Abstract :
[en] Nowadays, with the rapid expansion of cloud computing technology in processing Internet of Things (IoT) workloads, the demand for data centers has significantly increased, leading to a surge in CO2 emissions, power consumption, and global warming. As a result, extensive research and initiatives have been undertaken to tackle this problem. Two specific approaches focus on enhancing workload scheduling, a complex problem known as NP-Hard, and integrating scheduling into scientific workflows. In this investigation, we present a multi-objective Crow Search Algorithm (CSA) for optimizing both makespan and costs in scientific cloud workflows (CSAMOMC). We conduct a comparative analysis between our approach and the well-known HEFT and TC3pop algorithms, which are commonly used for reducing makespan and optimizing costs. Our findings demonstrate that CSAMOMC is capable of achieving an average makespan reduction of 4.42% and a cost reduction of 4.77% when compared to the aforementioned algorithms.
Scopus citations®
without self-citations
21