysis-based models we incorporated in the proof of con-

cept. This deliberate choice allows us to assess their performance under
consistent conditions, thereby mitigating the potential confounding ef-

fects of varying datasets. By doing so, we ensure a more robust and
insightful analysis, as comparing our results directly with models from
different studies could introduce extraneous variables stemming from
dissimilar dataset characteristics, as highlighted by Sánchez-Paniagua
et al. (2022a).

This experiment gives us the effectiveness of the individual models
incorporated in the proof of concept. To assess the effectiveness of the
proof of concept, we need to combine the predictions of the individual
models. We do this using a stacking function (see Experiment 2).

Results Experiment 1
Table 6 shows the results obtained from this experiment. The first col-

umn indicates the three models incorporated into the model. These are
indicated by the type of input data they process. The other columns
report the score for each model for different metrics. The scores in
the table show differences in performance. Based on the F1 score, the
URL-based model shows the most effective with 93.82%. However, on
Precision, the Content-based model outperforms the URL one. This in-

dicates that the Content-based model has a higher tendency to classify
websites as phishing. The DOM-based model falls behind on both met-

rics. Comparing this to the Accuracy, it shows a tendency to overclassify
websites as legitimate.

5.2.2. Experiment 2: stacking function

In this experiment, we explore the capability of various stacking
functions to combine the predictions of individual models. Stacking
functions are crucial in improving the performance of our phishing de-
10

tection proof of concept. In particular, we expect them to improve their
Computers & Security 139 (2024) 103736

Table 6

Performance of each individual model implemented in the proof of con-

cept.

Model Accuracy Recall Precision F1-score ROC AUC

URL 95.41% 94.51% 93.15% 93.82% 94.96%

Content 93.64% 88.57% 95.29% 91.81% 93.97%

DOM tree 90.30% 87.29% 86.70% 86.99% 89.58%

effectiveness and robustness. In this experiment, we compare the effec-

tiveness scores of the different stacking functions, as this is the core task
of a phishing detection model.

The task of the stacking function is to combine the predictions of
the individual models incorporated. This approach offers a unique op-

portunity to harness the strengths of these individual models. However,
the extent to which this approach proves effective and which stack-

ing functions are most suitable remains a gap in the current literature.
Therefore, our experiments aim to better understand the impact of var-

ious stacking functions on both effectiveness and robustness instead of
aiming for mere effectiveness maximization. It is worth noting that our
study does not venture into the development or inclusion of a novel
stacking function for maximum effectiveness, as this falls outside the
scope of our research. Nevertheless, we believe that this aspect of our
approach introduces a valuable and innovative contribution to the field
of automated phishing detection.

To assess the impact of the stacking function, we compare six differ-

ent stacking functions, each one offering a distinct perspective on how
to combine the predictions of individual models effectively. We make
our selection based on several factors. First, we aim to evaluate our
proof of concept within the established practices of phishing detection,
leading us to include commonly used stacking functions. This approach
offers insights into the performance of our method against existing tech-

niques. Secondly, we deliberately incorporate stacking functions repre-

senting diverse methodologies to assess their varying impacts on ef-

fectiveness and robustness. This comprehensive approach encompasses
both directly applicable stacking functions and machine learning-based
ones, spanning a wide spectrum of techniques. Lastly, we prioritized
practical applicability, emphasizing the need for stacking functions that
enhance both effectiveness and real-world feasibility, ensuring their
suitability for deployment in real-time phishing detection systems while
considering computational efficiency and practicality. Based on these
factors, we select the following stacking functions:

1. Mean Predictions: Mean predictions involve calculating the average
of the predictions made by the individual models. The resulting
value is then rounded to determine the final classification. This ap-

proach aims to find a consensus among the models by considering
their collective wisdom.

2. Majority Vote: The majority vote is a straightforward stacking func-

tion where each individual model makes its prediction, rounding it
to either 1 (indicating phishing) or 0 (indicating legitimate). The
majority vote aggregates these predictions, and the outcome with
the most votes becomes the final verdict. This approach gives equal
influence to each model for every prediction.

3. Most Certain Prediction: In this approach, we rely on the model
with the highest prediction confidence. Instead of an even influ-

ence distribution, this method gives all the decision-making power
to the model with the highest certainty regarding the classification.
This approach seeks to leverage the expertise of the model with the
greatest confidence.

4. Decision Tree: We include the Decision Tree classifier due to its us-

age in a related study by Venugopal et al. (2021). While Decision
Trees are known for their interpretability and the ability to handle
complex feature interactions, they can also be prone to overfitting.
By including this method, we aim to investigate its performance in
our specific context and explore whether it offers advantages over

other stacking functions.

Computers & Security 139 (2024) 103736R.J. van Geest, G. Cascavilla, J. Hulstijn et al.

Table 7

Performance of different stacking functions for the proof of concept. The results
from Table 6 are added for comparison.

Function Accuracy Recall Precision F1-score ROC AUC

URL 95.41% 94.51% 93.15% 93.82% 94.96%

Content 93.64% 88.57% 95.29% 91.81% 93.97%

DOM tree 90.30% 87.29% 86.70% 86.99% 89.58%

Mean 97.33% 96.80% 96.02% 96.41% 97.06%

Vote 96.81% 95.27% 96.26% 95.76% 96.70%

Certain 97.21% 97.73% 94.75% 96.22% 96.72%

Decision tree 95.62% 94.89% 93.95% 93.84% 94.92%

Random Forest 97.44% 98.09% 94.62% 96.50% 96.93%

Logistic regression 97.44% 96.32% 96.81% 96.56% 97.31%
5. Random Forest: The Random Forest stacking function is an ensem-

ble method that combines multiple decision trees. It has demon-

strated effectiveness in similar studies, such as the work by Vecliuc
et al. (2021). Random Forests are known for reducing overfitting,
improving overall classification accuracy, and enhancing model
robustness. We included this stacking function to assess whether
ensemble methods can provide significant performance gains in our
proof of concept.

6. Logistic Regression: Logistic Regression is a well-established ma-

chine learning algorithm known for its effectiveness in binary out-

come prediction. We included this stacking function because it
aligns well with our primary goal of distinguishing phishing web-

sites from legitimate ones. Its simplicity and interpretability make
it an attractive choice for real-world applications where model
transparency is essential.

The Decision Tree, Random Forest, and Logistic regression stacking
functions use machine learning. These require us first to train the al-

gorithms. To do so, we first split the list of predictions outputted by
the individual models (8,000 websites) into a train and test split (80%-

20%). This allows the stacking function to understand which value they
should give to the predictions of the different models.

In this experiment, we compare the effectiveness of different stack-

ing functions. We do so by testing the proof of concept six times, each
time with a different stacking function. We test the performance of the
different stacking functions by the metrics determined for Experiment
1. Consequently, we assess the F1 score as the most critical metric. Each
test result shows how the proof of concept performs when we use the
stacking function to combine the predictions of the individual models.
We assess the robustness of the different stacking functions in Experi-

ment 4.

Results Experiment 2
Table 7 shows the performance of the proof concept for each of the
stacking functions. The three upper functions represent the directly ap-

plicable ones, which use 8000 websites to test their performance. The
bottom three functions are the machine learning ones. These used 80%
of the websites for training. Their results in the table originate from the
remaining 20% of websites.

The proof of concept performs better with each stacking function
than the best individual model (URL). Although Logistic regression per-

forms best, no outperformer exists. Only the Decision tree turns out to
perform slightly less.

5.2.3. Experiment 3: time

We measure the training and test time of each model on the dataset.
The training time of the proof of concept is equal to the sum of the
training time of the incorporated models. This is the same for the testing
time plus the time it takes the concatenation function.

Results Experiment 3
The training and testing times are presented in Table 8. We see two
11

clear findings. First, the incorporated models differ greatly in training
Table 8

Time it took for the individual models to train and test the data. We did not
include the time of the different stacking functions, as each of them would be
below 0.

Function Total time (s) Average time (ms)

Train Testing Training Testing

URL 2652 28 36.8 3.5

Content 19508 37 270.9 4.6

DOM tree 32012 118 444.6 14.8

and testing time. For instance, the URL model demonstrated rapid train-

ing, while the DOM tree model exhibited relatively slower performance.
The average training time per sample spanned from 36.8 milliseconds
to 444.6 milliseconds. The second finding is regarding the speed of
the different stacking functions. Contrary to the results observed for
the models, where training and testing times varied significantly, both
training and testing times for the stacking functions were consistently
rapid, requiring less than a second in total and less than a microsec-

ond on average. The overall training process, including the stacking
function, amounted to 15 hours, 2 minutes, and 52 seconds, translat-

ing to a mere 0.75 seconds per website. In contrast, testing occurred
much faster, with an average time of 22.9 milliseconds per sample.
These results emphasize that the stacking functions introduce minimal
computational overhead, reinforcing their applicability for real-world
deployment.

5.2.4. Experiment 4: robustness

By testing the robustness, we aim to measure the impact of an at-

tacker bypassing one of the individual models on the overall detection
abilities. To measure this, we simulate a phisher exploiting a flaw in
one of the individual models. This results in the bypassed individual
model giving false predictions. To be robust, the other individual mod-

els should be able to compensate for this flaw. Suppose a phisher can
circumvent the complete proof of concept by exploiting only one of the
individual models incorporated. In that case, we can conclude that the
proof of concept is not robust.

AlEroud and Karabatis (2020) show an example of bypassing a URL-

based model with GANs. If a cybercriminal manages to do so, it wants
the model to label a phishing website (value=1) as legitimate (value
= 0). It is clear how to simulate this for voting. We take the individual
model for which we simulate a bypassing and change all its classifi-

cations of phishing to legitimate. This change results in the individual
model classifying each website as legitimate.

It is more complex to simulate a bypass when we use probability
predictions. To the best of our knowledge, no previous literature exists
on this topic, so we reason on what consequence a bypass may have.
Bypassing an individual model means it assesses a phishing website as
benign. Thus, the model gives a probability prediction below the thresh-

old of 0.5, where it used to give one above it. Which exact probability
it becomes is unknown, as this depends on the convincingness of the

bypassing method. However, we can determine for which probability

R.J. van Geest, G. Cascavilla, J. Hulstijn et al.

Table 9

F1 score of the proof of concept for each type of stacking model while
bypassed. Each column represents a bypassing for that specific data
type model. The bypass only just managed to beat the threshold.
Therefore, each phishing website has a phishing prediction of 0.5
or lower.

Stacking Function URL Content DOM tree No bypass

Mean 92.57% 95.48% 94.79% 96.41%

Vote 89.84% 89.19% 93.80% 95.76%

Certain 92.67% 96.06% 95.17% 96.22%

Decision tree 88.16% 91.69% 91.27% 93.84%

Random Forest 88.97% 95.70% 94.39% 96.50%

Logistic regression 92.60% 96.13% 95.69% 96.56%

prediction the phisher will strive. The phisher aims to bypass the model
to start exploiting the flaw. Although they might further optimize the
bypassing method, we do not expect them to do so. The phisher does
not know how the model evaluates and improves its decision-making
methods. Therefore, it would be risky to optimize the bypassing strat-

egy instead of exploiting the opportunity. Therefore, a minimal bypass
suffices.

We simulate the bypass by changing the probability prediction of
a phishing website formerly recognized by the individual model (p >
0.5) to the probability just below the threshold of phishing (p = 0.5).
As phishers will start exploiting this bypass immediately, we apply this
change to all data points in the above category. We leave phishing web-

sites that could already fool the individual model (p < 0.5) untouched.
We execute this simulation for each of the three individual model pre-

dictions. Thus, three separate proof of concepts are performed, each
simulating a bypass for one of the individual models. Furthermore, we
test each proof of concept with the different stacking functions. To as-

sess the performance, we compare the F1 scores. If the decrease in F1
score is insignificant, we conclude the proof of concept is robust. A sin-

gle analysis-based model would obtain an F-1 score of 0.0% in case of a
bypass, as they would not be able to identify a single phishing website
correctly. This makes it hard to compare when a performance decrease
is significant.

We execute the above steps a second time, but we simulate three per-

fect bypasses of the individual models this time. By perfect, we mean
that the bypassing method fully convinces the model that the phish-

ing website is legitimate. We simulate this by changing the probability
prediction for each phishing website to completely legitimate (p = 0).
This also includes the phishing websites previously able to deceive the
individual model but less convincingly (0 < p < 0.5). Although this
situation is improbable in practice, it shows how the proof of concept
would perform in the most hostile case.

Results Experiment 4
The performance of the proof of concept when one of the individual
models is bypassed is shown in Table 9. Each column reports the indi-

vidual model for which we simulated a bypass. The fourth column, “No
bypass”, shows the F1-score when no bypass occurs. These values are
the same as in Table 7 and are shown for comparative purposes. The
first observation is that the performance decreases at the bypass for ev-

ery stacking function. Looking at the highest F1-score for each column,
the column of the URL model is the lowest. This means that the impact
of bypassing is most prominent when we simulate a bypassing for the
URL model. As we saw in Table 6, this is the best-performing individ-

ual model in Experiment 1. Looking at the lowest impact of a bypass,
Table 7 shows we do not obtain this in case of a bypass of the worst
performing individual model. The F1-score in the Content column is
higher than in the DOM tree one. However, this only is a difference of
0.44%, which shows that the impact on the F1 score in case of bypass-

ing the worst-performing individual model is much lower than for the
12

best-performing one.
Computers & Security 139 (2024) 103736

Table 10

F1 score of the proof of concept for each type of stacking model while
bypassed. Each column represents a bypassing for that specific data
type model. The phisher managed to bypass the model perfectly.
Therefore, each phishing website has a phishing prediction of 0.0.
Meaning a full confidence that the website is legitimate.

Stacking Function URL Content DOM tree No bypass

Mean 78.54% 86.32% 88.86% 96.41%

Vote 89.84% 89.19% 93.80% 95.76%

Certain 0.00% 0.00% 0.00% 96.22%

Decision tree 17.66% 77.22% 0.63% 93.84%

Random Forest 43.26% 82.90% 0.00% 96.50%

Logistic regression 79.96% 92.97% 88.93% 96.56%

The Logistic regression remains the best-performing model in case
of a bypass. This method works similarly to the mean function by taking
the prediction of each model. However, it applies a different factor to
each prediction, which results from the training process. As both the
mean and logistic regression functions keep performing well, it shows
the importance of looking at the confidence of the predictions.

This could also declare why the Decision tree remains the worst-

performing one. As this stacking function makes use of thresholds, it
indicates the vulnerabilities of these thresholds to bypassing. Although
some models perform much worse when the URL model gets bypassed,
no extreme situations arise. Furthermore, some stacking functions main-

tain good performance on each bypassing. The average decrease in F1
score is 3.40%.

We also simulated a full bypassing of the individual models. Ta-

ble 10 shows this impact on the proof of concept’s performance. We
can immediately see this is large. The certain-based stacking function
is not able to make accurate predictions anymore. Since this full bypass
makes the model fully convinced that the phishing websites are benign,
the other models appear unable to compensate for this. A similar situa-

tion arises for the Decision tree and Random Forest stacking functions.
In particular, in the case of a full bypass for the DOM tree model. Appar-

ently, this model serves as an important parameter for these functions
and their classification.

On the other hand, the mean, voting, and Logistic regression func-

tions maintain some performance. The voting performs equally to the
more realistic bypass simulation. Since it works with a vote of the by-

passed individual model, it does not matter to which extent it gets
convinced. As the other stacking functions do receive hinder from this,
the voting function switches from one of the worst performing functions
to the best one. Furthermore, it remains to function adequately. For the
mean-based function, the impact of the bypass depends on the predic-

tive performance of the individual model. If this is higher, the impact
seems more significant. The Logistic regression performs relatively the
same as with a more realistic bypass. Merely, the impact of the bypass
increases.

5.3. Comparison to the state of the art

To qualitatively evaluate the contribution of our research, we opted
to benchmark it against the top-performing hybrid approach. To the
best of our knowledge, the current state-of-the-art model in this regard
is the Web2Vec proposed by Feng et al. (2020b). We used a training set
(70%), test set (20%), and validation set (10%) to perform our compar-

ison experiment. The model was trained with the training and validated
with a separate validation set. Lastly, it has been evaluated on a third
and separate test set.

Table 11 reports the results of our experimentation using Web2Vec.
The table shows the effectiveness and speed of detection of Web2Vec
and our hybrid framework. Regarding the effectiveness, we observe
that our approach yields a higher accuracy compared to the results
from Feng et al. (2020b). Based on this, we can conclude that we

perform better than the current state-of-the-art approaches. Moreover,

Computers & Security 139 (2024) 103736R.J. van Geest, G. Cascavilla, J. Hulstijn et al.

Table 11

Comparative effectiveness and speed of detection between our hybrid framework and the current state-of-the-

art approach.

Approach Effectiveness Training Time Testing Time

Accuracy (%) F1-Score (%) Total (s) Average (ms) Total (s) Average (ms)

Our Hybrid Framework 97.44 96.56 54172 752.39 183 22.88

Feng et al. (2020b) 97.21 97.75 115795 1608.26 449.58 56.19
from Table 11, we highlight the remarkable difference in the detection
speed. Our comparison experiment shows that our approach is more
than twice as fast in both training and testing times. Therefore, our
approach requires less computational time and is better suited for real-

time detection.

6. Discussion

The results of the experiments help us determine how suitable a hy-

brid framework for automated phishing detection is in practice, thereby
answering our sub-questions and research questions. We tested the
proof of concept’s effectiveness, time, and robustness for different stack-

ing functions. To assess these results, we compare them to the results
of the single analysis-based models incorporated into the proof of con-

cept. As these are benchmark models tested on the same dataset, we
expect this to give the best comparison between the hybrid approach
and currently used models. This limits the risk of having other factors
influence the results. Such a situation could arise when we compare
the hybrid approach to single-analysis-based models tested in different
studies, as a difference in results could be explained by the datasets
(Sánchez-Paniagua et al. 2022a). We assess how this relates to and con-

tributes to current scientific work on this topic. Furthermore, we discuss
the limitations of our current study and how further research can extend
our work.

The first part of this section discusses the results of the different
experiments. The second part infers what these results tell about the
hybrid approach in general. The last part discourses the societal impact
of the study.

6.1. Proof of concept

Effectiveness

Our first sub-question is about the effectiveness of a hybrid approach.
The results show that the proof of concept, with an accuracy of 97.44%
and an F1 score of 96.56%, excels in distinguishing phishing websites
from benign ones, outperforming each individual model. This indi-

cates that a hybrid approach leads to better effectiveness than a single
analysis-based model. Notably, our results align with the recommen-

dations from Do et al. (2022), who advocated for exploring hybrid
approaches. However, this expectation is not uniformly confirmed by
other studies employing hybrid approaches that incorporate stacking
functions, such as Vecliuc et al. (2021) and Venugopal et al. (2021).
Their reported outcomes reveal equal or even reduced effectiveness of
the hybrid approach compared to the individual models they integrate.
We expect two factors to influence these contradictory results.

First of all, these studies show a larger variation in test score accu-

racy between the individual incorporated models. In particular, Venu-

gopal et al. (2021) show accuracies that vary between 73.8% and
99.98%. This gap might be too big for the weaker model to add any
value to the stronger model. A second reason for contradictory find-

ings by these studies and ours is the dataset employed. These studies
test the individual models on different datasets than the hybrid com-

binations. In contrast, our approach tested the proof of concept on the
same dataset as the individual models. This approach enhances the re-

alism of our findings as it ensures a direct comparison of performance
13

in identical conditions. Additionally, our finding aligns with the study
conducted by Feng et al. (2020b). They also conclude that a hybrid ap-

proach leads to higher effectiveness.

Speed of detection

Phishing detection solution should allow for real-time detection of
phishing websites. Therefore, the detection speed is a critical factor in
determining their practicable applicability. Feng et al. (2020b) suggest
that the speed of detection depends on the type of model incorporated
into the framework but do not provide an evaluation to support their
claim. In this work, we empirically investigated the detection speed of
our hybrid framework and the impact of employing a stacking function.
To this end, we measured the training and test time of each imple-

mented model and the different stacking functions. The results show
that the time it takes the stacking function is negligible compared to
that of the individual models. Therefore, we can deduce that a hybrid
framework can achieve a high detection speed if it incorporates fast
models. Sahoo et al. (2017) claim that fast detection models can clas-

sify a website in the order of milliseconds. Our results on the test data
show that our proof of concept can indeed do this on average in ∼22
ms, thus making our approach suitable for real-time detection.

Robustness

The third factor of applicability we assess with our proof of concept
is robustness. Specifically, we examine how a hybrid framework han-

dles a bypass attempt on one of its integrated models, where the model
mistakenly identifies a phishing website as legitimate. If not mitigated,
such a situation could result in users trusting a phishing website. To
explore this, we conducted simulations of two degrees of bypassing.

The first simulation represents a scenario in which a phishing at-

tacker attempts to deceive the model with minimal effort, making it
a more realistic representation. Our results indicate that this level of
bypassing results in only a minor performance decrease for the entire
architecture. The average drop in the F1 score was measured at 3.40%.
In contrast, a single-analysis-based model would drop to an F1 score of
0% under similar circumstances. This finding suggests that a hybrid ap-

proach can effectively handle the impact of a bypass and can be deemed
robust.

To further evaluate the proof of concept’s ability to withstand a by-

pass, we conducted a second bypass simulation in which the bypassed
individual model consistently classified all phishing websites as legit-

imate with full certainty. While this scenario is unlikely to occur in
reality, it represents the worst-case scenario for the impact of a bypass
on the overall detection algorithm. Our results show the importance of
selecting a stacking function based on the importance of different appli-

cability factors. While voting is not the most effective stacking function,
it is the most robust. Such a trade-off depends on the requirements of
the end-user.

With certain stacking functions, the proof of concept could still
achieve a better F1 score than the least effective model incorporated,
even in such an extreme bypass scenario. Additionally, it managed to
maintain sensible classifications with some other stacking functions, al-

though these did exhibit a substantial decrease in the F1 score. This
implies that, in practice, the proof of concept would not completely fail
its task when faced with a bypass.

While these findings align with the expectations of Do et al. (2022),
they also provide insights for the development of more robust mod-

els. However, several caveats should be considered. First, our bypass
simulations are theoretical and do not replicate a real-life hostile en-
vironment. Thus, the extent of realism in our simulation remains un-

R.J. van Geest, G. Cascavilla, J. Hulstijn et al.

certain. Second, in practice, the appearance of a bypass may vary as
hackers continually seek new methods, as concluded by Al Halaseh and
Alqatawna (2016). A phisher could even attempt to bypass two indi-

vidual models simultaneously. Our tests encompass scenarios where
the phisher attempts to bypass or completely fool one of the models,
whereas real-life situations often fall somewhere in between. Never-

theless, our belief is that assessing the framework under worst-case
scenarios is essential, and our full bypass simulation provides valuable
insights.

This comprehensive evaluation of robustness enhances our under-

standing of the hybrid approach’s capabilities and limitations, paving
the way for future research to develop even more resilient models.
Moreover, it is worth mentioning that the work from Feng et al. (2020b)

did not provide any experimentation on the robustness of the model. To
the best of our knowledge, our study is the first research to test it em-

pirically.

Stacking function

In exploring hybrid approaches, we recognized the importance of as-

sessing the performance of different stacking functions concerning ap-

plicability. While much attention has traditionally been placed on their
effectiveness, our study delves into the broader spectrum of applicabil-

ity considerations.

Regarding effectiveness, our findings reveal that Logistic regression
stands out as the top-performing stacking function. This observation can
be attributed to its capacity to capture correlations between individual
model predictions, enabling more effective utilization of their outputs.
Notably, this aligns with the reviewer’s point regarding the potential
advantages of Logistic regression. Notably, most other stacking func-

tions yielded nearly equivalent F1 scores. Interestingly, the Decision
tree, employed by Venugopal et al. (2021), also performed comparably
in our analysis. However, it is important to emphasize that their study
did not provide a comparative assessment of multiple stacking functions
or elaborate on the rationale behind their choice.

The applicability landscape shifts when considering robustness, a
key facet of our study. Some stacking functions exhibited limitations in
making reasonable classifications during the second-degree bypass sim-

ulation, indicating a lack of robustness. Consequently, we would not
recommend incorporating these less robust stacking functions into a
hybrid approach aimed at optimal applicability. Here, we encounter
a trade-off between effectiveness and robustness. While the mean and
Logistic regression stacking functions excel in effectiveness, voting
emerges as the more robust choice. The selection between these two
depends on the user’s priorities and requirements. If maximizing accu-

racy and F1 score is paramount, the mean or Logistic regression may be
preferred. Conversely, if maintaining a high degree of robustness, es-

pecially in the face of challenging scenarios like bypass attempts, is a
priority, voting becomes the preferred option.

In summary, our stacking function analysis underscores the need to
strike a balance between effectiveness and robustness when designing a
hybrid approach. The choice should be driven by the specific objectives
and preferences of the end-user, ensuring that the system can deliver op-

timal performance while remaining resilient under adverse conditions.

Approach

Our current approach fills an important gap in the literature by em-

phasizing applicability, robustness, and real-world viability. While we
acknowledge the potential for further research avenues, we believe that
our study’s comprehensive evaluation provides valuable insights for the
practical deployment of phishing detection systems.

Our approach offers several distinct advantages contributing to its
value in the problem domain. Firstly, we focus not only on the individ-

ual models but also on their combined applicability. This perspective
allows us to assess the effectiveness, speed, and robustness of the entire
hybrid framework, providing a holistic view of its real-world utility.
By emphasizing the broader spectrum of applicability, we move beyond
the traditional single-focus evaluation of model effectiveness. Moreover,
14

our study explicitly explores the robustness of the hybrid framework,
Computers & Security 139 (2024) 103736

demonstrating its resilience to bypass attempts, a crucial factor of real-

world applicability. This adds a layer of sophistication to our approach,
as it considers potential threats and adversarial scenarios.

Our research focused on investigating various stacking functions
to construct a practical and applicable hybrid framework for phish-

ing detection, driven by our aim to emphasize real-world utility and
ease of adoption. Stacking provides an effective means of combining
model outputs within our framework, aligning with our goal of obtain-

ing initial insights into the applicability of such a hybrid approach. This
pragmatic approach ensures our framework’s deployability in practi-

cal settings and helps us understand the impact of different stacking
functions on applicability. While advanced techniques like Multiview
Learning and dynamic aggregation functions hold the potential to en-

hance the framework’s effectiveness and robustness (Li et al. 2018), we
leave this avenue open for future research, recognizing the potential for
further exploration in enhancing technical aspects. Our current study
focused on building a foundational framework ready to address the ur-

gent issue of phishing detection.

6.2. Practical implications

Our study on the hybrid approach for automated phishing detec-

tion carries practical significance, going further than traditional effec-

tiveness evaluations. The implications of our findings extend beyond
academia, offering tangible benefits for users, organizations, and the
broader cybersecurity landscape.

Strengthened Cybersecurity Measures: At the core of our findings
lies an enhancement in the accuracy and speed of phishing detection
through our proposed hybrid framework. This translates to strength-

ened cybersecurity measures, a critical need as phishing attacks grow
in sophistication and frequency. For this reason, organizations and users
can trust that the automated system is more adept at accurately iden-

tifying and blocking phishing attempts, reducing the risk of successful
attacks.

Adaptability to Real-world Dynamics: Our emphasis on real-world
applicability ensures that the hybrid framework is not merely a theo-

retical construct but a practical solution tailored for different dynamic
environments. By evaluating the framework’s detection speed and ro-

bustness against bypassing attempts, our study provides a pragmatic
assessment of its adaptability. This adaptability is crucial, as it enables
the deployment of our proof of concept framework with the assurance
that it has been rigorously tested and optimized for the complexities of
real-world phishing scenarios.

Guidance for Decision-makers: Our study offers valuable guidance
for decision-makers by showcasing the robustness of the hybrid frame-

work against bypass attempts. This resilience instills confidence in users
and organizations, ensuring the system remains effective even when
confronted with sophisticated attempts to deceive it. Making informed
decisions about stacking functions further empowers decision-makers,
allowing them to align the system’s priorities with their own. This could
be maximizing accuracy or prioritizing robustness.

Seedbed for Future Developments: Our experiments provide more
than just a proof of concept; they serve as a seedbed for future devel-

opments in phishing detection systems. The demonstrated effectiveness
of the hybrid framework, outperforming individual models, serves as a
blueprint for developing new and more reliable phishing detection sys-

tems. The hybrid approach, with its combination of models and stacking
functions, opens avenues for innovation and exploration in the ever-

evolving landscape of cybersecurity.

Efficiency in Resource Utilization: Compared to the current state-of-

the-art models, our hybrid framework achieves higher accuracy within
a significantly reduced computational time. This efficiency in resource
utilization is not just a theoretical advantage but a practical one. It
positions our approach as a suitable solution for phishing detection,
aligning with the need for timely and accurate threat identification in

the face of evolving cyber threats.

R.J. van Geest, G. Cascavilla, J. Hulstijn et al.

In conclusion, the practical implications of our study and related
results suggest that our proposed hybrid framework provides tangible
benefits for users and organizations seeking to enhance their cyberse-

curity. The findings of our experiments offer practical insights that can
guide the selection, deployment, and ongoing improvement of auto-

mated phishing detection systems.

7. Conclusion

In conclusion, our research fills critical gaps in the field of phishing
detection by shifting the focus from effectiveness alone towards real-

world applicability and robustness. While effectiveness remains pivotal,
we recognize the need for a more holistic evaluation of phishing detec-

tion systems, considering multiple dimensions of applicability.

Our study introduces a comprehensive assessment framework, eval-

uating the effectiveness, speed of detection, and robustness of a hybrid
approach. Compared to the current state-of-the-art approach (Table 11),
our framework obtains a higher accuracy within half of the computa-

tional time. Additionally, we demonstrated the superiority of a hybrid
framework over single-analysis-based models, achieving higher accu-

racy and F1 scores in distinguishing phishing websites when combining
them. Furthermore, our research systematically examined robustness,
simulating bypass scenarios and showcasing the system’s resilience
against adversarial challenges. Notably, our study is the first to em-

pirically test robustness, underscoring its distinctive contribution to the
field of phishing detection.

Lastly, on top of the technical outcomes of our proposed approach,
we would like to underscore the implications of our research within
both societal and scientific contexts. In Section 2.1, we already intro-

duced some key contributions and societal impact. However, we want
to insist more on the importance of our research and findings in fight-

ing phishing. Phishing relies on human error, and according to IBM
(2023), phishing is one of the top attack vectors. Our thorough litera-

ture review in Section 3, revealed that most of the existing solutions for
phishing detection are URL-based, rendering them susceptible to eva-

sion through Generative Adversarial Networks (GANs). Consequently,
our research aims to explore and test innovative hybrid models for
phishing detection with the goal of enhancing both reliability and ro-

bustness. Our proposed approach has demonstrated to be reliable with
an accuracy of ∼97%. However, at the same time, our model exhibits
robustness against possible potential evasion strategies, as discussed in
Section 5.2.4. In a world where artificial intelligence continually ad-

vances, we think that the Robustness of our proposed approach assumes
a pivotal role as a distinctive asset in safeguarding users against phish-

ing attacks. Moreover, the resilience of our model represents a crucial
and valuable contribution to user protection in the evolving landscape
of cybersecurity.

8. Limitations and future work

We acknowledge that the findings presented in our work stem from
the analysis of a single proof of concept. While this specific implemen-

tation demonstrates applicability, it does not guarantee that the use of
other individual models yields similar results. In a further study, we
want to test an implementation of the framework with more models.
This would allow us to test and compare different compositions of the
hybrid approach. On implementing more models, we could also sim-

ulate bypassing multiple individual models at a time. For this further
study, multiple models exist that could add value when included in the
design (Abdelnabi et al. 2020; Bilot et al. 2022; Sánchez-Paniagua et al.
2022b).

Looking ahead, our findings pave the way for further research to
explore other dimensions of applicability, such as flexibility, adaptabil-

ity, and scalability of a system. In principle, these system requirements
are enhanced by a modular architecture, making it easier to swap mod-
15

els and adjust designs to different environments and needs. We propose
Computers & Security 139 (2024) 103736

to test the framework over a longer period of time, with additional
models, simulating complex bypass scenarios, and incorporating vari-

ous existing models to enhance the hybrid design. We expect that our
contribution extends beyond addressing current gaps, offering practical
insights for the future development and deployment of robust phishing
detection systems.

As phishing attacks continue to evolve, our multifaceted approach
to evaluating and improving detection systems becomes increasingly
relevant. By embracing a broader perspective of applicability, we are
better equipped to counter emerging threats, reinforcing the importance
of ongoing research in this critical cybersecurity domain.

CRediT authorship contribution statement

R.J. van Geest: Conceptualization, Data curation, Formal analysis,
Investigation, Methodology, Writing – original draft. G. Cascavilla:

Conceptualization, Data curation, Supervision, Validation, Writing –
original draft, Writing – review & editing. J. Hulstijn: Conceptualiza-

tion, Supervision, Validation, Writing – review & editing. N. Zannone:

Conceptualization, Supervision, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data will be made available on request.

References

Abbate, P., 2022. Internet crime report 2021. In: Federal Bureau of Investigation. bit .ly /
CrimeReport2021.

Abdelnabi, S., Krombholz, K., Fritz, M., 2020. Visualphishnet: zero-day phishing website
detection by visual similarity. In: Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security, pp. 1681–1698.

Afroz, S., Greenstadt, R., 2011. Phishzoo: detecting phishing websites by looking at them.
In: 2011 IEEE Fifth International Conference on Semantic Computing, pp. 368–375.

Al Halaseh, R., Alqatawna, J., 2016. Analyzing cybercrimes strategies: the case of phishing
attack. In: 2016 Cybersecurity and Cyberforensics Conference (CCC). IEEE, pp. 82–88.

Al-Ahmadi, S., Alotaibi, A., Alsaleh, O., 2022. Pdgan: phishing detection with generative
adversarial networks. IEEE Access 10, 42459–42468.

AlEroud, A., Karabatis, G., 2020. Bypassing detection of url-based phishing attacks using
generative adversarial deep neural networks. In: Proceedings of the Sixth Interna-

tional Workshop on Security and Privacy Analytics, pp. 53–60.

Alhogail, A., Alsabih, A., 2021. Applying machine learning and natural language process-

ing to detect phishing email. Comput. Secur. 110, 102414.

Aljofey, A., Jiang, Q., Qu, Q., Huang, M., Niyigena, J.-P., 2020. An effective phishing
detection model based on character level convolutional neural network from url.
Electronics 9 (9).

Aljofey, A., Jiang, Q., Rasool, A., Chen, H., Liu, W., Qu, Q., Wang, Y., 2022. An effective
detection approach for phishing websites using url and html features. Sci. Rep. 12
(1), 8842.

Allodi, L., Chotza, T., Panina, E., Zannone, N., 2020. The need for new antiphishing mea-

sures against spear-phishing attacks. IEEE Secur. Priv. 18 (2), 23–34.

Almousa, M., Furst, R., Anwar, M., 2022. Characterizing coding style of phishing web-

sites using machine learning techniques. In: 2022 Fourth International Conference on
Transdisciplinary AI (TransAI), pp. 101–105.

Alom, M.Z., Taha, T.M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M.S., Hasan, M.,
Van Essen, B.C., Awwal, A.A., Asari, V.K., 2019. A state-of-the-art survey on deep
learning theory and architectures. Electronics 8 (3), 292.

Alshingiti, Z., Alaqel, R., Al-Muhtadi, J., Haq, Q.E.U., Saleem, K., Faheem, M.H., 2023.
A deep learning-based phishing detection system using CNN, LSTM, and LSTM-CNN.
Electronics 12 (1).

Ariyadasa, Subhash, Fernando, Shantha, Fernando, Subha, 2021. Phishing Websites
Dataset.

Ariyadasa, Subhash, Fernando, Shantha, Fernando, Subha, 2022. Phishrepo-dataset.

Bilot, T., Geis, G., Hammi, B., 2022. Phishgnn: a phishing website detection framework
using graph neural networks.

Bu, S.-J., Cho, S.-B., 2021a. Deep character-level anomaly detection based on a convolu-
tional autoencoder for zero-day phishing url detection. Electronics 10 (12), 1492.

http://bit.ly/CrimeReport2021
http://bit.ly/CrimeReport2021
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib32FF2426714BB66602298EFE7FB887C8s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib32FF2426714BB66602298EFE7FB887C8s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib32FF2426714BB66602298EFE7FB887C8s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibEBBE4781BB8BD6F3B39D333119C6A65Bs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibEBBE4781BB8BD6F3B39D333119C6A65Bs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib64FA83C4D28312FC8DCF5E32B92DF08Es1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib64FA83C4D28312FC8DCF5E32B92DF08Es1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibF8EB716B6EDEAC4448E5D26655D14F86s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibF8EB716B6EDEAC4448E5D26655D14F86s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib24E145DCDF4F2BC74F457379B2A7D8BBs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib24E145DCDF4F2BC74F457379B2A7D8BBs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib24E145DCDF4F2BC74F457379B2A7D8BBs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibBFE70AE1D5D5EF7E2D14AD259E8315D8s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibBFE70AE1D5D5EF7E2D14AD259E8315D8s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib008F341753E98AC86F21BD904E246A36s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib008F341753E98AC86F21BD904E246A36s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib008F341753E98AC86F21BD904E246A36s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib1B428F1F33D6BFAD12A392B7F1CDB098s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib1B428F1F33D6BFAD12A392B7F1CDB098s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib1B428F1F33D6BFAD12A392B7F1CDB098s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib1EEA511F0FA91D5D964C1FD6C352C2E4s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib1EEA511F0FA91D5D964C1FD6C352C2E4s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib1616BD2BC9CE7C514D8436C4A78EE3D2s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib1616BD2BC9CE7C514D8436C4A78EE3D2s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib1616BD2BC9CE7C514D8436C4A78EE3D2s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibBFF3B84053068267CE2D28949FC94832s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibBFF3B84053068267CE2D28949FC94832s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibBFF3B84053068267CE2D28949FC94832s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib7EA22723F89B8862AB22A0E0FEB4BD8Fs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib7EA22723F89B8862AB22A0E0FEB4BD8Fs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib7EA22723F89B8862AB22A0E0FEB4BD8Fs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibB8C41EE92AD4F37753C2A5762E81EFEFs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibB8C41EE92AD4F37753C2A5762E81EFEFs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibC512D49239C5E25F798AB47348747533s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibE4F0CAA3E8912B9E643AEFDAFF7A7725s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibE4F0CAA3E8912B9E643AEFDAFF7A7725s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib00E874A755EFCA4C4BD78739F74FDFCCs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib00E874A755EFCA4C4BD78739F74FDFCCs1

R.J. van Geest, G. Cascavilla, J. Hulstijn et al.

Bu, S.-J., Cho, S.-B., 2021b. Integrating deep learning with first-order logic programmed
constraints for zero-day phishing attack detection. In: ICASSP 2021-2021 IEEE In-

ternational Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
pp. 2685–2689.

Bu, S.-J., Kim, H.-J., 2022. Optimized url feature selection based on genetic-algorithm-

embedded deep learning for phishing website detection. Electronics 11 (7), 1090.

Cao, Y., Han, W., Le, Y., 2008. Anti-phishing based on automated individual white-list. In:
Proceedings of the 4th ACM Workshop on Digital Identity Management, pp. 51–60.

Chiew, K.L., Chang, E.H., Tan, C.L., Abdullah, J., Yong, K.S.C., 2018. Building standard
offline anti-phishing dataset for benchmarking. Int. J. Eng. Technol. 7 (4.31), 7–14.

Chinnasamy, P., Kumaresan, N., Selvaraj, R., Dhanasekaran, S., Ramprathap, K., Boddu,
S., 2022. An efficient phishing attack detection using machine learning algorithms.
In: 2022 International Conference on Advancements in Smart, Secure and Intelligent
Computing (ASSIC), pp. 1–6.

Do, N.Q., Selamat, A., Krejcar, O., Herrera-Viedma, E., Fujita, H., 2022. Deep learning for
phishing detection: taxonomy, current challenges and future directions. IEEE Access.

Dunlop, M., Groat, S., Shelly, D., 2010. Goldphish: using images for content-based phish-

ing analysis. In: 2010 Fifth International Conference on Internet Monitoring and
Protection. IEEE, pp. 123–128.

Dutta, A.K., 2021. Detecting phishing websites using machine learning technique. PLoS
ONE 16 (10), e0258361.

Ejaz, A., Mian, A.N., Manzoor, S., 2023. Life-long phishing attack detection using contin-

ual learning. Sci. Rep. 13 (1), 11488.

Elsadig, M., Ibrahim, A.O., Basheer, S., Alohali, M.A., Alshunaifi, S., Alqahtani, H., Al-

harbi, N., Nagmeldin, W., 2022. Intelligent deep machine learning cyber phishing url
detection based on bert features extraction. Electronics 11 (22).

Feng, F., Zhou, Q., Shen, Z., Yang, X., Han, L., Wang, J., 2018. The application of a novel
neural network in the detection of phishing websites. J. Ambient Intell. Humaniz.
Comput., 1–15.

Feng, J., Zhang, Y., Qiao, Y., 2020a. A detection method for phishing web page using
dom-based doc2vec model. J. Comput. Inf. Technol. 28, 19–31.

Feng, J., Zou, L., Ye, O., Han, J., 2020b. Web2vec: phishing webpage detection
method based on multidimensional features driven by deep learning. IEEE Access 8,
221214–221224.

Hou, Y.-T., Chang, Y., Chen, T., Laih, C.-S., Chen, C.-M., 2010. Malicious web content
detection by machine learning. Expert Syst. Appl. 37 (1), 55–60.

IBM, 2023. Cost of a data breach report. https://www .ibm .com /downloads /cas /
E3G5JMBP.

Kexin, X., Liang, B., Rai, A., Chan, A., 2021. URL classification with deep learning.

Khandelwal, S., Das, R., 2022. Phishing detection using computer vision. In: Computer
Networks and Inventive Communication Technologies. Springer, pp. 113–130.

Kim, T., Park, N., Hong, J., Kim, S.-W., 2022. Phishing url detection: a network-based
approach robust to evasion. In: Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’22. Association for Computing Ma-

chinery, pp. 1769–1782.

Le, H., Pham, Q., Sahoo, D., Hoi, S.C., 2018. Urlnet: learning a url representation with
deep learning for malicious url detection, arXiv preprint arXiv :1802 .03162.

Le, Q., Mikolov, T., 2014. Distributed representations of sentences and documents. In:
International Conference on Machine Learning. PMLR, pp. 1188–1196.

LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521 (7553), 436–444.

Lee, J., Ye, P., Liu, R., Divakaran, D.M., Chan, M.C., 2020. Building robust phishing de-

tection system: an empirical analysis. In: NDSS MADWeb.

Li, Y., Yang, M., Zhang, Z., 2018. A survey of multi-view representation learning. IEEE
Trans. Knowl. Data Eng. 31 (10), 1863–1883.

Lin, Y., Liu, R., Divakaran, D.M., Ng, J.Y., Chan, Q.Z., Lu, Y., Si, Y., Zhang, F., Dong,
J.S., 2021. Phishpedia: a hybrid deep learning based approach to visually identify
phishing webpages. In: USENIX Security Symposium.

Liu, E., 2021. Phishing webpage classification method based on joint features. In: 2021
3rd International Conference on Applied Machine Learning (ICAML), pp. 24–27.

Liu, R., Lin, Y., Yang, X., Ng, S.H., Divakaran, D.M., Dong, J.S., 2022. Inferring phish-

ing intention via webpage appearance and dynamics: a deep vision based approach.
In: 31st USENIX Security Symposium (USENIX Security 22). USENIX Association,
pp. 1633–1650.

Maneriker, P., Stokes, J.W., Lazo, E.G., Carutasu, D., Tajaddodianfar, F., Gururajan, A.,
2021. Urltran: improving phishing url detection using transformers. In: MILCOM
2021-2021 IEEE Military Communications Conference (MILCOM). IEEE, pp. 197–204.

Morgan, S., 2020. Cybercrime to cost the world $10.5 trillion annually by 2025. Cyber-

crime magazine. bit .ly /CybercrimeMagazine.

Odeh, A., Keshta, I., Abdelfattah, E., 2021. Phiboost-anovel phishing detection model
using adaptive boosting approach. Jordanian J. Comput. Inf. Technol. 7 (01).

Oest, A., Safaei, Y., Zhang, P., Wardman, B., Tyers, K., Shoshitaishvili, Y., Doupé, A.,
2020. {PhishTime}: continuous longitudinal measurement of the effectiveness of
anti-phishing blacklists. In: 29th USENIX Security Symposium (USENIX Security 20),
pp. 379–396.

Opara, C., Wei, B., Chen, Y., 2020. Htmlphish: enabling phishing web page detection
by applying deep learning techniques on html analysis. In: 2020 International Joint
Conference on Neural Networks (IJCNN). IEEE, pp. 1–8.

Opara, C., Chen, Y., Wei, B., 2023. Look before you leap: detecting phishing web pages
by exploiting raw url and html characteristics. Expert Syst. Appl. 236, 121183.
16

OpenPhish, 2022. Openphish - phishing intelligence. https://openphish .com.
Computers & Security 139 (2024) 103736

Ouyang, L., Zhang, Y., 2021. Phishing web page detection with html-level graph neural
network. In: 2021 IEEE 20th International Conference on Trust, Security and Privacy
in Computing and Communications (TrustCom). IEEE, pp. 952–958.

Ozcan, A., Catal, C., Donmez, E., Senturk, B., 2023. A hybrid dnn–lstm model for detecting
phishing urls. Neural Comput. Appl. 35 (7), 4957–4973.

Peng, P., Xu, C., Quinn, L., Hu, H., Viswanath, B., Wang, G., 2019. What happens after you
leak your password: understanding credential sharing on phishing sites. In: Proceed-

ings of the 2019 ACM Asia Conference on Computer and Communications Security,
pp. 181–192.

PhishTank, 2022. Phishtank - join the fight against phishing. https://www .phishtank .
com/.

Richardson, L., 2022. Beautiful soup library. bit .ly /BeautifulSoup4.

Ripa, S.P., Islam, F., Arifuzzaman, M., 2021. The emergence threat of phishing attack and
the detection techniques using machine learning models. In: 2021 International Con-

ference on Automation, Control and Mechatronics for Industry 4.0 (ACMI), pp. 1–6.

Sabir, B., Babar, M., Gaire, R., Abuadbba, A., 2022. Reliability and robustness analysis
of machine learning based phishing url detectors. IEEE Trans. Dependable Secure
Comput. 01, 1–18.

Sahingoz, O.K., Buber, E., Demir, O., Diri, B., 2019. Machine learning based phishing
detection from urls. Expert Syst. Appl. 117, 345–357.

Sahoo, D., Liu, C., Hoi, S.C., 2017. Malicious url detection using machine learning: a
survey, arXiv preprint arXiv :1701 .07179.

Sánchez-Paniagua, M., Fernández, E.F., Alegre, E., Al-Nabki, W., González-Castro, V.,
2022a. Phishing url detection: a real-case scenario through login urls. IEEE Access 10,
42949–42960.

Sánchez-Paniagua, M., Fidalgo, E., Alegre, E., Alaiz-Rodríguez, R., 2022b. Phishing web-

sites detection using a novel multipurpose dataset and web technologies features.
Expert Syst. Appl. 207, 118010.

Shah, R.K., Hasan, M.K., Islam, S., Khan, A., Ghazal, T.M., Khan, A.N., 2022. Detect
phishing website by fuzzy multi-criteria decision making. In: 2022 1st International
Conference on AI in Cybersecurity (ICAIC), pp. 1–8.

Su, Y., 2020. Research on website phishing detection based on LSTM RNN. In: 2020
IEEE 4th Information Technology, Networking, Electronic and Automation Control
Conference (ITNEC), vol. 1, pp. 284–288.

Tang, L., Mahmoud, Q.H., 2021. A deep learning-based framework for phishing website
detection. IEEE Access 10, 1509–1521.

Teraguchi, N.C.R.L.Y., Mitchell, J.C., 2004. Client-Side Defense Against Web-Based Iden-

tity Theft. Computer Science Department, Stanford University. Available: http://

crypto .stanford .edu /SpoofGuard /webspoof .pdf.

Valiyaveedu, N., Jamal, S., Reju, R., Murali, V., Nithin, K., 2021. Survey and analysis on
ai based phishing detection techniques. In: 2021 International Conference on Com-

munication. In: Control and Information Sciences (ICCISc), vol. 1. IEEE, pp. 1–6.

Van Dooremaal, B., Burda, P., Allodi, L., Zannone, N., 2021. Combining text and visual
features to improve the identification of cloned webpages for early phishing detec-

tion. In: The 16th International Conference on Availability, Reliability and Security,
pp. 1–10.

Vecliuc, D.-D., Artene, C.-G., Tibeică, M.-N., Leon, F., 2021. An experimental study of ma-

chine learning for phishing detection. In: Asian Conference on Intelligent Information
and Database Systems. Springer, pp. 427–439.

Venugopal, S., Panale, S.Y., Agarwal, M., Kashyap, R., Ananthanagu, U., 2021. Detection
of malicious urls through an ensemble of machine learning techniques. In: 2021 IEEE
Asia-Pacific Conference on Computer Science and Data Engineering (CSDE). IEEE,
pp. 1–6.

Vishva, E.S., Aju, D., 2021. Phisher fighter: website phishing detection system based on
url and term frequency-inverse document frequency values. J. Cyber Secur. Mobil. 11
(1), 83–104.

Wang, G., 2010. Verilogo: proactive phishing detection via logo recognition.

Wang, W., Zhang, F., Luo, X., Zhang, S., 2019. Pdrcnn: precise phishing detection with
recurrent convolutional neural networks. Secur. Commun. Netw. 2019.

Wei, W., Ke, Q., Nowak, J., Korytkowski, M., Scherer, R., Woźniak, M., 2020. Accurate
and fast url phishing detector: a convolutional neural network approach. Comput.
Netw. 178, 107275.

Xiang, G., Hong, J., Rose, C.P., Cranor, L., 2011. Cantina+ a feature-rich machine learning
framework for detecting phishing web sites. ACM Trans. Inf. Syst. Secur. 14 (2), 1–28.

Xiao, X., Xiao, W., Zhang, D., Zhang, B., Hu, G., Li, Q., Xia, S., 2021. Phishing websites
detection via CNN and multi-head self-attention on imbalanced datasets. Comput.
Secur. 108, 102372.

Yang, R., Zheng, K., Wu, B., Wu, C., Wang, X., 2021. Phishing website detection based on
deep convolutional neural network and random forest ensemble learning. Sensors 21
(24), 8281.

Zhang, H., Yu, Z., Dai, G., Huang, G., Ding, Y., Xie, Y., Wang, Y., 2022. Understanding
GNN computational graph: a coordinated computation, IO, and memory perspective.
In: Marculescu, D., Chi, Y., Wu, C. (Eds.), Proceedings of Machine Learning and Sys-

tems, vol. 4, pp. 467–484.

Zhang, Y., Hong, J.I., Cranor, L.F., 2007. Cantina: a content-based approach to detecting
phishing web sites. In: Proceedings of the 16th International Conference on World
Wide Web, pp. 639–648.

Job van Geest is Data Scientist with experience in leading teams and collaborat-
ing with university department heads. He excels at simplifying complex technological

http://refhub.elsevier.com/S0167-4048(24)00037-3/bibA7E7BA480F09F1454A1F51364B0CD0BCs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibA7E7BA480F09F1454A1F51364B0CD0BCs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibA7E7BA480F09F1454A1F51364B0CD0BCs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibA7E7BA480F09F1454A1F51364B0CD0BCs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib762275D8BCB3CD35248C0321590EDA9Es1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib762275D8BCB3CD35248C0321590EDA9Es1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibCA62A87E19F1AE60AA3BD4ABB8B925ECs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibCA62A87E19F1AE60AA3BD4ABB8B925ECs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib9B42288310F39AC9FFC44211D5813D37s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib9B42288310F39AC9FFC44211D5813D37s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibA19562ED6C5F0E061146271249B880E1s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibA19562ED6C5F0E061146271249B880E1s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibA19562ED6C5F0E061146271249B880E1s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibA19562ED6C5F0E061146271249B880E1s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibCDC5CAE47A59576316AA3EAE0EF4B22Fs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibCDC5CAE47A59576316AA3EAE0EF4B22Fs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibB2C4EC528EC5C1042E94032ECA6D959Cs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibB2C4EC528EC5C1042E94032ECA6D959Cs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibB2C4EC528EC5C1042E94032ECA6D959Cs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibA39C925C250AC9D9742090682B0FA477s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibA39C925C250AC9D9742090682B0FA477s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibE362E4AD34D8C68B6C4436FA39935D5As1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibE362E4AD34D8C68B6C4436FA39935D5As1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib17FE1DE5FB09810E9D63818A65A4182Bs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib17FE1DE5FB09810E9D63818A65A4182Bs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib17FE1DE5FB09810E9D63818A65A4182Bs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib01D32461921306E02A8C96B179127591s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib01D32461921306E02A8C96B179127591s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib01D32461921306E02A8C96B179127591s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibE9C8DB32054FD2F56B1593C08E64CEBAs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibE9C8DB32054FD2F56B1593C08E64CEBAs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib67CC6F865C35D760DD1201445CBE48ACs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib67CC6F865C35D760DD1201445CBE48ACs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib67CC6F865C35D760DD1201445CBE48ACs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibDC6ABFE71CA0FB0FE60AD8A991397032s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibDC6ABFE71CA0FB0FE60AD8A991397032s1
https://www.ibm.com/downloads/cas/E3G5JMBP
https://www.ibm.com/downloads/cas/E3G5JMBP
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib2C63636CB7B2A10880E76D6041DC39E4s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibA72B67FC091266989FD3507DCE8C493Fs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibA72B67FC091266989FD3507DCE8C493Fs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib5AF5B8BB538A9DA3C0C43AACF281B62Ds1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib5AF5B8BB538A9DA3C0C43AACF281B62Ds1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib5AF5B8BB538A9DA3C0C43AACF281B62Ds1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib5AF5B8BB538A9DA3C0C43AACF281B62Ds1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib599D600181C8A31C967E08A9F51B0879s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib599D600181C8A31C967E08A9F51B0879s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib8F769FAA416F907A8EF8877B1778D963s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib8F769FAA416F907A8EF8877B1778D963s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibDC27EB94C773F24746A96FC0013D6A0Ds1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib3457FCB59C987658F8678DA52E100818s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib3457FCB59C987658F8678DA52E100818s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib81A4BE15A59425C7863D5D9EC867AEA3s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib81A4BE15A59425C7863D5D9EC867AEA3s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibD50C3EE2CB4BF8B992A5E8561C55B357s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibD50C3EE2CB4BF8B992A5E8561C55B357s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibD50C3EE2CB4BF8B992A5E8561C55B357s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib31EDFC9B075B9A312263D00A571507DEs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib31EDFC9B075B9A312263D00A571507DEs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib590B894FFC8ACFDD29E51176E3E4314Ds1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib590B894FFC8ACFDD29E51176E3E4314Ds1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib590B894FFC8ACFDD29E51176E3E4314Ds1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib590B894FFC8ACFDD29E51176E3E4314Ds1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib53D5416E12E4716427A68B2C3324881Ds1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib53D5416E12E4716427A68B2C3324881Ds1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib53D5416E12E4716427A68B2C3324881Ds1
http://bit.ly/CybercrimeMagazine
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibCBF05D3C9C0DC966E68CC3CAEC4C0101s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibCBF05D3C9C0DC966E68CC3CAEC4C0101s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib7C53091F0B34496FCFC837024B83428Fs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib7C53091F0B34496FCFC837024B83428Fs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib7C53091F0B34496FCFC837024B83428Fs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib7C53091F0B34496FCFC837024B83428Fs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib83B394FDF435D8DBA2FA3E212F17F0DEs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib83B394FDF435D8DBA2FA3E212F17F0DEs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib83B394FDF435D8DBA2FA3E212F17F0DEs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib04F9DB05BF44C89D331ACBA28C767E4Fs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib04F9DB05BF44C89D331ACBA28C767E4Fs1
https://openphish.com
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib42FCB3503D4845BCFD91405F4E10F8A5s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib42FCB3503D4845BCFD91405F4E10F8A5s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib42FCB3503D4845BCFD91405F4E10F8A5s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib2DC6BBFC335AA850A9D96E08D6AC257Bs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib2DC6BBFC335AA850A9D96E08D6AC257Bs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibB833966D9C123D50915849329222EC23s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibB833966D9C123D50915849329222EC23s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibB833966D9C123D50915849329222EC23s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibB833966D9C123D50915849329222EC23s1
https://www.phishtank.com/
https://www.phishtank.com/
http://bit.ly/BeautifulSoup4
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibA4FFDA10B9B4D58F3459A45C55DFC47As1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibA4FFDA10B9B4D58F3459A45C55DFC47As1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibA4FFDA10B9B4D58F3459A45C55DFC47As1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib3151FEA370D08D1A953293400BA7E729s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib3151FEA370D08D1A953293400BA7E729s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib3151FEA370D08D1A953293400BA7E729s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib7316F45FE5F5D09030A65F519A2CF45Fs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib7316F45FE5F5D09030A65F519A2CF45Fs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibDFFBF4FB5248DC9DB4D82C477EF46E99s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibDFFBF4FB5248DC9DB4D82C477EF46E99s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib9AD853A75A888564384D5B14B876A062s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib9AD853A75A888564384D5B14B876A062s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib9AD853A75A888564384D5B14B876A062s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib95C5262775650640E496CECAF60D89A7s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib95C5262775650640E496CECAF60D89A7s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib95C5262775650640E496CECAF60D89A7s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibADEE52D6C4F1C449B5F73D7575A6C9CAs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibADEE52D6C4F1C449B5F73D7575A6C9CAs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibADEE52D6C4F1C449B5F73D7575A6C9CAs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib8ECC7F57B65429D17FF9E0CC4B31A834s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib8ECC7F57B65429D17FF9E0CC4B31A834s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib8ECC7F57B65429D17FF9E0CC4B31A834s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib0DEE2611CB30D17FF92B1B7DE81B3B09s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib0DEE2611CB30D17FF92B1B7DE81B3B09s1
http://crypto.stanford.edu/SpoofGuard/webspoof.pdf
http://crypto.stanford.edu/SpoofGuard/webspoof.pdf
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib8BBBDF209A6CC4DEAC5DE2174E11B425s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib8BBBDF209A6CC4DEAC5DE2174E11B425s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib8BBBDF209A6CC4DEAC5DE2174E11B425s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibB1729C49409B23CD6AC0C90E391C2460s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibB1729C49409B23CD6AC0C90E391C2460s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibB1729C49409B23CD6AC0C90E391C2460s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibB1729C49409B23CD6AC0C90E391C2460s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibD00EBDA7E784BAF8E8063F0A300273A6s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibD00EBDA7E784BAF8E8063F0A300273A6s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibD00EBDA7E784BAF8E8063F0A300273A6s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib6DA38384524E895CE44148838EF3D6AFs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib6DA38384524E895CE44148838EF3D6AFs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib6DA38384524E895CE44148838EF3D6AFs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib6DA38384524E895CE44148838EF3D6AFs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib6E4AFC76FAAF37ACC4694CBE72922F2Cs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib6E4AFC76FAAF37ACC4694CBE72922F2Cs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib6E4AFC76FAAF37ACC4694CBE72922F2Cs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibA63369C6A67E0781F0FFCDB005129863s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib480306C5041C028ACCEA9F66404A3C93s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib480306C5041C028ACCEA9F66404A3C93s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib71974143AE4C7A165136C1C03DB3E4A7s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib71974143AE4C7A165136C1C03DB3E4A7s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib71974143AE4C7A165136C1C03DB3E4A7s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib6FAEC6BDB5F21C405D4B67F983B579A4s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib6FAEC6BDB5F21C405D4B67F983B579A4s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibCDE0C0FC0567DA70E522179F134E6EF9s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibCDE0C0FC0567DA70E522179F134E6EF9s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibCDE0C0FC0567DA70E522179F134E6EF9s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib18D59FCEE5C364797340546B3BF1D02Es1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib18D59FCEE5C364797340546B3BF1D02Es1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib18D59FCEE5C364797340546B3BF1D02Es1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib061AF9175E020176AB069A6A7DA7DCD3s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib061AF9175E020176AB069A6A7DA7DCD3s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib061AF9175E020176AB069A6A7DA7DCD3s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bib061AF9175E020176AB069A6A7DA7DCD3s1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibC7460EBE14ED7F40A3B83B370CD2619Bs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibC7460EBE14ED7F40A3B83B370CD2619Bs1
http://refhub.elsevier.com/S0167-4048(24)00037-3/bibC7460EBE14ED7F40A3B83B370CD2619Bs1

Computers & Security 139 (2024) 103736R.J. van Geest, G. Cascavilla, J. Hulstijn et al.

challenges into easily applicable solutions. What sets him apart is his combination of
communicative skills and analytical thinking. He has a track record of successful lead-

ership and communication in various team settings, including leading a 500+ members
student association.

His recent thesis work involved developing a novel deep learning framework for au-

tomated phishing detection, which is currently submitted for publication in a Q1 scimago
journal.

He thrives in collaborative environments and value open-mindesness, resiliency, and
honesty in himself and others.

Giuseppe Cascavilla is a Assistant Professor researcher at the Eindhoven University
of Technology, Jheronimus Academy of Data Science, in s’Hertogenbosch, The Nether-

lands. Giuseppe completed his Ph.D. in Sapienza - University of Rome in 2018 with a
thesis “Privacy Issues in Online Social Networks”. His research interests lie mainly in
monitoring cyber criminal activities surface-deep-dark web, cyber threat intelligence,
protection of cyber-physical spaces, user profiling from social media activities, and rei-

dentifying personal emotions. Giuseppe has been an active contributor and researcher
in many EU FP7 and H2020 projects, such as ANITA project focusing on evolutionary
and collaborative software technology for digital and cyber crime- fighting, PRoTECT to
strengthen local authorities’ capabilities in Public Protection, VISOR project for smart
event safety, CRYMSON for the protection of Rotterdam Harbor, Marit-D, and more.

Joris Hulstijn is a researcher with a background in information systems and artificial
intelligence. My research concerns the topic of Responsible AI. In addition, he is also

interested in model-based auditing, continuous control monitoring and their applications,
for instance in regulatory compliance. He is an active researcher in AI and Law in general,
with applications in cyber security, computational auditing and regulatory supervision. I
am supervising the PhD project of Kartik Chawla, which aims to build privacy rights into
service contracts, in order to give users more control over their personal data.

Recently he has joined the ICR group at University of Luxembourg, with Leon van
der Torre and Réka Markovich, among many others. He is working in the EXPECTATION
project (Personalized Explainable Artificial Intelligence), with colleagues Amro Najjar and
Igor Tchappi. The project focuses on the personalization of Explainable AI, and on the
ability to provide explanations in decentralized environments, where data and algorithms
are distributed over various actors. The application domain is food and health.

Nicola Zannone is an Associate Professor and Chair of the Data Protection research
group, which is part of the Security cluster, in the Department of Mathematics and Com-

puter Science at the Eindhoven University of Technology (TU/e). He received his PhD
degree in Computer Science at the University of Trento in 2007 with a Ph.D. thesis on se-

curity requirements engineering, under the supervision of Prof. Fabio Massacci and Prof.
John Mylopoulos. Before joining TU/e in 2008, he held a position of young researcher at
the Consorzio Interuniversitario Nazionale per l’Informatica in 2006-2007 and a post-doc
position at the Department of Computer Science of the University of Toronto in 2007-

2008. During his PhD, he visited Center for Secure Information Systems at George Mason

University in 2005 and IBM Zurich Research Laboratory in 2006. He is a member of the
steering committee of the Security next generation (CSng), a community building activity
of several Dutch universities focusing on cyber security.
17

http://dp.win.tue.nl/
https://security1.win.tue.nl/
http://www.unitn.it/
http://www.ing.unitn.it/~massacci/
http://www.cs.toronto.edu/~jm/
http://www.consorzio-cini.it/
http://www.cs.toronto.edu/
http://www.utoronto.ca/
http://csis.gmu.edu/
http://www.gmu.edu/
http://www.gmu.edu/
http://www.zurich.ibm.com/
https://csng.nl/

	The applicability of a hybrid framework for automated phishing detection
	1 Introduction
	2 Research contribution
	2.1 Societal impact

	3 Background & related work
	3.1 Applicability
	3.2 Hybrid approach
	3.3 Existing hybrid approaches
	3.4 Gaps in literature

	4 Experimental setup
	4.1 Framework
	4.2 Proof of concept

	5 Experiment
	5.1 Dataset
	5.2 Experiments
	5.2.1 Experiment 1: effectiveness
	5.2.2 Experiment 2: stacking function
	5.2.3 Experiment 3: time
	5.2.4 Experiment 4: robustness

	5.3 Comparison to the state of the art

	6 Discussion
	6.1 Proof of concept
	6.2 Practical implications

	7 Conclusion
	8 Limitations and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

