Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Enhancing Text-to-SQL Translation for Financial System Design
SONG, Yewei; EZZINI, Saad; TANG, Xunzhu et al.
2024In ICSE-SEIP '24: Proceedings of the 46th International Conference on Software Engineering: Software Engineering in Practice
Peer reviewed Dataset
 

Documents


Texte intégral
ICSE24_Text2SQL (1).pdf
Preprint Auteur (836.82 kB) Licence Creative Commons - Attribution, Partage dans les Mêmes Conditions
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Text to SQL; Natural language processing
Résumé :
[en] Text-to-SQL, the task of translating natural language questions into SQL queries, is part of various business processes. Its automation, which is an emerging challenge, will empower software practitioners to seamlessly interact with relational databases using natural language, thereby bridging the gap between business needs and software capabilities. In this paper, we consider Large Language Models (LLMs), which have achieved state of the art for various NLP tasks. Specifically, we benchmark Text-to-SQL performance, the evaluation methodologies, as well as input optimization (e.g., prompting). In light of the empirical observations that we have made, we propose two novel metrics that were designed to adequately measure the similarity between SQL queries. Overall, we share with the community various findings, notably on how to select the right LLM on Text-to-SQL tasks. We further demonstrate that a tree-based edit distance constitutes a reliable metric for assessing the similarity between generated SQL queries and the oracle for benchmarking Text2SQL approaches. This metric is important as it relieves researchers from the need to perform computationally expensive experiments such as executing generated queries as done in prior works. Our work implements financial domain use cases and, therefore contributes to the advancement of Text2SQL systems and their practical adoption in this domain.
Centre de recherche :
NCER-FT - FinTech National Centre of Excellence in Research
Disciplines :
Sciences informatiques
Auteur, co-auteur :
SONG, Yewei  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
EZZINI, Saad ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust > TruX > Team Jacques KLEIN ; Lancaster University [GB]
TANG, Xunzhu  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
LOTHRITZ, Cedric  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
KLEIN, Jacques  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
BISSYANDE, Tegawendé François d Assise  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
BOYTSOV, Andrey ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust > SerVal > Team Yves LE TRAON ; BGL BNP PARIBAS
BLE, Ulrick;  BGL BNP PARIBAS
GOUJON, Anne;  BGL BNP PARIBAS
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Enhancing Text-to-SQL Translation for Financial System Design
Date de publication/diffusion :
31 mai 2024
Nom de la manifestation :
ICSE '24: Proceedings of the 46th IEEE/ACM International Conference on Software Engineering
Organisateur de la manifestation :
IEEE/ACM
Lieu de la manifestation :
Lisbon, Portugal
Date de la manifestation :
from 14 to 20 April 2024
Manifestation à portée :
International
Titre de l'ouvrage principal :
ICSE-SEIP '24: Proceedings of the 46th International Conference on Software Engineering: Software Engineering in Practice
Maison d'édition :
Institute of Electrical and Electronics Engineers Inc., New York, Etats-Unis
Pagination :
11
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Projet FnR :
FNR16229163 - LuxemBERT - Multilingual Nlp Coping With Luxembourg Specificities For The Financial Industry, 2021 (01/01/2022-31/12/2024) - Jacques Klein
Jeu de données :
Disponible sur ORBilu :
depuis le 28 février 2024

Statistiques


Nombre de vues
134 (dont 13 Unilu)
Nombre de téléchargements
137 (dont 4 Unilu)

citations Scopus®
 
8
citations Scopus®
sans auto-citations
8
OpenCitations
 
0
citations OpenAlex
 
12

Bibliographie


Publications similaires



Contacter ORBilu