Article (Périodiques scientifiques)
Radio Environment Map Construction Based On Privacy-centric Federated Learning
Khan, Shafi Ullah; GARCIA MORETA, Carla Estefania; Hwang, Taewoong et al.
2024In IEEE Access, p. 1-1
Peer reviewed vérifié par ORBi Dataset
 

Documents


Texte intégral
Radio_Environment_Map_Construction_Based_On_Privacy-centric_Federated_Learning.pdf
Postprint Auteur (29.2 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
General Engineering; General Computer Science; Electrical and Electronic Engineering; machine learning; federated learning; radio environment map; coverage
Résumé :
[en] In today’s digital age, coverage prediction is essential for optimizing wireless networks and improving user experience. While numerous path loss models and advanced machine learning algorithms have been developed to achieve high prediction performance, they predominantly operate within a centralized learning paradigm. While effective, this conventional approach often suffers from scalability and privacy limitations that are critical to the successful deployment of wireless maps. Conversely, in this paper, we propose a novel decentralized approach based on a federated learning long short-term memory (LSTM) model to accurately predict network coverage in indoor environments. The proposed FedLSTM is a method that allows multiple users, or clients, to train the model without sharing their personal data directly with a central server. In an experimental setup, we used real data collected from numerous clients moving along different paths. The FedLSTM model is evaluated in terms of root mean square error (RMSE), mean absolute error (MAE), and R2. Furthermore, compared to a centralized counterpart, FedLSTM shows a slight increase in RMSE from 2.4 dBm to 2.5 dBm and an increase in MAE from 1.7 dBm to 1.9 dBm. In addition, we evaluate the proposed FedLSTM considering variations in the number of participating clients and the number of local training epochs. The results show that even devices with limited computational power can meaningfully contribute to the training of the federated model, with fewer epochs achieving competitive results. Graphical analyses of the radio environment maps (REMs) generated by both FedLSTM and the centralized LSTM highlight their similarities. However, FedLSTM provides client privacy while reducing communication overhead and server strain.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Khan, Shafi Ullah ;  Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan, South Korea
GARCIA MORETA, Carla Estefania  ;  University of Luxembourg
Hwang, Taewoong;  Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan, South Korea
Koo, Insoo ;  Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan, South Korea
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Radio Environment Map Construction Based On Privacy-centric Federated Learning
Date de publication/diffusion :
19 février 2024
Titre du périodique :
IEEE Access
ISSN :
2169-3536
Maison d'édition :
Institute of Electrical and Electronics Engineers (IEEE)
Pagination :
1-1
Peer reviewed :
Peer reviewed vérifié par ORBi
Organisme subsidiant :
National Research Foundation of Korea
Disponible sur ORBilu :
depuis le 27 février 2024

Statistiques


Nombre de vues
54 (dont 6 Unilu)
Nombre de téléchargements
58 (dont 3 Unilu)

citations Scopus®
 
7
citations Scopus®
sans auto-citations
3
citations OpenAlex
 
5

Bibliographie


Publications similaires



Contacter ORBilu