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Phishing attacks are a critical and escalating cybersecurity threat in the modern digital landscape. As 
cybercriminals continually adapt their techniques, automated phishing detection systems have become essential 
for safeguarding Internet users. However, many current systems rely on single-analysis models, making them 
vulnerable to sophisticated bypass attempts by hackers. This research delves into the potential of hybrid 
approaches, which combine multiple models to enhance both the robustness and effectiveness of phishing 
detection. It highlights existing hybrid models’ limitations that focus primarily on effectiveness while ignoring 
broader applicability. To address these gaps, we introduce a novel framework explicitly designed for applicability 
in the real world, which poses the foundation for practical and robust phishing detection architectures. 
We develop a proof of concept to evaluate its effectiveness, robustness, and detection speed. Additionally, 
we introduce an innovative methodology for simulating bypass attacks on single-analysis base models. Our 
experiments demonstrate that the proposed hybrid framework outperforms individual models, displaying higher 
effectiveness, robustness against bypassing attempts, and real-time detection capabilities. Our proof of concept 
achieves an accuracy of 97.44% thereby outperforming the current state-of-the-art approach while requiring less 
computational time. The results provide insights into the multifaceted factors of hybrid models, extending beyond 
mere effectiveness, and emphasize the importance of holistic applicability in hybrid approaches to address the 
critical need for robust defenses against phishing attacks.
1. Introduction

Cybercrime is a major problem that keeps growing. Cybersecurity 
Ventures (Morgan 2020) expects the global cybercrime costs to be over 
$10 trillion by 2025, which would be the history largest transfer in eco-

nomic wealth. Among the different types of cybercrimes, phishing is 
the most common cyber attack according to Abbate (2022). A phish-

ing attack aims to inject malware or obtain sensitive data, such as 
login credentials, from Internet users. These objectives make phishing a 
valuable weapon for ransomware attacks and cyber espionage posing a 
significant threat to all Internet users. On the other hand, many Inter-

net users do not have the experience or skills to distinguish a phishing 
website from a legitimate one (Peng et al., 2019). This inability keeps 
increasing since attackers employ increasingly sophisticated techniques 
to avoid detection (Al Halaseh and Alqatawna 2016; Allodi et al. 2020). 
Therefore, we need novel solutions to protect Internet users against the 
dangers of phishing.
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Existing research has suggested various solutions for the automated 
detection of phishing websites, ranging from block-listing (Cao et al. 
2008) and heuristic-based methods (Zhang et al. 2007) to more ad-

vanced machine learning (Zhang et al. 2007) and deep learning ap-

proaches (Do et al. 2022). In particular, the latter have the potential to 
effectively distinguish phishing websites from legitimate ones. They can 
classify phishing websites with high accuracy within a short time (Tang 
and Mahmoud 2021). More interestingly, they can process unstructured 
data types such as images and texts. This factor is useful for automated 
phishing detection as the best-performing algorithms analyze only a 
single website feature, being the URL (Le et al. 2018), HTML (Opara 
et al. 2020) or a screenshot (Abdelnabi et al. 2020). Although these 
single analysis-based models achieve high accuracy, they have signifi-

cant limitations. Research has exposed their vulnerability to bypassing 
(AlEroud and Karabatis 2020), meaning a phisher can fool the detection 
algorithm by creating adversarial phishing websites that exploit the al-

gorithm’s flaws. The main drawback lies in the fact that these models 
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only analyze a single website feature, making it easier for the phisher 
to manipulate and bypass the detection.

To address these limitations, Do et al. (2022) propose a hybrid ap-

proach combining different models. Each algorithm has strengths and 
weaknesses, so their combination can leverage the strengths of each 
model and mitigate their weaknesses. Furthermore, it allows for more 
comprehensive website analysis, as the different models can each assess 
a different website feature. Altogether, this would result in more robust 
phishing detection models.

Some studies have already combined two or multiple single analysis-

based models, revealing improved performance (Feng et al. 2020b; Van 
Dooremaal et al. 2021; Venugopal et al. 2021). Thereby, they show the 
potential benefit of a hybrid approach. However, these studies measure 
only the increased accuracy of their approach, i.e., effectiveness. How-

ever, they ignore other relevant factors for a phishing detection model 
to be applicable in the real world.

From the literature, we identify six factors for a real-world model to 
be applicable in practice (Do et al. 2022; Sahoo et al. 2017): effective-

ness, speed of detection, scalability, adaptation, flexibility, and robustness. 
Together, these factors are the most important for designing and build-

ing a real-world automated phishing detection algorithm. Whereas an 
ideal model would satisfy all these factors, a more realistic one requires 
a trade-off based on the desired results. These desired results may vary 
based on the type of application and end-user (Sahoo et al. 2017). From 
the six applicability factors, the current existing hybrid approaches only 
measure effectiveness (Feng et al. 2020b; Vecliuc et al. 2021; Venugopal 
et al. 2021), creating a challenge in gauging the comprehensive appli-

cability of such an approach. Additionally, there is a lack of agreement 
among these studies regarding the extent to which the hybrid approach 
improves effectiveness.

This study aims to bridge this gap by assessing the practical appli-

cability of a hybrid approach for detecting phishing pages. We do so by 
building a framework that focuses on the six factors of applicability. We 
meet the call for more robust models while also considering the other 
factors required for a real-world detection algorithm. The goal of this 
study translated into the following research question:

RQ: To what extent is a hybrid framework suitable for automated phish-

ing detection?

We answer this research question with a two-fold approach. First, 
we construct a general hybrid framework that takes all factors of ap-

plicability into account. Secondly, we build a proof of concept of the 
hybrid framework and test it on effectiveness, robustness, and detec-

tion speed. We test for only these three factors as the other three factors 
of applicability (scalability, adaptation, flexibility) are, in principle, en-

hanced by a modular architecture. Furthermore, these factors depend 
on the factors of the individual models. Therefore, these factors cannot 
be measured explicitly and fall outside the scope of our experiments. 
This results in the following sub-questions:

RQ1: How effective is a hybrid framework for automated phishing detec-

tion?

RQ2: What is the speed of detection of a hybrid framework to detect 
phishing in an automated system?

RQ3: To what degree is a hybrid framework for automated phishing de-

tection robust to bypassing efforts?

This study assesses effectiveness as it is the applicability factor used 
by other studies. Furthermore, effectiveness regards the core task of a 
phishing detection algorithm: distinguishing phishing websites from le-

gitimate ones. We add robustness, as the literature urges the importance 
of this applicability factor because of the risk of bypassing (Do et al. 
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2022). Finally, we measure detection speed. In particular, we are inter-
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ested in the difference in detection time between the hybrid approach 
and the individual models incorporated.

Our framework combines predictions of different single analysis-

based models. To do so, we use a stacking function. This function takes 
each model’s prediction as input and mathematically combines them 
into one prediction. By applying various stacking functions to the proof 
of concept, we determine which stacking function yields the highest ap-

plicability of a hybrid framework and works best for detecting phishing 
websites.

RQ4: Which stacking function performs best in a hybrid framework for 
automated phishing detection?

This research contributes to the field of automated phishing detection 
by advancing our understanding of hybrid approaches, assessing their 
applicability, and evaluating their potential to enhance the robustness 
of detection models. Fig. 1 shows a schematic overview of the frame-

work. The study introduces a novel bypass simulation method, revealing 
the hybrid approach’s resilience against sophisticated phishing attempts 
and reducing internet users’ vulnerability to such attacks. By examining 
multiple applicability factors, including robustness and detection speed, 
the research offers a more comprehensive perspective on the strengths 
and limitations of hybrid models. We devise and test a proof of con-

cept consisting of three specific deep learning models, each analyzing 
a different website feature: URL, HTML content, and HTML DOM tree 
structure. The URL-based model processes the URL as a piece of text. 
It assesses the interrelationships between the words and the separate 
characters in the URL (Le et al. 2018). The HTML content-based model 
uses a similar approach to analyze the HTML code (Opara et al. 2020). 
For the HTML DOM tree analysis, the model first extracts the DOM tree 
structure out of the HTML and then analyses this as a text sequence 
(Feng et al. 2020a). Each model makes a prediction for each website in 
the test set, which we use as input for various stacking functions. We 
assess the effectiveness by how well the model classifies websites it has 
never seen before. The time it takes the proof of concept to make pre-

dictions shows us the detection speed. For robustness, we simulate a 
bypass of one of the incorporated models. We measure the impact this 
has on the performance of the proof of concept. Based on the results of 
these tests, we determine the applicability of the proof of concept and 
the framework. Thus, our framework provides a general basis for appli-

cable and robust phishing detection architectures. Our findings provide 
practical implications for strengthening cybersecurity defenses and pose 
the foundation for developing more effective and resilient phishing de-

tection architectures, addressing a critical cybersecurity challenge.

The remainder of the paper is structured as follows. Section 2 intro-

duces the contribution of our research and the related societal impact. 
Section 3 presents background information on phishing and machine 
learning and discusses related work on automated phishing detection. 
In Section 4, we devise the hybrid framework optimized for applicabil-

ity and explain the implementation of the proof of concept. Section 5

discusses the experiments to evaluate the proof of concept. We discuss 
the findings of these experiments in Section 6. The paper ends with con-

clusions and suggestions for future research in Section 7 and Section 8. 
The dataset used for the experiments and the replication package are 
available at https://doi .org /10 .5281 /zenodo .8358925.

2. Research contribution

Our study’s primary contribution lies in its multifaceted approach 
to the evaluation of a hybrid framework for phishing detection, empha-

sizing real-world applicability and robustness. This research stems from 
critical gaps identified in existing literature, where prior studies have 
often fallen short in adequately addressing these dimensions of applica-

bility and robustness in the context of phishing detection.

By conducting a comprehensive evaluation of the hybrid framework, 

we bridge these gaps and provide concrete evidence that the hybrid ap-

https://doi.org/10.5281/zenodo.8358925
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Fig. 1. Schematic overview of the hybrid framework aimed at applicability for 
automated phishing detection.

proach offers a robust and effective alternative to single-analysis-based 
models. We go beyond the typical emphasis on effectiveness alone, 
expanding our assessment to encompass various factors that define real-

world utility. In doing so, we contribute to advancing knowledge in the 
field and offer practical insights for deploying phishing detection sys-

tems.

Our research serves as a stepping stone for future investigations that 
can extend beyond the boundaries of our current study. Specifically, we 
propose the exploration of additional dimensions of applicability, in-

cluding flexibility, adaptability, and scalability. These dimensions, often 
overlooked in previous research, represent crucial factors of real-world 
applicability. For instance, assessing the framework’s flexibility can val-

idate our hypothesis that implementing a stacking function enhances 
adaptability compared to integrating models into a single neural net-

work. The introduction of online learning, using datasets with evolving 
behaviors over time, offers a promising avenue to evaluate adaptability, 
allowing for the creation of more dynamic and resilient systems. Fur-

thermore, investigating scalability, as indicated by Sahoo et al. (2017), 
is essential to understanding how the framework performs under in-

creased data volumes, a consideration of utmost importance in today’s 
data-rich environment.

In summary, our study highlights the existing gaps in phishing de-

tection research and takes significant strides toward filling them. By 
focusing on applicability and robustness and conducting a thorough 
evaluation of a hybrid framework, we contribute to a more compre-

hensive understanding of hybrid approaches and their real-world po-

tential. Our research serves as a foundation for future studies, offering 
a roadmap to explore these dimensions further and ultimately enhance 
the practical deployment of phishing detection systems.

2.1. Societal impact

An automated phishing website detection algorithm can improve 
the quality of life of an underprivileged or vulnerable part of society by 
providing a way to avoid being phished. Scammers often create phish-

ing websites to trick people into giving them personal information or 
money. These websites can be difficult to spot, but an automated phish-
3

ing website detection algorithm can help identify and protect internet 
Computers & Security 139 (2024) 103736

users from being scammed. This can help improve the quality of life of 
those vulnerable to these scams, as they will be less likely to fall victim 
to them. With our study, we aim to make these detection models better 
applicable. Thereby guiding research to better fulfill the societal needs 
for real-life detection algorithms (Sahoo et al. 2017).

The key contribution to societal impact is the data-backed robust-

ness of this hybrid framework. Where a bypass would disarm a single 
analysis-based model, the hybrid approach remains to function. This 
makes internet users less vulnerable to bypassing the efforts of phish-

ers.

3. Background & related work

Phishing is a form of social engineering that uses fraudulent mes-

sages to trick people into revealing their personal information or cre-

dentials (Abbate 2022). Phishing is a type of online fraud in which 
scammers send emails or messages that look like they are from a le-

gitimate company or website. These messages often contain a link that 
takes the victim to a fake website that looks like the real one. The vic-

tim is asked to enter personal information on the fake website, such 
as their credit card number or password. The scammers then use this 
information to steal the victim’s money or identity.

The first relevant method for detecting phishing websites is block-

listing, where a moderator places websites suspected of phishing on a 
list of websites to be blocked (Cao et al. 2008). However, this only 
works for already detected websites, while attackers can keep regis-

tering new domains and exploiting them until they are compromised. 
These new and yet undetected phishing websites are called zero days. 
To detect zero-days, research proposes heuristic-based methods that 
check multiple aspects of a website, such as hostname and lifetime (Ter-

aguchi and Mitchell 2004). However, these approaches result in many 
false positives (websites incorrectly classified as phishing). To tackle 
this, Zhang et al. (2007) developed CANTINA: a heuristic-based method 
that also analyzes the content of a website. This algorithm recognizes 
common signs of phishing. For example, linking back to the legitimate 
website from the phishing website creates a discrepancy between the 
domains. This approach decreases the false positives. Nevertheless, the 
heuristics are still relatively straightforward. This makes it easy for an 
attacker to understand the heuristics and create bypassing methods.

Machine Learning allows for much more sophisticated and power-

ful classification algorithms. This enables the analysis of a wide range 
of website features. Xiang et al. (2011) used this method to develop 
CANTINA+: an algorithm that analyses fifteen different website features 
obtained from the website’s URL and HTML content. Therefore, it was 
the most comprehensive analysis at that time. Each feature represents 
a website characteristic that the authors believe indicates phishing. 
CANTINA+ is one of many machine learning models that use the URL 
and HTML (Hou et al. 2010; Odeh et al. 2021; Sahingoz et al. 2019) as 
input. These data types easily translate into functional features such as 
the length and number of unique symbols. Another commonality among 
the machine learning approaches is the use of supervised learning. This 
preference is due to the existence of labeled datasets. Platforms exist 
that maintain publicly available databases of phishing websites (Open-

Phish 2022; PhishTank 2022).

Deep learning, a sub-field of machine learning, takes this concept a 
step further by incorporating neural networks. One advantage of deep 
learning is its scalability, which can handle large amounts of data, lead-

ing to more accurate predictions (Alom et al. 2019; Ejaz et al. 2023). 
Another advantage is that deep learning can learn from not linearly sep-

arable data. This means the data does not have to be in a specific format. 
We can input it, for example, as an image or text. Finally, deep learn-

ing is less likely to overfit the data. This means that the algorithm will 
not learn from the noise in the data, which can lead to more accurate 
predictions (LeCun et al. 2015). Combining these benefits makes deep 
learning models detect hidden correlations in the data. Moreover, data 

can be provided to the algorithm with only minor preparation steps. 
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This is contrary to supervised machine learning methods, which require 
expert knowledge to select the appropriate features (Do et al. 2022).

URL base models

As a URL is interpretable as a piece of text, we can analyze it with Natu-

ral Language Processing. One way to do so is by embedding the URL into 
a mathematically understandable format. There are two types of URL 
embedding: character-level and word-level embedding. Character-level 
embedding considers the URL as a sequence of individual characters, 
while word-level embedding regards it as a sequence of words. Yang 
et al. (2021) found that using character-level embedding in combina-

tion with Convolutional Neural Networks (CNN) and multiple Random 
Forest classifiers resulted in a detection accuracy of 99%. However, 
solely using Character-level CNNs also comes with limitations. This 
approach is unable to capture semantic or sequential patterns effec-

tively. Hence, structural information contained in words gets lost. As 
a solution, URLNet integrates the character-level embedding into the 
word-level embedding (Le et al. 2018). Instead of discarding rare words, 
it represents them by character-level embedding. Next, it integrates the 
obtained information back into the Word-level embedding. The ben-

efit is that information of rare words is kept, without raising memory 
issues. The successful performance and clear reproducibility made URL-

Net the benchmark model for URL-based phishing detection (Bu and 
Cho 2021a,b; Bu and Kim 2022; Dutta 2021; Kexin et al. 2021; Maner-

iker et al. 2021).

HTML based models

Opara et al. (2020) are the first to use the HTML content of a website 
as input for a Deep Learning algorithm. They feed it as a single text 
string to their HTMLphish model. Similarly to the previously described 
URL methods, it consists of a character-level CNN and word-level CNN. 
The authors obtained a 93% accuracy on their test data. This method is 
third-party independent and can detect phishing websites regardless of 
their language. Although HTML content is valuable for phishing detec-

tion, it loses the structural information, which is represented in a HTML 
DOM tree structure. Ouyang and Zhang (2021) use this data type for a 
Graph Neural Network (GNN). They input the HTML as a graph via its 
inherent DOM tree structure. This approach results in a phishing detec-

tion accuracy of 96%. Feng et al. (2020a) also analyse the HTML DOM 
tree structure. However, they regard them as a natural language. They 
use Doc2Vec to learn the structural semantics to detect phishing web 
pages automatically. Finally, Bilot et al. (2022) analyse the HTML con-

tent based on the hyperlink graph structure of a website. Many phishing 
websites redirect to legitimate websites, so each link pointing to these 
websites has a different domain. Legitimate websites, on the other hand, 
typically have many links redirecting to the same domain. This referring 
difference creates a discrepancy that can be detected.

Limitations

Although Deep Learning shows advantages for the automated detection 
of phishing websites, it has limitations. First, these models operate in a 
black-box fashion, making it difficult to understand the reasoning be-

hind the prediction. This problem is compounded when errors occur, as 
it is hard to diagnose and identify the root cause of an error when the 
output results are largely uninterpretable (Do et al. 2022).

Furthermore, AlEroud and Karabatis (2020) show that carefully 
crafted inputs can deceive Deep Learning models. They present a 
method for bypassing an URL-analysis-based detection model using 
Generative Adversarial Networks (GANs). The proposed method gener-

ates phishing URLs that are visually similar to legitimate URLs, making 
them difficult to detect. The GAN is trained on a dataset of legitimate 
and phishing URLs and can generate new phishing URLs that are not in 
the training set. The generated URLs are then evaluated against a phish-

ing detection system. The results show that the proposed method can 
bypass the detection of phishing URLs with high success rates. From 
this, we can conclude that detection algorithms that are not robust 
against such adversarial attacks will not be applicable in the real world, 
4

as hackers will always try to find new methods to bypass protection.
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3.1. Applicability

In a hybrid approach, we can combine models in different ways. 
To find the optimal way, we first determine the goal of the algorithm. 
In our case, this is applicability, with a focus on robustness. To deter-

mine applicability, we look at the current literature. Sahoo et al. (2017)

identify five design principles for building a real-life automated phish-

ing detection algorithm:

Accuracy The predictive performance of the algorithm refers to its 
ability to classify phishing and legitimate websites accurately. 
Researchers use the term Accuracy to refer to this factor; 
however, it is important to note that it is a general term for 
predictive performance and not limited to just the Accuracy 
metric. Therefore, we refer to this design principle as Effec-

tiveness.

Speed of Detection The time it takes to classify a webpage. An archi-

tecture that takes too long is not suitable for live classification 
within a web browser. Therefore, this requirement greatly in-

fluences the usability for end-users. According to Sahoo et al. 
(2017), real-time detection requires a classification within a 
couple of milliseconds. We measure the speed of detection by 
the time it takes the model to make a prediction. This counts 
from the moment it starts analyzing until it gives an output.

Scalability The architecture’s capacity to process large amounts of 
data. To obtain this, it should prevent memory constraints.

Adaptation The ability to detect and adapt to changes in the data. In 
particular, the ability to detect new types of phishing pages. 
Researchers believe better adaptability improves the robust-

ness of the architecture.

Flexibility Flexibility requires the system to allow for easy improve-

ments and extensions. This regards the broadness of the archi-

tecture, as well as the performance. New types of data inputs 
should be implementable easily. Furthermore, the architec-

ture should allow for implementing new developments found 
in the literature.

While adhering to these principles, we differentiate between Adapt-

ability, which focuses on the algorithm’s proficiency in identifying and 
accommodating data changes, and Robustness, which pertains to the 
algorithm’s capacity to offset potential flaws or vulnerabilities within 
its components. We advocate that this distinction provides a more nu-

anced and precise understanding of a phishing detection algorithm’s 
effectiveness. In particular, we gain the ability to specifically evaluate 
an algorithm’s capability to identify and adjust to changes in the data 
it encounters. Adaptability, in this context, focuses on the algorithm’s 
agility in recognizing new types of phishing pages and accommodating 
variations in the data landscape. It essentially measures the algorith-

m’s responsiveness to evolving threats and its capacity to adapt swiftly, 
reflecting the dynamic nature of the cybersecurity landscape. On the 
other hand, Robustness assesses the algorithm’s resilience against po-

tential weaknesses, vulnerabilities, or adversarial attempts to bypass 
its defenses. This factor is vital for ensuring the algorithm’s ability to 
maintain its effectiveness even in the face of sophisticated attacks or un-

foreseen challenges. It measures the algorithm’s ability to withstand and 
counteract flaws in its components, further reinforcing its real-world 
applicability. In essence, this division provides a more comprehensive 
view of an algorithm’s applicability by considering its adaptability to 
evolving threats and its robustness in the face of potential vulnera-

bilities. Therefore, we add Robustness as a sixth, separate factor of 
applicability.

These principles of applicability serve as valuable guidelines to iden-

tify issues and gaps in the current approaches and literature on auto-

mated phishing detection. We can pinpoint areas where the literature 
may fall short by evaluating existing research through the lenses of Ef-
fectiveness, Speed of Detection, Scalability, Adaptation, Flexibility and 
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Table 1

The expected impact of a hybrid approach on current challenges in automated phishing detection. The challenges originate from a study by Sahoo et 
al. (2017). The impact column shows a hybrid approach’s expected impact on these challenges: negative, neutral, or positive. The explanation column 
motivates the expected impact.

Challenge Impact Explanation

High volume and high-velocity data Neutral There are no signs that a hybrid approach is more efficient than other approaches.

Difficulty acquiring labels Neutral A hybrid approach does not generate new labels.

Difficulty in collecting features Neutral This depends on the models implemented in the hybrid approach.

Feature Representation Positive A hybrid approach can process multiple website features via different implemented models (Feng et al. 2020b).

Concept drifting Neutral This depends on the models implemented in the hybrid approach.

Interpretability of Models Positive Combining different predictions give insights into the influence of the different models (Do et al. 2022).

Adversarial Attacks Positive Combining multiple models makes it harder for an attacker to deceive the entire system (Venugopal et al. 2021).
Robustness. For instance, if a substantial body of work predominantly 
emphasizes effectiveness but neglects speed of detection or scalabil-

ity factors, it suggests a potential research gap in addressing real-time, 
resource-efficient detection methods. Similarly, if there is limited focus 
on the risk of bypassing by adversarial attacks, it highlights opportu-

nities for future research to enhance the robustness and practicality of 
phishing detection algorithms. Therefore, the application of these prin-

ciples aids in identifying research avenues that can contribute to a more 
comprehensive and effective automated phishing detection framework.

3.2. Hybrid approach

Do et al. (2022) recommend using a hybrid approach to address 
multiple challenges in automated phishing detection. This approach 
combines different models into a single algorithm to optimize their 
strengths and weaknesses, enabling more robust detection. According 
to Feng et al. (2020b), it also facilitates comprehensive website analysis 
by allowing various models to assess different website features websites.

Sahoo et al. (2017) identify various challenges in the automated de-

tection of phishing websites, including the issue of detecting malicious 
websites despite evasion techniques. Table 1 outlines these challenges 
and highlights the positive impact of using a hybrid approach. First, this 
approach leverages the strengths and mitigates the weaknesses of dif-

ferent detection algorithms, enhancing overall capabilities and making 
it harder for attackers to evade detection. Secondly, it enables com-

prehensive website analysis by distributing the evaluation of diverse 
website features among individual models, thereby improving accuracy. 
Lastly, hybrid approaches enhance robustness against evolving evasion 
tactics, enhancing cybersecurity capabilities by effectively identifying 
anomalies and discrepancies employed by attackers and reinforcing the 
system’s resilience.

3.3. Existing hybrid approaches

As discussed in Section 3, existing research has commonly studied 
the performance of models using just raw URLs (Al-Ahmadi et al., 2022; 
Chinnasamy et al., 2022; Elsadig et al., 2022; Kim et al., 2022; Ozcan et 
al., 2023) or HTML content (Aljofey et al., 2022; Ejaz et al., 2023; Lee 
et al., 2020; Vishva and Aju, 2021). However, based on our studies, ex-

periments, and research, we highlight that the information in different 
parts of a web page can provide different information and characteris-

tics when detecting phishing pages. The HTML provides the semantics 
of the page, the URL gives information regarding the web page’s inter-

net address, and the DOM (Document Object Model) tree is a tree-like 
representation of the web page and furnishes details of the backbone of 
an HTML document, such as tags. Therefore, leveraging all this infor-

mation is essential to detect phishing.

In assessing the landscape of existing hybrid approaches, we ap-

ply the design principles of applicability as established by Sahoo et al. 
(2017). These principles, presented in 3.1, offer valuable insights into 
current hybrid models’ strengths, weaknesses, and overall limitations, 
5

shedding light on their effectiveness in automated phishing detection.
These applicability principles serve as essential guidelines to assist 
us in pinpointing potential gaps in the current literature or areas where 
existing research may need to be improved.

Opara et al. (2023) present WebPhish, which implements a deep 
neural network trained using embedded raw URLs and HTML to detect 
phishing attacks. WebPhish showed an accuracy of 98.1%. However, 
WebPhish can only detect zero-day phishing attacks containing known 
HTML and URL content. If the attack involves manipulation of the web 
page content, WebPhish cannot recognize the attack as this approach is 
strictly dependent on the training set. Similarly, Venugopal et al. (2021)

conducted a study testing various machine learning models within a 
hybrid framework. These models analyzed different manually obtained 
features from the HTML and URL of a website. Notably, each model 
was evaluated using a different dataset, revealing a substantial varia-

tion in accuracy (from 73.8 to 99.98). In their hybrid configuration, 
they combined the output predictions of these models using a deci-

sion tree and assessed them on an ensemble dataset. Surprisingly, this 
hybrid approach resulted in an accuracy of 95.3%, which fell below 
the performance of some individual integrated models. This contrasts 
with our expectation that a hybrid approach improves effectiveness. 
The only other design principle discussed by the authors is robustness. 
They claim their framework makes it harder for hackers to infiltrate the 
system. However, they do not give any proof of that. Another interesting 
hybrid approach is presented by Aljofey et al. (2022) where the authors 
leverage URL and HTML features. The proposed approach achieved an 
accuracy of 96.76%. However, the proposed approach needs a long 
training session and depends on the English language. Different lan-

guage causes an error in the classification.

Vecliuc et al. (2021) presented a contrasting outcome on effective-

ness. They tested a similar approach on a website’s URL, HTML content, 
and logo. This resulted in a corresponding accuracy of 96.5% for their 
hybrid model, which is slightly higher than their best-performing in-

dividual model, which was the ULR-based model with 96%. Thereby 
suggesting that a hybrid approach can improve the effectiveness, al-

though it does not seem to make a large difference. Again, no other 
principles of applicability were discussed.

In contrast to these findings, Feng et al. (2020b) introduced a dif-

ferent perspective with their Web2Vec hybrid model. This model in-

corporated the URL, HTML content, and DOM tree structure as input 
features. Their study involved comparing performance across different 
input feature combinations. While they obtained an accuracy of respec-

tively 94.72%, 97.56%, and 91.71% for the URL, HTML content, and 
DOM tree structure, they acquired an accuracy of 99.05% for the com-

bination of the three. This achievement was attributed to their method 
of extracting feature representations and processing them through a 
CNN and LSTM. Instead of obtaining separate predictions from this and 
combining these with a stacking function, they combined the neural 
network layers as input for one larger hidden layer. Hence, this layer 
contains processed information from each of the input features. This 
step merges the different models into one large neural network with 
one output layer that gives the final prediction.

Besides the improvement in effectiveness, it is important to note that 

the Web2Vec approach also has limitations, primarily its black-box na-
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ture, making it harder to understand the reasoning behind a prediction 
and identify errors when they occur. As bypassing by an attacker is an 
error of the model, we could deduce from this that this approach is less 
robust. We cannot verify this as the authors state nothing about the 
robustness of their model. Another limitation is that its design lacked 
flexibility. As their hybrid approach consists of one interconnected neu-

ral network, it hinders easy adaptation to evolving requirements or 
the integration of new models or algorithms. Compared to this, the 
approaches of Venugopal et al. (2021) and Vecliuc et al. (2021) are 
more flexible, as they use the predictions of individual models, which 
can be more easily replaced with the predictions of a different model 
without significant disruption to the overall system. Regarding detec-

tion speed, the researchers state that their approach spends the longest 
running time compared to other approaches. They attribute this to the 
use of deep learning algorithms. This reasoning indicates that detection 
speed highly depends on the selection of the individual models. Lastly, 
Valiyaveedu et al. (2021) revealed that different input features might 
benefit from distinct models, suggesting a potential avenue for further 
improvement.

Recent works such as (Lin et al., 2021; Liu et al., 2022) imple-

mented a similar approach. In (Lin et al., 2021), similarly to other 
less recent works (Abdelnabi et al., 2020; Afroz and Greenstadt, 2011; 
Wang, 2010), the authors use logos and web pages screenshots from 
the website to recognize phishing pages. Even if the authors claim that 
Phishpedia can recognize 87.46% of phishing web pages, it is worth 
noting the high rate of false positives related to logos looking like a well-

known legitimate brand logo. Furthermore, the authors explain how 
Phishpedia is not suitable for large-scale evaluations due to its high rate 
of false negatives. The same authors proposed PishIntention Liu et al. 
(2022), which generates 86.5% less false alerts. The proposed approach 
receives a URL, screenshot, and HTML code and extracts the Abstract 
Webpage Layout for detecting brand and credential-taking intentions. 
However, as specified by the authors, it fails when the web pages im-

plement an uncommon login-keyword. Furthermore, the robustness of 
this approach drops significantly in front of HTML obfuscation. Lastly, 
the authors explicitly explain that although this approach has a lower 
false positive rate than Phishpedia, the problem remains due to logo 
similarities.

To conclude our literature review, it is important to highlight Ran-

dom Forest provides the best classifier when adopting a URL or HTML-

based approach in the context of phishing page detection (Almousa et 
al., 2022; Chinnasamy et al., 2022; Liu, 2021; Ripa et al., 2021). How-

ever, as mentioned in Chinnasamy et al. (2022); Shah et al. (2022), 
future research should focus on hybrid approaches and technologies 
to detect phishing websites more accurately and improve their robust-

ness. Indeed, machine learning-based phishing URL detectors have been 
extensively proposed and explored. However, the robustness of these 
models against adversarial manipulation remains unknown. Sabir et 
al. (2022) unveiled several security vulnerabilities and evaluation chal-

lenges of the machine and deep learning models.

Our approach can bypass the limitations of the previous works by 
considering three different features for the phishing classification: URL, 
HTML, and DOMtree. These three features improve the overall robust-

ness of our approach, making it able to bypass limitations such as lan-

guage, training session time, easier to go through the system flow, the 
system not working as a black box, easier to catch errors and problems, 
improved the overall robustness against possible bypass. Moreover, our 
proof of concept provides a wide margin of customization and flexibil-

ity. Indeed, although our proof of concept of our framework leverages 
the three aforementioned features for the detection of phishing web-

sites, it can be easily extended to include other features such as images 
6

and meta-data.
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3.4. Gaps in literature

While the existing literature provides valuable insights into auto-

mated phishing detection and hybrid approaches, we observed sev-

eral gaps related to various factors of applicability. First, the litera-

ture presents conflicting results regarding the effectiveness of hybrid 
approaches compared to individual models. Venugopal et al. (2021)

observed that their hybrid approach underperformed some individual 
models, while Vecliuc et al. (2021) found a modest improvement in ef-

fectiveness. Feng et al. (2020b) demonstrated significant improvement, 
but their approach lacked transparency. The approaches proposed in 
(Lin et al., 2021; Liu et al., 2022) suffer from a high rate of false alerts. 
Ejaz et al. (2023) explicitly mention the need to improve phishing tech-

niques to be robust against advanced evasion techniques. However, 
their approach based on continual learning suffers from catastrophic for-

getting when the model is trained on new data. Other works (Alhogail 
and Alsabih, 2021; Aljofey et al., 2020; Su, 2020; Wei et al., 2020; 
Xiao et al., 2021) do not consider (nor test) the robustness of their 
approaches against side attacks during their experiments. Regarding 
effectiveness, further research is needed to provide a clearer under-

standing of when and how hybrid models impact this factor.

Furthermore, the speed of phishing detection for a hybrid frame-

work is currently unclear. While Venugopal et al. (2021) mentioned the 
importance of real-time detection, there is a lack of detailed exploration 
of the trade-offs between detection speed and model accuracy in hybrid 
approaches. With the current research, we cannot conclude whether a 
hybrid approach allows fast enough detection.

Robustness, while briefly discussed, also remains underexplored in 
the current literature. To assess the real-world applicability of a detec-

tion algorithm, it is crucial to evaluate the resilience of hybrid models 
against evasion techniques, adversarial attacks, and unforeseen chal-

lenges. While hybrid approaches are potentially more robust than single 
analysis-based approaches, no study has researched this to date.

None of the current hybrid approaches mention how they ensure 
their models’ Scalability, Adaptation, and Flexibility. Nevertheless, a 
hybrid approach should do so to be suited for applicability in the real 
world.

Based on these observations, the applicability of hybrid approaches 
in automated phishing detection remains an open research question. 
The lack of consensus in the results from different studies motivates our 
hybrid framework. This framework combines multiple single-analysis-

based models and consolidates their predictions using a stacking func-

tion. Our approach allows us to assess its applicability compared to 
individual models and provides a means to measure the increase in ro-

bustness, contributing to the ongoing exploration of hybrid models in 
this field.

4. Experimental setup

This section outlines the design and implementation of our experi-

mental framework aimed at assessing the applicability of a hybrid ap-

proach to automated phishing detection. The framework encompasses 
various factors of applicability, including effectiveness, robustness, and 
speed of detection. The following sections detail our framework design, 
model selection process, and the proof of concept implementation.

4.1. Framework

From the literature section, we conclude that current studies on 
hybrid approaches often lack comprehensive discussions about their 
applicability. Instead, they tend to primarily focus on effectiveness, 
overlooking other crucial factors such as speed of detection, scalability, 
adaptation, flexibility, and robustness. Our objective is to construct a 
holistic framework that accounts for all factors of applicability. Among 
the six factors, effectiveness, robustness, and flexibility are mostly in-
fluenced by the architecture design. For instance, the choice of stacking 
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Table 2

Summary of the relationship between the factors of applicability and the design of the hybrid framework.

Applicability Factor Relationship to Framework Design

Effectiveness Influenced by stacking function choice; design impacts prediction quality.

Robustness Enhanced by incorporating multiple input data types; design influences evasion resistance.

Flexibility Design enables easy model replacement or enhancement, enhancing adaptability.

Speed of Detection Dependent on the choice of individual models; framework design supports model selection for desired speed.

Scalability Primarily influenced by individual models; framework architecture allows for scalability through model choices.

Adaptation Predominantly driven by individual models; framework’s adaptability supports model-based adaptation.
function has an impact on the effectiveness (Vecliuc et al. 2021), while 
robustness improves with the integration of multiple input data types 
(Venugopal et al. 2021). Additionally, ensuring flexibility necessitates 
the ease of implementing enhancements and extensions (Sahoo et al. 
2017). In contrast, the framework’s impact on the speed of detection, 
scalability, and adaptation appears limited compared to the influence 
of individual models. These factors mainly depend on the individual 
model designs (Sahoo et al. 2017). Consequently, fulfilling these crite-

ria depends on the selection of models by the user.

The framework is arranged into three layers. The initial layer, the 
data layer, regards the types of data acquired from a website. These 
encompass elements such as the URL, HTML code, and other perti-

nent website attributes. For performance and robustness reasons, the 
data should maximize the website’s information coverage to maximize 
the probability of finding useful information (Venugopal et al. 2021). 
This, in turn, enhances the framework’s capability to detect potential 
phishing websites and reduces the likelihood of successful bypass at-

tempts. However, it is worth noting that incorporating a greater variety 
of data inputs entails higher processing demands. Consequently, this 
may potentially lead to trade-offs in terms of flexibility, scalability, 
and speed of detection (Sahoo et al. 2017). Therefore, developers must 
thoughtfully balance these design principles while implementing their 
framework.

The second layer regards the individual models employed in the 
framework. The literature shows that different types of models perform 
better for different types of input features (Valiyaveedu et al. 2021). 
For this reason, we advocate for the integration of tailored models spe-

cific to each input feature rather than relying on a single generic model. 
This approach enhances the framework’s flexibility as each model can 
be readily substituted with a superior alternative. Moreover, this strat-

egy empowers customization to suit each end user’s requirements. For 
instance, the choice of models significantly influences the speed of 
detection (Feng et al. 2020b). This flexibility accommodates users prior-

itizing the speed of detection and those emphasizing other applicability 
factors.

The framework’s third layer combines the individual models’ pre-

dictions using a stacking function. This function trains a meta-model 
that takes the predictions of the base models as inputs and produces the 
final prediction. Using a stacking function enhances the framework’s 
flexibility by facilitating effortless replacements or improvements to 
its implementation. Moreover, the stacking function contributes to the 
framework’s transparency, providing insight into its decision-making 
process (Do et al. 2022). A visual representation of the complete frame-

work can be found in Fig. 1.

In conclusion, our hybrid framework strives to encompass a wider 
range of applicability factors as these are neglected by other hybrid 
approaches. By making deliberate design decisions, we impact effec-

tiveness, robustness, and flexibility. Concurrently, the selection of indi-

vidual models assumes a critical role in achieving the goals of speedy 
detection, scalability, and adaptability. This holistic approach acknowl-

edges the intricate balance between design choices and model selection, 
ultimately shaping the framework’s ability to cater to varying user 
needs. To illustrate the interplay between the six factors of applica-

bility and the design of our hybrid framework, we present a summary 
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in Table 2.
4.2. Proof of concept

To validate our framework, we create and test a proof of concept. 
This allows us to answer the research questions. We first elaborate on 
the scope of the proof of concept concerning the applicability of a hy-

brid approach. Next, we discuss the design choices for the proof of 
concept, which models we selected, and how we implemented them.

Since the framework allows us to incorporate all types of models, we 
first define the scope of our proof of concept. The applicability consists 
of six different factors that can result in a trade-off. For example, deep 
learning models tend to obtain a better performance but take a longer 
time for detection (Feng et al. 2020b). Since this is, to the best of our 
knowledge, the first study into the applicability of a hybrid approach, 
we scope our research down to three of the six factors: effectiveness, 
robustness, and speed of detection. Effectiveness is the factor mainly 
focused on by other studies. Furthermore, current hybrid approaches 
do not agree on the influence of a hybrid approach on effectiveness. 
The second factor we focus on is robustness. This tells us to what ex-

tent the proof of concept can withstand attackers’ evasion techniques. 
Thereby, we can verify whether a hybrid approach is indeed a solu-

tion for more robust algorithms (Do et al. 2022). Finally, we evaluate 
the time required for detection, specifically examining the additional 
time taken by the hybrid framework compared to the individual models 
it comprises. We do not focus on the other factors of applicability for 
the proof of concept. These require a more extensive and qualitative-

oriented analysis, which falls outside the scope of this study. This proof 
of concept aims to obtain initial findings regarding the applicability of 
a hybrid framework.

The first design choice for the proof of concept is which input fea-

tures to incorporate. This choice depends on the availability and char-

acteristics of models suitable for each type of input feature. Literature 
shows that most visual analysis-based models use a black- and whitelist 
approach (Abdelnabi et al. 2020; Dunlop et al. 2010; Khandelwal and 
Das 2022). To apply this, they use a dataset containing only a limited 
number of brands for the model to classify. As we want our proof of 
concept to be able to analyze each website on the Internet, we do not 
incorporate such an approach. Van Dooremaal et al. (2021) propose 
a visual-based approach but do not focus only on a limited number 
of brands. However, their method analyses phishing websites that are 
still online. Since phishing websites have a short lifespan of 21 days 
on average (Oest et al. 2020), this approach is unsuitable for most of-

fline datasets. Therefore, we do not incorporate this or another visual 
analysis-based model into our proof of concept.

As we do not use visual features of a website as an input, there 
remain three other types of features for the proof of concept to an-

alyze: the URL, HTML content, and HTML DOM tree structure. The 
URL and HTML content have shown to be effective in previous research 
(Valiyaveedu et al. 2021). The HTML DOM tree is a less explored topic. 
Nevertheless, it widens the information analyzable by the proof of con-

cept. Although both the HTML content and HTML DOM tree structure 
originate from the HTML of a website, we assume they extract different 
insights from it. We base this assumption on how these models ana-

lyze the HTML code. The DOM tree analysis extracts the tree structure 
and tags from the HTML, leaving out the other content. Meanwhile, the 
content analysis analyses the complete HTML code but truncates it to a 

certain length to reduce the data size. Thereby, it loses information on 
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the DOM tree structure. As a robustness check for this assumption, we 
compare the performances of the HTML content and HTML DOM tree 
model in the experiments section.

With our input features clarified, the next critical step is selecting 
appropriate models that align with the distinct website feature types. 
Given our aim of analyzing the URL, HTML content, and HTML DOM 
tree structure, we need three tailored models, each uniquely suited to 
their respective input features. For each model, we discuss the selec-

tion reasons and method of implementation. The outputs generated by 
these models serve as the input for our stacking function. In our ex-

periments, we evaluate six distinct stacking functions within our proof 
of concept framework. This comprehensive assessment allows us to ad-

dress our sub-question regarding the optimal stacking function for our 
hybrid framework. The experimental results guide us in determining 
the most suitable stacking function for our framework, enhancing its 
real-world applicability.

Model 1 - URL

The first model we implement in our prototype takes the URL as input. 
Such models obtain the highest scores within the fastest amount of time. 
Multiple studies claim an accuracy above 99% (Maneriker et al. 2021; 
Tang and Mahmoud 2021; Yang et al. 2021). However, these scores do 
depend on the datasets used. Therefore, no outspoken top-performing 
algorithm exists. Nevertheless, the URLnet algorithm stands as a bench-

mark (Le et al. 2018). We implement this model in our framework as it 
best represents the URL-based models.

The URLnet algorithm uses a combination of Character-based and 
Word-based embedding. This structure maintains the information con-

tained in rare words while not hitting memory constraints. This is 
relevant since URLs contain high amounts of non-sensical terms. The 
algorithm’s structure consists of the Character-level CNN and the Word-

level CNN.

For the Character-level CNN, we convert the URL to a matrix rep-

resentation. This data structure makes the URL analyzable as an image 
for the algorithm. To do so, we transpose each URL into a sequence of 
characters with a length of 200. We cut off URLs that are longer than 
200, and we pad the ones that are shorter. Next, we embed each charac-

ter in a 32-dimensional vector. Since we do this for all 200 characters, 
we obtain a 32 x 200 matrix. We pass this matrix through the convolu-

tional layers, the main building block of a CNN. A convolutional layer 
consists of multiple filters. Each creates a different feature map, indicat-

ing the presence of detected features in the input matrix. Next, we add 
a Max-pooling layer. Max-pooling shrinks the size of the matrix while 
maintaining the essential features. We do so to save computational costs 
and avoid overfitting. Overfitting arises when the algorithm adjusts too 
much on the training data and fails to function well on the test data. Af-

ter the Max-pooling layer, we put a fully connected layer with dropout. 
Dropout also helps prevent overfitting by randomly shutting off connec-

tions in the network. We concatenate the result of this with that of the 
Word-level embedding part.

The Word-level CNN is somewhat similar to Character-level CNN. 
The difference is that we have vector representations of words instead 
of characters. Since the different potential words in a URL are countless, 
this requires a different approach. First, we split the URL into a list of 
words. We do so based on the special characters (‘/’, ’.’ etc.). We remain 
the special characters ‘-’ and ‘_’ within the words. We use padding to 
give each list of words the same length of 200. Similar to character-level 
embedding, each vector representation is 32-dimensional. Accordingly, 
we express each URL as a 32 x 200 matrix. Since the algorithm has 
to store each different word, we can run into memory constraints. We 
replace all single-occurring words with an ‘unknown’ token to prevent 
this.

The single-occurring words, removed for word-level embedding, can 
still obtain information. Therefore, we add another part to the word-

level embedding: a character-level embedding of rare words and special 
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characters. This addition allows us to represent them by a fixed amount 
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Table 3

Parameter settings for the URL-

based model.

Parameter Value

Length words 200

Length characters 200

Learning rate 0.001

Batch size 128

Table 4

Parameter settings for the HTML 
Content-based model.

Parameter Value

Length words 200

Length characters 200

Learning rate 0.0015

Batch size 20

Dimensions 100

Number of words 400000

Number of characters 360

of characters. Hence, we maintain some information within these words 
while not facing memory constraints. We pad or truncate all words 
in the URL to a length of 20 characters. Each character gets a 32-

dimensional vector representation. These steps result in a 32 x 20 matrix 
for each word. Next, we add those together for all 200 words in the URL 
to get a 200 x 32 matrix. We can add this to the matrix obtained from 
the word-level embedding since they have the same size. This leaves us 
with one word-level matrix containing information from the frequently 
occurring and unique words. We input this resulting matrix in a CNN 
identical to the one described for character-level embedding.

Finally, we concatenate the results from the character-level and 
word-level-based CNNs. We follow this with fully connected layers and 
a final layer, which gives a prediction. We use backward propagation to 
adjust the weights during the training phase. Table 3 shows the exact 
hyper-parameters we use for the model. We incorporate this for repro-

ducibility purposes.

Model 2 - HTML content

We assess HTMLphish by Opara et al. (2020) to analyze the HTML con-

tent. This model is most suitable for HTML content analysis based on 
our literature review. Although Bilot et al. (2022) obtain better accu-

racy, we prefer HTMLphish over their model because their approach 
requires a crawler to extract features from the webpages recursively, 
making it incompatible with currently existing datasets.

The method employed by HTMLphish is similar to URLnet. It uses 
a CNN on both character and word-level embedding. To use this, we 
first transform the HTML code into a string using the Beautiful Soup li-
brary (Richardson 2022), a Python package for parsing HTML and XML 
documents. We consider special characters as separate tokens at the 
word level split, as these are common in HTML. For the character level 
split, we split on each character, for both approaches, we pad and trun-

cate to a certain length. Although this step loses information, obtaining 
equal-length vectors for the embedding is required. Furthermore, it han-

dles the capacity problem for long HTML files. We concatenate the 
character- and word-level embedding layers as the next step. In the re-

sulting concatenated layer, we parse through the CNN. Table 4 shows 
the exact hyperparameter settings to reproduce this model.

Model 3 - HTML DOM tree

Our proof of concept also supports the HTML DOM tree as input. This 
data type contains information embedded in the structure of the HTML. 
The literature section discusses two single-analysis-based models that 
use this input type (Feng et al. 2020a; Ouyang and Zhang 2021). 
Ouyang and Zhang (2021) obtain the highest accuracy with their ap-

proach by combining an RNN with a GNN. Although GNNs seem a 

promising research direction, they show limitations in terms of appli-
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Table 5

Parameter settings for the HTML 
DOM tree-based model.

Parameter Value

Vector size 300

Learning rate 0.065

cability. These models consume significant amounts of memory, which 
goes at the expense of Scalability and Speed of detection Zhang et al. 
(2022). As we prioritized the practical utility and real-world applicabil-

ity of our framework, we opted for a different approach that aligns more 
seamlessly with our research objectives. The method proposed by Feng 
et al. (2020a) uses Doc2Vec, a commonly used model (Le and Mikolov 
2014). As this latter method is better applicable, we implement this ap-

proach for the DOM tree analysis (Table 5).

In this section, we devised the hybrid framework aimed at applica-

bility. Furthermore, we created a proof of concept of the framework that 
contains three single analysis-based models. These analyze the URL, 
HTML content, and HTML DOM tree structure. In the next section, we 
assess the proof of concept on effectiveness, speed of detection, and ro-

bustness. Also, we compare different stacking functions for the proof of 
concept.

5. Experiment

This section presents the experiments performed to assess the ap-

plicability of the proof of concept. In particular, we aim to answer the 
following sub-research questions:

RQ1: How effective is a hybrid framework for automated phishing detec-

tion?

RQ2: What is the speed of detection of a hybrid framework to detect 
phishing in an automated system?

RQ3: To what degree is a hybrid framework for automated phishing de-

tection robust to bypassing efforts?

RQ4: Which stacking function performs best in a hybrid framework for 
automated phishing detection?

By answering these questions, we comprehensively understand the hy-

brid framework’s potential for automated phishing detection. Our ex-

periments contribute to assessing the applicability of the proof of con-

cept and shed light on the nuances of its effectiveness, detection speed, 
robustness, and different stacking functions. These insights are crucial 
for evaluating the practicality and reliability of the hybrid framework 
in real-world scenarios, ultimately contributing to the advancement of 
automated phishing detection methodologies.

We conducted our experiments on an Ubuntu 22.04.1 virtual ma-

chine boasting 24 GB of RAM. Our setup did not involve a GPU but 
focused on CPU performance. Moreover, the hardware employed for the 
experiments is relatively basic: An HP ZBook Power G8 with i7-11800H 
CPU operating at 2.3 GHz for our evaluations. As with Experiment 2, 
we split the data for the machine-learning-based model into a training 
and test set. We used relatively cheap hardware to test our experiments 
since we decided to implement a system that could run in a real-life 
environment and use easily affordable and available hardware.

Next, we present the dataset used for the experiment. Then, we 
present the setting of each experiment along with the results.

5.1. Dataset

For our experiments, we targeted a publicly available dataset that 
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provides a complete representation of websites and is recent. This 
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is because models trained on an outdated dataset can decrease per-

formance when tested on more recent ones (Sánchez-Paniagua et 
al. 2022a). Among the existing datasets, the PILWD-134 K dataset 
(Sánchez-Paniagua et al. 2022b) includes the URL, HTML, screenshots, 
and metadata of phishing websites. Although this seems to be the most 
suitable dataset, it was unavailable when conducting this work. Another 
dataset that contains a comprehensive representation of the websites 
was proposed by Chiew et al. (2018). However, this dataset has two lim-

itations. First, the data is rather old. The scraping took place between 
March and April 2016. Second, the URL data is not representative of 
the real world. The legitimate class contains only the second-level and 
top-level domains of the URL, while the phishing class also includes the 
scheme, subdomain, and sub-directories. The use of this dataset can in-

troduce bias as the detection model can only check for the presence of 
the scheme in the URL. However, in real life, both phishing and legiti-

mate websites contain the scheme. Therefore, this dataset is unsuitable 
for our study.

To the best of our knowledge, PILWD-134 K and the dataset pre-

sented by Chiew et al. (2018) are the only ones providing a comprehen-

sive representation of websites. As these are unavailable or unsuitable, 
we require a different dataset that might contain fewer website fea-

tures. The Phishing Website Dataset contains a recent collection of 
the URL and HTML of legitimate and phishing websites (Ariyadasa et 
al. 2021). Both these website characteristics show good predictabil-

ity when analyzed. Furthermore, they allow for supervised learning 
without requiring brand labeling. The dataset contains 80,000 website 
samples, divided into 50,000 legitimate and 30,000 phishing, scraped 
from December 2020 to November 2021. The legitimate websites orig-

inate from the Ebbu2017 phishing dataset and the top Google search 
results for simple keywords (Sahingoz et al. 2019). The phishing web-

sites come from PhishTank (PhishTank 2022), OpenPhish (OpenPhish 
2022) and PhishRepo (Ariyadasa et al. 2022).

We download this dataset from the Mendeley Dataset repository 
(Ariyadasa et al. 2021). For training, we split them into a training 
(70%), validation (20%) and testing (10%) subset. Furthermore, we cre-

ate three different representations, each containing 80,000 samples. The 
first one consists of the URLs. The other two contain the HTML code, of 
which one includes the complete content and the second only the DOM 
tree structure.

5.2. Experiments

5.2.1. Experiment 1: effectiveness

In the first experiment, we delve into a key factor of our research—

evaluating the effectiveness of our hybrid framework for automated 
phishing detection. Within this study’s scope, effectiveness is defined 
as the framework’s capacity to distinguish phishing websites from their 
legitimate counterparts accurately. As this is the core task of a detection 
model, most research focuses solely on this factor. However, we want to 
stress that an effective approach does not directly mean it is applicable 
and, therefore, suitable for real-world use.

As different evaluation criteria for predictive performance exist, we 
determine the most suitable based on what they represent. Fig. 2 shows 
the four classes of prediction that the model can make. If predictions are 
correct, only True Positive (TPs) and True Negative (TNs) occur. Hence, 
the goal is to minimize False Positive (FPs) and False Negative (FNs). 
An FP prediction means an Internet user is warned not to trust a legiti-

mate website. The danger of receiving frequent FPs is that users might 
question the system’s reliability. The occurrence of an FN allows an at-

tacker to phish successfully. Considering the consequences of phishing, 
we conclude that minimizing the FNs is more important than reducing 
the FPs.

Other metrics commonly used are (Alshingiti et al. 2023; Bu and 

Cho 2021a; Feng et al. 2018; Wang et al. 2019):
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Fig. 2. Prediction outcomes of binary classification.

• Accuracy: The ratio of correct predictions over the total amount of 
predictions.

• Precision: The ratio of correctly classified phishing websites over 
the total number of predicted ones.

• Recall: The ratio of correctly classified phishing websites over the 
total amount of actual phishing websites.

• F1-score: The weighted average of Precision and Recall

• ROC curve: The Receiver Operating Characteristics curve shows the 
trade-off between the TPR and the FPR.

• ROC AUC: The Area Under the ROC Curve quantifies the ROC 
curve. It shows the ability to classify the correct label. This met-

ric is used for the comparison of ROC curves.

Accuracy is typically used for classification purposes. However, it is 
not optimal in our case because we are more interested in the detection 
of phishing pages than legitimate ones. Therefore, F1-score best fits our 
needs, as it balances Precision and Recall.

To enable a meaningful performance comparison between our proof 
of concept and established models, we evaluated them alongside the 
three single analysis-based models we incorporated in the proof of con-

cept. This deliberate choice allows us to assess their performance under 
consistent conditions, thereby mitigating the potential confounding ef-

fects of varying datasets. By doing so, we ensure a more robust and 
insightful analysis, as comparing our results directly with models from 
different studies could introduce extraneous variables stemming from 
dissimilar dataset characteristics, as highlighted by Sánchez-Paniagua 
et al. (2022a).

This experiment gives us the effectiveness of the individual models 
incorporated in the proof of concept. To assess the effectiveness of the 
proof of concept, we need to combine the predictions of the individual 
models. We do this using a stacking function (see Experiment 2).

Results Experiment 1
Table 6 shows the results obtained from this experiment. The first col-

umn indicates the three models incorporated into the model. These are 
indicated by the type of input data they process. The other columns 
report the score for each model for different metrics. The scores in 
the table show differences in performance. Based on the F1 score, the 
URL-based model shows the most effective with 93.82%. However, on 
Precision, the Content-based model outperforms the URL one. This in-

dicates that the Content-based model has a higher tendency to classify 
websites as phishing. The DOM-based model falls behind on both met-

rics. Comparing this to the Accuracy, it shows a tendency to overclassify 
websites as legitimate.

5.2.2. Experiment 2: stacking function

In this experiment, we explore the capability of various stacking 
functions to combine the predictions of individual models. Stacking 
functions are crucial in improving the performance of our phishing de-
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tection proof of concept. In particular, we expect them to improve their 
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Table 6

Performance of each individual model implemented in the proof of con-

cept.

Model Accuracy Recall Precision F1-score ROC AUC

URL 95.41% 94.51% 93.15% 93.82% 94.96%

Content 93.64% 88.57% 95.29% 91.81% 93.97%

DOM tree 90.30% 87.29% 86.70% 86.99% 89.58%

effectiveness and robustness. In this experiment, we compare the effec-

tiveness scores of the different stacking functions, as this is the core task 
of a phishing detection model.

The task of the stacking function is to combine the predictions of 
the individual models incorporated. This approach offers a unique op-

portunity to harness the strengths of these individual models. However, 
the extent to which this approach proves effective and which stack-

ing functions are most suitable remains a gap in the current literature. 
Therefore, our experiments aim to better understand the impact of var-

ious stacking functions on both effectiveness and robustness instead of 
aiming for mere effectiveness maximization. It is worth noting that our 
study does not venture into the development or inclusion of a novel 
stacking function for maximum effectiveness, as this falls outside the 
scope of our research. Nevertheless, we believe that this aspect of our 
approach introduces a valuable and innovative contribution to the field 
of automated phishing detection.

To assess the impact of the stacking function, we compare six differ-

ent stacking functions, each one offering a distinct perspective on how 
to combine the predictions of individual models effectively. We make 
our selection based on several factors. First, we aim to evaluate our 
proof of concept within the established practices of phishing detection, 
leading us to include commonly used stacking functions. This approach 
offers insights into the performance of our method against existing tech-

niques. Secondly, we deliberately incorporate stacking functions repre-

senting diverse methodologies to assess their varying impacts on ef-

fectiveness and robustness. This comprehensive approach encompasses 
both directly applicable stacking functions and machine learning-based 
ones, spanning a wide spectrum of techniques. Lastly, we prioritized 
practical applicability, emphasizing the need for stacking functions that 
enhance both effectiveness and real-world feasibility, ensuring their 
suitability for deployment in real-time phishing detection systems while 
considering computational efficiency and practicality. Based on these 
factors, we select the following stacking functions:

1. Mean Predictions: Mean predictions involve calculating the average 
of the predictions made by the individual models. The resulting 
value is then rounded to determine the final classification. This ap-

proach aims to find a consensus among the models by considering 
their collective wisdom.

2. Majority Vote: The majority vote is a straightforward stacking func-

tion where each individual model makes its prediction, rounding it 
to either 1 (indicating phishing) or 0 (indicating legitimate). The 
majority vote aggregates these predictions, and the outcome with 
the most votes becomes the final verdict. This approach gives equal 
influence to each model for every prediction.

3. Most Certain Prediction: In this approach, we rely on the model 
with the highest prediction confidence. Instead of an even influ-

ence distribution, this method gives all the decision-making power 
to the model with the highest certainty regarding the classification. 
This approach seeks to leverage the expertise of the model with the 
greatest confidence.

4. Decision Tree: We include the Decision Tree classifier due to its us-

age in a related study by Venugopal et al. (2021). While Decision 
Trees are known for their interpretability and the ability to handle 
complex feature interactions, they can also be prone to overfitting. 
By including this method, we aim to investigate its performance in 
our specific context and explore whether it offers advantages over 

other stacking functions.
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Table 7

Performance of different stacking functions for the proof of concept. The results 
from Table 6 are added for comparison.

Function Accuracy Recall Precision F1-score ROC AUC

URL 95.41% 94.51% 93.15% 93.82% 94.96%

Content 93.64% 88.57% 95.29% 91.81% 93.97%

DOM tree 90.30% 87.29% 86.70% 86.99% 89.58%

Mean 97.33% 96.80% 96.02% 96.41% 97.06%

Vote 96.81% 95.27% 96.26% 95.76% 96.70%

Certain 97.21% 97.73% 94.75% 96.22% 96.72%

Decision tree 95.62% 94.89% 93.95% 93.84% 94.92%

Random Forest 97.44% 98.09% 94.62% 96.50% 96.93%

Logistic regression 97.44% 96.32% 96.81% 96.56% 97.31%
5. Random Forest: The Random Forest stacking function is an ensem-

ble method that combines multiple decision trees. It has demon-

strated effectiveness in similar studies, such as the work by Vecliuc 
et al. (2021). Random Forests are known for reducing overfitting, 
improving overall classification accuracy, and enhancing model 
robustness. We included this stacking function to assess whether 
ensemble methods can provide significant performance gains in our 
proof of concept.

6. Logistic Regression: Logistic Regression is a well-established ma-

chine learning algorithm known for its effectiveness in binary out-

come prediction. We included this stacking function because it 
aligns well with our primary goal of distinguishing phishing web-

sites from legitimate ones. Its simplicity and interpretability make 
it an attractive choice for real-world applications where model 
transparency is essential.

The Decision Tree, Random Forest, and Logistic regression stacking 
functions use machine learning. These require us first to train the al-

gorithms. To do so, we first split the list of predictions outputted by 
the individual models (8,000 websites) into a train and test split (80%-

20%). This allows the stacking function to understand which value they 
should give to the predictions of the different models.

In this experiment, we compare the effectiveness of different stack-

ing functions. We do so by testing the proof of concept six times, each 
time with a different stacking function. We test the performance of the 
different stacking functions by the metrics determined for Experiment 
1. Consequently, we assess the F1 score as the most critical metric. Each 
test result shows how the proof of concept performs when we use the 
stacking function to combine the predictions of the individual models. 
We assess the robustness of the different stacking functions in Experi-

ment 4.

Results Experiment 2
Table 7 shows the performance of the proof concept for each of the 
stacking functions. The three upper functions represent the directly ap-

plicable ones, which use 8000 websites to test their performance. The 
bottom three functions are the machine learning ones. These used 80% 
of the websites for training. Their results in the table originate from the 
remaining 20% of websites.

The proof of concept performs better with each stacking function 
than the best individual model (URL). Although Logistic regression per-

forms best, no outperformer exists. Only the Decision tree turns out to 
perform slightly less.

5.2.3. Experiment 3: time

We measure the training and test time of each model on the dataset. 
The training time of the proof of concept is equal to the sum of the 
training time of the incorporated models. This is the same for the testing 
time plus the time it takes the concatenation function.

Results Experiment 3
The training and testing times are presented in Table 8. We see two 
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clear findings. First, the incorporated models differ greatly in training 
Table 8

Time it took for the individual models to train and test the data. We did not 
include the time of the different stacking functions, as each of them would be 
below 0.

Function Total time (s) Average time (ms)

Train Testing Training Testing

URL 2652 28 36.8 3.5

Content 19508 37 270.9 4.6

DOM tree 32012 118 444.6 14.8

and testing time. For instance, the URL model demonstrated rapid train-

ing, while the DOM tree model exhibited relatively slower performance. 
The average training time per sample spanned from 36.8 milliseconds 
to 444.6 milliseconds. The second finding is regarding the speed of 
the different stacking functions. Contrary to the results observed for 
the models, where training and testing times varied significantly, both 
training and testing times for the stacking functions were consistently 
rapid, requiring less than a second in total and less than a microsec-

ond on average. The overall training process, including the stacking 
function, amounted to 15 hours, 2 minutes, and 52 seconds, translat-

ing to a mere 0.75 seconds per website. In contrast, testing occurred 
much faster, with an average time of 22.9 milliseconds per sample. 
These results emphasize that the stacking functions introduce minimal 
computational overhead, reinforcing their applicability for real-world 
deployment.

5.2.4. Experiment 4: robustness

By testing the robustness, we aim to measure the impact of an at-

tacker bypassing one of the individual models on the overall detection 
abilities. To measure this, we simulate a phisher exploiting a flaw in 
one of the individual models. This results in the bypassed individual 
model giving false predictions. To be robust, the other individual mod-

els should be able to compensate for this flaw. Suppose a phisher can 
circumvent the complete proof of concept by exploiting only one of the 
individual models incorporated. In that case, we can conclude that the 
proof of concept is not robust.

AlEroud and Karabatis (2020) show an example of bypassing a URL-

based model with GANs. If a cybercriminal manages to do so, it wants 
the model to label a phishing website (value=1) as legitimate (value 
= 0). It is clear how to simulate this for voting. We take the individual 
model for which we simulate a bypassing and change all its classifi-

cations of phishing to legitimate. This change results in the individual 
model classifying each website as legitimate.

It is more complex to simulate a bypass when we use probability 
predictions. To the best of our knowledge, no previous literature exists 
on this topic, so we reason on what consequence a bypass may have. 
Bypassing an individual model means it assesses a phishing website as 
benign. Thus, the model gives a probability prediction below the thresh-

old of 0.5, where it used to give one above it. Which exact probability 
it becomes is unknown, as this depends on the convincingness of the 

bypassing method. However, we can determine for which probability 
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Table 9

F1 score of the proof of concept for each type of stacking model while 
bypassed. Each column represents a bypassing for that specific data 
type model. The bypass only just managed to beat the threshold. 
Therefore, each phishing website has a phishing prediction of 0.5 
or lower.

Stacking Function URL Content DOM tree No bypass

Mean 92.57% 95.48% 94.79% 96.41%

Vote 89.84% 89.19% 93.80% 95.76%

Certain 92.67% 96.06% 95.17% 96.22%

Decision tree 88.16% 91.69% 91.27% 93.84%

Random Forest 88.97% 95.70% 94.39% 96.50%

Logistic regression 92.60% 96.13% 95.69% 96.56%

prediction the phisher will strive. The phisher aims to bypass the model 
to start exploiting the flaw. Although they might further optimize the 
bypassing method, we do not expect them to do so. The phisher does 
not know how the model evaluates and improves its decision-making 
methods. Therefore, it would be risky to optimize the bypassing strat-

egy instead of exploiting the opportunity. Therefore, a minimal bypass 
suffices.

We simulate the bypass by changing the probability prediction of 
a phishing website formerly recognized by the individual model (p >
0.5) to the probability just below the threshold of phishing (p = 0.5). 
As phishers will start exploiting this bypass immediately, we apply this 
change to all data points in the above category. We leave phishing web-

sites that could already fool the individual model (p < 0.5) untouched. 
We execute this simulation for each of the three individual model pre-

dictions. Thus, three separate proof of concepts are performed, each 
simulating a bypass for one of the individual models. Furthermore, we 
test each proof of concept with the different stacking functions. To as-

sess the performance, we compare the F1 scores. If the decrease in F1 
score is insignificant, we conclude the proof of concept is robust. A sin-

gle analysis-based model would obtain an F-1 score of 0.0% in case of a 
bypass, as they would not be able to identify a single phishing website 
correctly. This makes it hard to compare when a performance decrease 
is significant.

We execute the above steps a second time, but we simulate three per-

fect bypasses of the individual models this time. By perfect, we mean 
that the bypassing method fully convinces the model that the phish-

ing website is legitimate. We simulate this by changing the probability 
prediction for each phishing website to completely legitimate (p = 0). 
This also includes the phishing websites previously able to deceive the 
individual model but less convincingly (0 < p < 0.5). Although this 
situation is improbable in practice, it shows how the proof of concept 
would perform in the most hostile case.

Results Experiment 4
The performance of the proof of concept when one of the individual 
models is bypassed is shown in Table 9. Each column reports the indi-

vidual model for which we simulated a bypass. The fourth column, “No 
bypass”, shows the F1-score when no bypass occurs. These values are 
the same as in Table 7 and are shown for comparative purposes. The 
first observation is that the performance decreases at the bypass for ev-

ery stacking function. Looking at the highest F1-score for each column, 
the column of the URL model is the lowest. This means that the impact 
of bypassing is most prominent when we simulate a bypassing for the 
URL model. As we saw in Table 6, this is the best-performing individ-

ual model in Experiment 1. Looking at the lowest impact of a bypass, 
Table 7 shows we do not obtain this in case of a bypass of the worst 
performing individual model. The F1-score in the Content column is 
higher than in the DOM tree one. However, this only is a difference of 
0.44%, which shows that the impact on the F1 score in case of bypass-

ing the worst-performing individual model is much lower than for the 
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best-performing one.
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Table 10

F1 score of the proof of concept for each type of stacking model while 
bypassed. Each column represents a bypassing for that specific data 
type model. The phisher managed to bypass the model perfectly. 
Therefore, each phishing website has a phishing prediction of 0.0. 
Meaning a full confidence that the website is legitimate.

Stacking Function URL Content DOM tree No bypass

Mean 78.54% 86.32% 88.86% 96.41%

Vote 89.84% 89.19% 93.80% 95.76%

Certain 0.00% 0.00% 0.00% 96.22%

Decision tree 17.66% 77.22% 0.63% 93.84%

Random Forest 43.26% 82.90% 0.00% 96.50%

Logistic regression 79.96% 92.97% 88.93% 96.56%

The Logistic regression remains the best-performing model in case 
of a bypass. This method works similarly to the mean function by taking 
the prediction of each model. However, it applies a different factor to 
each prediction, which results from the training process. As both the 
mean and logistic regression functions keep performing well, it shows 
the importance of looking at the confidence of the predictions.

This could also declare why the Decision tree remains the worst-

performing one. As this stacking function makes use of thresholds, it 
indicates the vulnerabilities of these thresholds to bypassing. Although 
some models perform much worse when the URL model gets bypassed, 
no extreme situations arise. Furthermore, some stacking functions main-

tain good performance on each bypassing. The average decrease in F1 
score is 3.40%.

We also simulated a full bypassing of the individual models. Ta-

ble 10 shows this impact on the proof of concept’s performance. We 
can immediately see this is large. The certain-based stacking function 
is not able to make accurate predictions anymore. Since this full bypass 
makes the model fully convinced that the phishing websites are benign, 
the other models appear unable to compensate for this. A similar situa-

tion arises for the Decision tree and Random Forest stacking functions. 
In particular, in the case of a full bypass for the DOM tree model. Appar-

ently, this model serves as an important parameter for these functions 
and their classification.

On the other hand, the mean, voting, and Logistic regression func-

tions maintain some performance. The voting performs equally to the 
more realistic bypass simulation. Since it works with a vote of the by-

passed individual model, it does not matter to which extent it gets 
convinced. As the other stacking functions do receive hinder from this, 
the voting function switches from one of the worst performing functions 
to the best one. Furthermore, it remains to function adequately. For the 
mean-based function, the impact of the bypass depends on the predic-

tive performance of the individual model. If this is higher, the impact 
seems more significant. The Logistic regression performs relatively the 
same as with a more realistic bypass. Merely, the impact of the bypass 
increases.

5.3. Comparison to the state of the art

To qualitatively evaluate the contribution of our research, we opted 
to benchmark it against the top-performing hybrid approach. To the 
best of our knowledge, the current state-of-the-art model in this regard 
is the Web2Vec proposed by Feng et al. (2020b). We used a training set 
(70%), test set (20%), and validation set (10%) to perform our compar-

ison experiment. The model was trained with the training and validated 
with a separate validation set. Lastly, it has been evaluated on a third 
and separate test set.

Table 11 reports the results of our experimentation using Web2Vec. 
The table shows the effectiveness and speed of detection of Web2Vec 
and our hybrid framework. Regarding the effectiveness, we observe 
that our approach yields a higher accuracy compared to the results 
from Feng et al. (2020b). Based on this, we can conclude that we 

perform better than the current state-of-the-art approaches. Moreover, 
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Table 11

Comparative effectiveness and speed of detection between our hybrid framework and the current state-of-the-

art approach.

Approach Effectiveness Training Time Testing Time

Accuracy (%) F1-Score (%) Total (s) Average (ms) Total (s) Average (ms)

Our Hybrid Framework 97.44 96.56 54172 752.39 183 22.88

Feng et al. (2020b) 97.21 97.75 115795 1608.26 449.58 56.19
from Table 11, we highlight the remarkable difference in the detection 
speed. Our comparison experiment shows that our approach is more 
than twice as fast in both training and testing times. Therefore, our 
approach requires less computational time and is better suited for real-

time detection.

6. Discussion

The results of the experiments help us determine how suitable a hy-

brid framework for automated phishing detection is in practice, thereby 
answering our sub-questions and research questions. We tested the 
proof of concept’s effectiveness, time, and robustness for different stack-

ing functions. To assess these results, we compare them to the results 
of the single analysis-based models incorporated into the proof of con-

cept. As these are benchmark models tested on the same dataset, we 
expect this to give the best comparison between the hybrid approach 
and currently used models. This limits the risk of having other factors 
influence the results. Such a situation could arise when we compare 
the hybrid approach to single-analysis-based models tested in different 
studies, as a difference in results could be explained by the datasets 
(Sánchez-Paniagua et al. 2022a). We assess how this relates to and con-

tributes to current scientific work on this topic. Furthermore, we discuss 
the limitations of our current study and how further research can extend 
our work.

The first part of this section discusses the results of the different 
experiments. The second part infers what these results tell about the 
hybrid approach in general. The last part discourses the societal impact 
of the study.

6.1. Proof of concept

Effectiveness

Our first sub-question is about the effectiveness of a hybrid approach. 
The results show that the proof of concept, with an accuracy of 97.44% 
and an F1 score of 96.56%, excels in distinguishing phishing websites 
from benign ones, outperforming each individual model. This indi-

cates that a hybrid approach leads to better effectiveness than a single 
analysis-based model. Notably, our results align with the recommen-

dations from Do et al. (2022), who advocated for exploring hybrid 
approaches. However, this expectation is not uniformly confirmed by 
other studies employing hybrid approaches that incorporate stacking 
functions, such as Vecliuc et al. (2021) and Venugopal et al. (2021). 
Their reported outcomes reveal equal or even reduced effectiveness of 
the hybrid approach compared to the individual models they integrate. 
We expect two factors to influence these contradictory results.

First of all, these studies show a larger variation in test score accu-

racy between the individual incorporated models. In particular, Venu-

gopal et al. (2021) show accuracies that vary between 73.8% and 
99.98%. This gap might be too big for the weaker model to add any 
value to the stronger model. A second reason for contradictory find-

ings by these studies and ours is the dataset employed. These studies 
test the individual models on different datasets than the hybrid com-

binations. In contrast, our approach tested the proof of concept on the 
same dataset as the individual models. This approach enhances the re-

alism of our findings as it ensures a direct comparison of performance 
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in identical conditions. Additionally, our finding aligns with the study 
conducted by Feng et al. (2020b). They also conclude that a hybrid ap-

proach leads to higher effectiveness.

Speed of detection

Phishing detection solution should allow for real-time detection of 
phishing websites. Therefore, the detection speed is a critical factor in 
determining their practicable applicability. Feng et al. (2020b) suggest 
that the speed of detection depends on the type of model incorporated 
into the framework but do not provide an evaluation to support their 
claim. In this work, we empirically investigated the detection speed of 
our hybrid framework and the impact of employing a stacking function. 
To this end, we measured the training and test time of each imple-

mented model and the different stacking functions. The results show 
that the time it takes the stacking function is negligible compared to 
that of the individual models. Therefore, we can deduce that a hybrid 
framework can achieve a high detection speed if it incorporates fast 
models. Sahoo et al. (2017) claim that fast detection models can clas-

sify a website in the order of milliseconds. Our results on the test data 
show that our proof of concept can indeed do this on average in ∼22 
ms, thus making our approach suitable for real-time detection.

Robustness

The third factor of applicability we assess with our proof of concept 
is robustness. Specifically, we examine how a hybrid framework han-

dles a bypass attempt on one of its integrated models, where the model 
mistakenly identifies a phishing website as legitimate. If not mitigated, 
such a situation could result in users trusting a phishing website. To 
explore this, we conducted simulations of two degrees of bypassing.

The first simulation represents a scenario in which a phishing at-

tacker attempts to deceive the model with minimal effort, making it 
a more realistic representation. Our results indicate that this level of 
bypassing results in only a minor performance decrease for the entire 
architecture. The average drop in the F1 score was measured at 3.40%. 
In contrast, a single-analysis-based model would drop to an F1 score of 
0% under similar circumstances. This finding suggests that a hybrid ap-

proach can effectively handle the impact of a bypass and can be deemed 
robust.

To further evaluate the proof of concept’s ability to withstand a by-

pass, we conducted a second bypass simulation in which the bypassed 
individual model consistently classified all phishing websites as legit-

imate with full certainty. While this scenario is unlikely to occur in 
reality, it represents the worst-case scenario for the impact of a bypass 
on the overall detection algorithm. Our results show the importance of 
selecting a stacking function based on the importance of different appli-

cability factors. While voting is not the most effective stacking function, 
it is the most robust. Such a trade-off depends on the requirements of 
the end-user.

With certain stacking functions, the proof of concept could still 
achieve a better F1 score than the least effective model incorporated, 
even in such an extreme bypass scenario. Additionally, it managed to 
maintain sensible classifications with some other stacking functions, al-

though these did exhibit a substantial decrease in the F1 score. This 
implies that, in practice, the proof of concept would not completely fail 
its task when faced with a bypass.

While these findings align with the expectations of Do et al. (2022), 
they also provide insights for the development of more robust mod-

els. However, several caveats should be considered. First, our bypass 
simulations are theoretical and do not replicate a real-life hostile en-
vironment. Thus, the extent of realism in our simulation remains un-
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certain. Second, in practice, the appearance of a bypass may vary as 
hackers continually seek new methods, as concluded by Al Halaseh and 
Alqatawna (2016). A phisher could even attempt to bypass two indi-

vidual models simultaneously. Our tests encompass scenarios where 
the phisher attempts to bypass or completely fool one of the models, 
whereas real-life situations often fall somewhere in between. Never-

theless, our belief is that assessing the framework under worst-case 
scenarios is essential, and our full bypass simulation provides valuable 
insights.

This comprehensive evaluation of robustness enhances our under-

standing of the hybrid approach’s capabilities and limitations, paving 
the way for future research to develop even more resilient models. 
Moreover, it is worth mentioning that the work from Feng et al. (2020b)

did not provide any experimentation on the robustness of the model. To 
the best of our knowledge, our study is the first research to test it em-

pirically.

Stacking function

In exploring hybrid approaches, we recognized the importance of as-

sessing the performance of different stacking functions concerning ap-

plicability. While much attention has traditionally been placed on their 
effectiveness, our study delves into the broader spectrum of applicabil-

ity considerations.

Regarding effectiveness, our findings reveal that Logistic regression 
stands out as the top-performing stacking function. This observation can 
be attributed to its capacity to capture correlations between individual 
model predictions, enabling more effective utilization of their outputs. 
Notably, this aligns with the reviewer’s point regarding the potential 
advantages of Logistic regression. Notably, most other stacking func-

tions yielded nearly equivalent F1 scores. Interestingly, the Decision 
tree, employed by Venugopal et al. (2021), also performed comparably 
in our analysis. However, it is important to emphasize that their study 
did not provide a comparative assessment of multiple stacking functions 
or elaborate on the rationale behind their choice.

The applicability landscape shifts when considering robustness, a 
key facet of our study. Some stacking functions exhibited limitations in 
making reasonable classifications during the second-degree bypass sim-

ulation, indicating a lack of robustness. Consequently, we would not 
recommend incorporating these less robust stacking functions into a 
hybrid approach aimed at optimal applicability. Here, we encounter 
a trade-off between effectiveness and robustness. While the mean and 
Logistic regression stacking functions excel in effectiveness, voting 
emerges as the more robust choice. The selection between these two 
depends on the user’s priorities and requirements. If maximizing accu-

racy and F1 score is paramount, the mean or Logistic regression may be 
preferred. Conversely, if maintaining a high degree of robustness, es-

pecially in the face of challenging scenarios like bypass attempts, is a 
priority, voting becomes the preferred option.

In summary, our stacking function analysis underscores the need to 
strike a balance between effectiveness and robustness when designing a 
hybrid approach. The choice should be driven by the specific objectives 
and preferences of the end-user, ensuring that the system can deliver op-

timal performance while remaining resilient under adverse conditions.

Approach

Our current approach fills an important gap in the literature by em-

phasizing applicability, robustness, and real-world viability. While we 
acknowledge the potential for further research avenues, we believe that 
our study’s comprehensive evaluation provides valuable insights for the 
practical deployment of phishing detection systems.

Our approach offers several distinct advantages contributing to its 
value in the problem domain. Firstly, we focus not only on the individ-

ual models but also on their combined applicability. This perspective 
allows us to assess the effectiveness, speed, and robustness of the entire 
hybrid framework, providing a holistic view of its real-world utility. 
By emphasizing the broader spectrum of applicability, we move beyond 
the traditional single-focus evaluation of model effectiveness. Moreover, 
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our study explicitly explores the robustness of the hybrid framework, 
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demonstrating its resilience to bypass attempts, a crucial factor of real-

world applicability. This adds a layer of sophistication to our approach, 
as it considers potential threats and adversarial scenarios.

Our research focused on investigating various stacking functions 
to construct a practical and applicable hybrid framework for phish-

ing detection, driven by our aim to emphasize real-world utility and 
ease of adoption. Stacking provides an effective means of combining 
model outputs within our framework, aligning with our goal of obtain-

ing initial insights into the applicability of such a hybrid approach. This 
pragmatic approach ensures our framework’s deployability in practi-

cal settings and helps us understand the impact of different stacking 
functions on applicability. While advanced techniques like Multiview 
Learning and dynamic aggregation functions hold the potential to en-

hance the framework’s effectiveness and robustness (Li et al. 2018), we 
leave this avenue open for future research, recognizing the potential for 
further exploration in enhancing technical aspects. Our current study 
focused on building a foundational framework ready to address the ur-

gent issue of phishing detection.

6.2. Practical implications

Our study on the hybrid approach for automated phishing detec-

tion carries practical significance, going further than traditional effec-

tiveness evaluations. The implications of our findings extend beyond 
academia, offering tangible benefits for users, organizations, and the 
broader cybersecurity landscape.

Strengthened Cybersecurity Measures: At the core of our findings 
lies an enhancement in the accuracy and speed of phishing detection 
through our proposed hybrid framework. This translates to strength-

ened cybersecurity measures, a critical need as phishing attacks grow 
in sophistication and frequency. For this reason, organizations and users 
can trust that the automated system is more adept at accurately iden-

tifying and blocking phishing attempts, reducing the risk of successful 
attacks.

Adaptability to Real-world Dynamics: Our emphasis on real-world 
applicability ensures that the hybrid framework is not merely a theo-

retical construct but a practical solution tailored for different dynamic 
environments. By evaluating the framework’s detection speed and ro-

bustness against bypassing attempts, our study provides a pragmatic 
assessment of its adaptability. This adaptability is crucial, as it enables 
the deployment of our proof of concept framework with the assurance 
that it has been rigorously tested and optimized for the complexities of 
real-world phishing scenarios.

Guidance for Decision-makers: Our study offers valuable guidance 
for decision-makers by showcasing the robustness of the hybrid frame-

work against bypass attempts. This resilience instills confidence in users 
and organizations, ensuring the system remains effective even when 
confronted with sophisticated attempts to deceive it. Making informed 
decisions about stacking functions further empowers decision-makers, 
allowing them to align the system’s priorities with their own. This could 
be maximizing accuracy or prioritizing robustness.

Seedbed for Future Developments: Our experiments provide more 
than just a proof of concept; they serve as a seedbed for future devel-

opments in phishing detection systems. The demonstrated effectiveness 
of the hybrid framework, outperforming individual models, serves as a 
blueprint for developing new and more reliable phishing detection sys-

tems. The hybrid approach, with its combination of models and stacking 
functions, opens avenues for innovation and exploration in the ever-

evolving landscape of cybersecurity.

Efficiency in Resource Utilization: Compared to the current state-of-

the-art models, our hybrid framework achieves higher accuracy within 
a significantly reduced computational time. This efficiency in resource 
utilization is not just a theoretical advantage but a practical one. It 
positions our approach as a suitable solution for phishing detection, 
aligning with the need for timely and accurate threat identification in 

the face of evolving cyber threats.
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In conclusion, the practical implications of our study and related 
results suggest that our proposed hybrid framework provides tangible 
benefits for users and organizations seeking to enhance their cyberse-

curity. The findings of our experiments offer practical insights that can 
guide the selection, deployment, and ongoing improvement of auto-

mated phishing detection systems.

7. Conclusion

In conclusion, our research fills critical gaps in the field of phishing 
detection by shifting the focus from effectiveness alone towards real-

world applicability and robustness. While effectiveness remains pivotal, 
we recognize the need for a more holistic evaluation of phishing detec-

tion systems, considering multiple dimensions of applicability.

Our study introduces a comprehensive assessment framework, eval-

uating the effectiveness, speed of detection, and robustness of a hybrid 
approach. Compared to the current state-of-the-art approach (Table 11), 
our framework obtains a higher accuracy within half of the computa-

tional time. Additionally, we demonstrated the superiority of a hybrid 
framework over single-analysis-based models, achieving higher accu-

racy and F1 scores in distinguishing phishing websites when combining 
them. Furthermore, our research systematically examined robustness, 
simulating bypass scenarios and showcasing the system’s resilience 
against adversarial challenges. Notably, our study is the first to em-

pirically test robustness, underscoring its distinctive contribution to the 
field of phishing detection.

Lastly, on top of the technical outcomes of our proposed approach, 
we would like to underscore the implications of our research within 
both societal and scientific contexts. In Section 2.1, we already intro-

duced some key contributions and societal impact. However, we want 
to insist more on the importance of our research and findings in fight-

ing phishing. Phishing relies on human error, and according to IBM 
(2023), phishing is one of the top attack vectors. Our thorough litera-

ture review in Section 3, revealed that most of the existing solutions for 
phishing detection are URL-based, rendering them susceptible to eva-

sion through Generative Adversarial Networks (GANs). Consequently, 
our research aims to explore and test innovative hybrid models for 
phishing detection with the goal of enhancing both reliability and ro-

bustness. Our proposed approach has demonstrated to be reliable with 
an accuracy of ∼97%. However, at the same time, our model exhibits 
robustness against possible potential evasion strategies, as discussed in 
Section 5.2.4. In a world where artificial intelligence continually ad-

vances, we think that the Robustness of our proposed approach assumes 
a pivotal role as a distinctive asset in safeguarding users against phish-

ing attacks. Moreover, the resilience of our model represents a crucial 
and valuable contribution to user protection in the evolving landscape 
of cybersecurity.

8. Limitations and future work

We acknowledge that the findings presented in our work stem from 
the analysis of a single proof of concept. While this specific implemen-

tation demonstrates applicability, it does not guarantee that the use of 
other individual models yields similar results. In a further study, we 
want to test an implementation of the framework with more models. 
This would allow us to test and compare different compositions of the 
hybrid approach. On implementing more models, we could also sim-

ulate bypassing multiple individual models at a time. For this further 
study, multiple models exist that could add value when included in the 
design (Abdelnabi et al. 2020; Bilot et al. 2022; Sánchez-Paniagua et al. 
2022b).

Looking ahead, our findings pave the way for further research to 
explore other dimensions of applicability, such as flexibility, adaptabil-

ity, and scalability of a system. In principle, these system requirements 
are enhanced by a modular architecture, making it easier to swap mod-
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els and adjust designs to different environments and needs. We propose 
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to test the framework over a longer period of time, with additional 
models, simulating complex bypass scenarios, and incorporating vari-

ous existing models to enhance the hybrid design. We expect that our 
contribution extends beyond addressing current gaps, offering practical 
insights for the future development and deployment of robust phishing 
detection systems.

As phishing attacks continue to evolve, our multifaceted approach 
to evaluating and improving detection systems becomes increasingly 
relevant. By embracing a broader perspective of applicability, we are 
better equipped to counter emerging threats, reinforcing the importance 
of ongoing research in this critical cybersecurity domain.
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