[en] Glioblastoma (GBM) is a highly aggressive primary brain tumor with dismal outcome for affected patients. Because of the significant neo-angiogenesis exhibited by GBMs, anti-angiogenic therapies have been intensively evaluated during the past years. Recent clinical studies were however disappointing, although a subpopulation of patients may benefit from such treatment. We have previously shown that anti-angiogenic targeting in GBM increases hypoxia and leads to a metabolic adaptation toward glycolysis, suggesting that combination treatments also targeting the glycolytic phenotype may be effective in GBM patients. The aim of this study was to identify marker proteins that are altered by treatment and may serve as a short term readout of anti-angiogenic therapy. Ultimately such proteins could be tested as markers of efficacy able to identify patient subpopulations responsive to the treatment. We applied a proteomics approach based on selected reaction monitoring (SRM) to precisely quantify targeted protein candidates, selected from pathways related to metabolism, apoptosis and angiogenesis. The workflow was developed in the context of patient-derived intracranial GBM xenografts developed in rodents and ensured the specific identification of human tumor versus rodent stroma-derived proteins. Quality control experiments were applied to assess sample heterogeneity and reproducibility of SRM assays at different levels. The data demonstrate that tumor specific proteins can be precisely quantified within complex biological samples, reliably identifying small concentration differences induced by the treatment. In line with previous work, we identified decreased levels of TCA cycle enzymes, including isocitrate dehydrogenase, whereas malectin, calnexin, and lactate dehydrogenase A were augmented after treatment. We propose the most responsive proteins of our subset as potential novel biomarkers to assess treatment response after anti-angiogenic therapy that warrant future analysis in clinical GBM samples.
Disciplines :
Oncology
Author, co-author :
Demeure, Kevin; From the ‡NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg,
Fack, Fred; From the ‡NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg,
DURIEZ, Elodie ; Genomics and Proteomics Research Unit, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg,
Tiemann, Katja; From the ‡NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg,
Bernard, Amandine; From the ‡NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg,
GOLEBIEWSKA, Anna ; NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg,
Bougnaud, Sébastien; From the ‡NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg,
Bjerkvig, Rolf; From the ‡NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg, ¶KG Jebsen Brain Tumour Research Center, Department of Biomedicine, University of Bergen, Bergen, Norway.
Domon, Bruno; §Genomics and Proteomics Research Unit, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg,
NICLOU, Simone P. ; NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg, KG Jebsen Brain Tumour Research Center, Department of Biomedicine, University of Bergen, Bergen, Norway
External co-authors :
yes
Language :
English
Title :
Targeted Proteomics to Assess the Response to Anti-Angiogenic Treatment in Human Glioblastoma (GBM).
Publication date :
February 2016
Journal title :
Molecular and Cellular Proteomics
ISSN :
1535-9476
eISSN :
1535-9484
Publisher :
American Society for Biochemistry and Molecular Biology, United States - Maryland
Jayaram, S., Gupta, M. K., Polisetty, R. V., Cho, W. C., and Sirdeshmukh, R. (2014) Towards developing biomarkers for glioblastoma multiforme: A proteomics view. Expert Rev. Proteomics 11, 621-639
Arrillaga-Romany, I., Reardon, D. A., and Wen, P. Y. (2014) Current status of antiangiogenic therapies for glioblastomas. Expert Opin. Investig. Drugs 23, 199-210
Plate, K.H., Scholz, A., and Dumont, D. J. (2012) Tumor angiogenesis and anti-Angiogenic therapy in malignant gliomas revisited. Acta Neuropathol. 124, 763-775
Keunen, O., Johansson, M., Oudin, A., Sanzey, M., Rahim, S. A., Fack, F., Thorsen, F., Taxt, T., Bartos, M., Jirik, R., Miletic, H., Wang, J., Stieber, D., Stuhr, L., Moen, I., Rygh, C. B., Bjerkvig, R., and Niclou, S. P. (2011) Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc. Natl. Acad. Sci. U.S.A. 108, 3749-3754
Fack, F., Espedal, H., Keunen, O., Golebiewska, A., Obad, N., Harter, P. N., Mittelbronn, M., Bahr, O., Weyerbrock, A., Stuhr, L., Miletic, H., Sakariassen, P. O., Stieber, D., Rygh, C. B., Lund-Johansen, M., Zheng, L., Gottlieb, E., Niclou, S. P., and Bjerkvig, R. (2015) Bevacizumab treatment induces metabolic adaptation toward anaerobic metabolism in glioblastomas. Acta Neuropathol. 129(1):115-31
Chinot, O.L., Wick, W., and Cloughesy, T. (2014) Bevacizumab for newly diagnosed glioblastoma. N. Engl. J. Med., 370, 2049
Gilbert, M. R., Dignam, J. J., Armstrong, T. S., Wefel, J. S., Blumenthal, D. T., Vogelbaum, M.A., Colman, H., Chakravarti, A., Pugh, S., Won, M., Jeraj, R., Brown, P. D., Jaeckle, K. A., Schiff, D., Stieber, V. W., Brachman, D. G., Werner-Wasik, M., Tremont-Lukats, I. W., Sulman E. P., Aldape, K. D. Curran, Jr., W. J. and Mehta, M. P. (2014) A randomized trial of bevacizumab for newly diagnosed glioblastoma. N. Engl. J. Med. 370, 699-708
Huang, R. Y., Neagu, M. R., Reardon D. A., and Wen, P. Y. (2015) Pitfalls in the neuroimaging of glioblastoma in the era of antiangiogenic and immuno/targeted therapy-detecting illusive disease, defining response. Front. Neurol. 6, 33
Keunen, O., Taxt, T., Gruner, R., Lund-Johansen, M., Tonn, J. C., Pavlin, T., Bjerkvig, R., Niclou, S. P., and Thorsen, F. (2014) Multimodal imaging of gliomas in the context of evolving cellular and molecular therapies. Adv. Drug Deliv. Rev. 76:98-115
Domon, B., and Aebersold, R. (2010) Options and considerations when selecting a quantitative proteomics strategy. Nat. Biotechnol. 28, 710-721
Deracinois, B., Flahaut, C., Duban-Deweer, S., and Karamanos, Y. (2013) Comparative and quantitative global proteomics approaches: An overview. Proteomes 1, 180-218
Li, X. H., Li, C., and Xiao, Z.Q. (2011) Proteomics for identifying mechanisms and biomarkers of drug resistance in cancer. J. Proteomics 74, 2642-2649
Meng, Z., and Veenstra, T. D. (2011) Targeted mass spectrometry ap-proaches for protein biomarker verification. J. Proteomics 74, 2650-2659
Marx, V. (2013) Targeted proteomics. Nat. Methods 10, 19-22
Gallien, S., Duriez, E., and Domon, B. (2011) Selected reaction monitoring applied to proteomics. J. Mass Spectrom. 46, 298-312
Whiteaker, J. R., Lin, C., Kennedy, J., Hou, L., Trute, M., Sokal, I., Yan, P., Schoenherr, R. M., Zhao, L., Voytovich, U. J., Kelly-Spratt, K. S., Krasnoselsky, A., Gafken, P. R., Hogan, J. M., Jones, L. A., Wang, P., Amon, L., Chodosh, L. A., Nelson, P. S., McIntosh, M.W., Kemp, C. J., and Paulovich, A. G. (2011) A targeted proteomics-based pipeline for verification of biomarkers in plasma. Nat. Biotechnol. 29, 625-634
Gillette, M. A., and Carr, S. A. (2013) Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry. Nat. Methods 10, 28-34
Percy, A. J., Chambers, A. G., Yang, J., Hardie, D. B., and Borchers, C. H. (2014) Advances in multiplexed MRM-based protein biomarker quantitation toward clinical utility. Biochim. Biophys. Acta 1844, 917-926
Kim, Y.J., Gallien, S. van Oostrum J. and Domon, B. (2013) Targeted proteomics strategy applied to biomarker evaluation. Proteomics Clin. Appl. 7, 739-747
Lange, V., Picotti, P., Domon B., and Aebersold, R. (2008) Selected reaction monitoring for quantitative proteomics: A tutorial. Mol. Syst. Biol. 4, 222
Golebiewska, A., Bougnaud, S., Stieber, D., Brons, N. H., Vallar, L., Hertel, F., Klink, B., Schrock, E., Bjerkvig, R., and Niclou, S. P. (2013) Side population in human glioblastoma is non-Tumorigenic and characterizes brain endothelial cells. Brain 136, 1462-1475
Stieber, D., Golebiewska, A., Evers, L., Lenkiewicz, E., Brons, N. H., Nicot, N., Oudin, A., Bougnaud, S., Hertel, F., Bjerkvig, R., Vallar, L., Barrett, M. T., and Niclou, S. P. (2014) Glioblastomas are composed of genetically divergent clones with distinct tumourigenic potential and variable stem cell-Associated phenotypes. Acta Neuropathol. 127, 203-219
Wang, J., Miletic, H., Sakariassen, P. O., Huszthy, P. C., Jacobsen, H., Brekka, N., Li, X., Zhao, P., Mork, S., Chekenya, M., Bjerkvig, R., and Enger, P. O. (2009) A reproducible brain tumour model established from human glioblastoma biopsies. BMC Cancer 9, 465
Rajcevic, U., Petersen, K., Knol, J. C., Loos, M., Bougnaud, S., Klychnikov, O., Li, K. W., Pham, T. V., Wang, J., Miletic, H., Peng, Z., Bjerkvig, R., Jimenez, C. R., and Niclou, S. P. (2009) iTRAQ-based proteomics profiling reveals increased metabolic activity and cellular cross-Talk in angiogenic compared with invasive glioblastoma phenotype. Mol. Cell. Proteomics, 8, 2595-2612
Tang, H. Y., Beer, L. A., Chang-Wong, T., Hammond, R., Gimotty, P., Coukos, G., and Speicher, D. W. (2012) A xenograft mouse model coupled with in-depth plasma proteome analysis facilitates identification of novel serum biomarkers for human ovarian cancer. J. Proteome Res. 11, 678-691
Wessel, D., and Flugge, U. I. (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal. Biochem. 138, 141-143
Demeure, K., Duriez, E., Domon B., and Niclou, S. P. (2014) Peptide-Manager: A peptide selection tool for targeted proteomic studies involving mixed samples from different species. Front. Genet. 5, 305
Desiere, F., Deutsch, E. W., King, N. L., Nesvizhskii, A. I., Mallick, P., Eng, J., Chen, S., Eddes, J., Loevenich, S. N., and Aebersold, R. (2006) The PeptideAtlas project. Nucleic Acids Res. 34, D655-8
Sanzey, M., Abdul Rahim, S. A., Oudin, A., Dirkse, A., Kaoma, T., Vallar, L., Herold-Mende, C., Bjerkvig, R., Golebiewska, A., and Niclou, S. P. (2015) Comprehensive analysis of glycolytic enzymes as therapeutic targets in the treatment of glioblastoma. PLoS ONE 10, e0123544
Tannous, A., Pisoni, G. B., Hebert D. N., and Molinari, M. (2015) N-linked sugar-regulated protein folding and quality control in the ER. Semin. Cell Dev. Biol. 41:79-89
Kosuri, P., Alegre-Cebollada, J., Feng, J., Kaplan, A., Ingles-Prieto, A., Badilla, C. L., Stockwell, B. R., Sanchez-Ruiz, J. M., Holmgren, A., and Fernandez, J. M. (2012) Protein folding drives disulfide formation. Cell 151, 794-806
Gautam, P., Nair, S.C., Gupta, M. K., Sharma, R., Polisetty, R. V., Uppin, M. S., Sundaram, C., Puligopu, A. K., Ankathi, P., Purohit, A. K., Chandak, G. R., Harsha, H. C., and Sirdeshmukh, R. (2012) Proteins with altered levels in plasma from glioblastoma patients as revealed by iTRAQ-based quantitative proteomic analysis. PLoS ONE 7, e46153
Gollapalli, K., Ray, S., Srivastava, R., Renu, D., Singh, P., Dhali, S., Bajpai Dikshit, J., Srikanth, R., Moiyadi, A., and Srivastava, S. (2012) Investigation of serum proteome alterations in human glioblastoma multiforme. Proteomics 12, 2378-2390
Collet, B., Guitton, N., Saikali, S., Avril, T., Pineau, C., Hamlat, A., Mosser, J., and Quillien, V. (2011) Differential analysis of glioblastoma multiforme proteome by a 2D-DIGE approach. Proteome Sci. 9, 16
Polisetty, R. V., Gautam, P., Sharma, R., Harsha, H. C., Nair, S. C., Gupta, M. K., Uppin, M. S., Challa, S., Puligopu, A. K., Ankathi, P., Purohit, A. K., Chandak, G. R., Pandey, A., and Sirdeshmukh, R. (2012) LC-MS/MS analysis of differentially expressed glioblastoma membrane proteome reveals altered calcium signaling and other protein groups of regulatory functions. Mol. Cell. Proteomics 11, M111 013565
Zhang, R., Tremblay, T.L. McDermid, A. Thibault, P. and Stanimirovic, D. (2003) Identification of differentially expressed proteins in human glioblastoma cell lines and tumors. Glia 42, 194-208
Chen, S., Zhao, H., Deng, J., Liao, P., Xu, Z., and Cheng, Y. (2013) Comparative proteomics of glioma stem cells and differentiated tumor cells identifies S100A9 as a potential therapeutic target. J. Cell. Biochem. 114, 2795-2808
Kumar, D.M., Patil, V. Ramachandran, B. Nila, M.V. Dharmalingam, K. and Somasundaram, K. (2013) Temozolomide-modulated glioma proteome: role of interleukin-1 receptor-Associated kinase-4 (IRAK4) in chemosensitivity. Proteomics 13, 2113-2124
Anastasiou, D., Yu, Y., Israelsen, W. J., Jiang, J. K., Boxer, M. B., Hong, B. S., Tempel, W., Dimov, S., Shen, M., Jha, A., Yang, H., Mattaini, K. R., Metallo, C. M., Fiske, B. P., Courtney, K. D., Malstrom, S., Khan, T. M., Kung, C., Skoumbourdis, A. P., Veith, H., Southall, N., Walsh, M. J., Brimacombe, K. R., Leister, W., Lunt, S. Y., Johnson, Z. R., Yen, K. E., Kunii, K., Davidson, S. M., Christofk, H. R., Austin, C. P., Inglese, J., Harris, M. H., Asara, J. M., Stephanopoulos, G., Salituro, F. G., Jin, S., Dang, L., Auld, D. S., Park, H. W., Cantley, L. C., Thomas, C. J., and Vander Heiden, M. G. (2012) Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nat. Chem. Biol. 8, 839-847
Sangar, V., Funk, C., C., Kusebauch, U., Campbell, D., S., Moritz, R.L., and Price, N., D. (2014) Quantitative proteomic analysis reveals effects of epidermal growth factor receptor (EGFR) on invasion-promoting proteins secreted by glioblastoma cells. Mol. Cell. Proteomics 13, 2618-2631
Petersen, K., Rajcevic, U., Abdul Rahim, S. A., Jonassen, I., Kalland, K. H., Jimenez, C. R., Bjerkvig, R., and Niclou, S. P. (2013) Gene set based integrated data analysis reveals phenotypic differences in a brain cancer model. PLoS ONE 8, e68288
Porporato, P. E., Dhup, S., Dadhich, R. K., Copetti, T., and Sonveaux, P. (2011) Anticancer targets in the glycolytic metabolism of tumors: A comprehensive review. Front Pharmacol. 2, 49
Mazurek, S. (2011) Pyruvate kinase type M2: A key regulator of the metabolic budget system in tumor cells. Int. J. Biochem. Cell Biol. 43, 969-980
Bentaib, A., De Tullio, P., Chneiweiss, H., Hermans, E., Junier, M. P., and Leprince, P. (2014) Metabolic reprogramming in transformed mouse cortical astrocytes: A proteomic study. J. Proteomics 113C, 292-314
Bluemlein, K., Gruning, N. M., Feichtinger, R. G., Lehrach, H., Kofler, B., and Ralser, M. (2011) No evidence for a shift in pyruvate kinase PKM1 to PKM2 expression during tumorigenesis. Oncotarget 2, 393-400
Iqbal, M. A., Gupta, V., Gopinath, P., Mazurek, S., and Bamezai, R. N. (2014) Pyruvate kinase M2 and cancer: An updated assessment. FEBS Lett. 588, 2685-2692
Schallus, T., Jaeckh, C., Feher, K., Palma, A.S., Liu, Y., Simpson, J. C., Mackeen, M., Stier, G., Gibson, T. J., Feizi, T., Pieler, T., and Muhle-Goll, C. (2008) Malectin: A novel carbohydrate-binding protein of the endoplasmic reticulum and a candidate player in the early steps of protein N-glycosylation. Mol. Biol. Cell 19, 3404-3414
Galli, C., Bernasconi, R., Solda, T., Calanca, V., and Molinari, M. (2011) Malectin participates in a backup glycoprotein quality control pathway in the mammalian ER. PLoS ONE 6, e16304
Tabouret, E., Boudouresque, F., Barrie, M., Matta, M., Boucard, C., Loundou, A., Carpentier, A., Sanson, M., Metellus, P., Figarella-Branger, D., Ouafik, L., and Chinot, O. (2014) Association of matrix metalloproteinase 2 plasma level with response and survival in patients treated with bevacizumab for recurrent high-grade glioma. Neuro Oncol. 16, 392-399
Batchelor, T. T., Sorensen, A. G., di Tomaso, E., Zhang, W. T., Duda, D. G., Cohen, K. S., Kozak, K. R., Cahill, D. P., Chen, P. J., Zhu, M., Ancukiewicz, M., Mrugala, M. M., Plotkin, S., Drappatz, J., Louis, D. N., Ivy, P., Scadden, D. T., Benner, T., Loeffler, J. S., Wen, P. Y., and Jain, R. K. (2007) AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11, 83-95
Lu-Emerson, C., Snuderl, M., Kirkpatrick, N. D., Goveia, J., Davidson, C., Huang, Y., Riedemann, L., Taylor, J., Ivy P., Duda, D. G., Ancukiewicz, M., Plotkin, S. R., Chi, A. S., Gerstner, E. R., Eichler, A. F., Dietrich, J., Stemmer-Rachamimov, A. O., Batchelor, T. T., and Jain, R. K. (2013) Increase in tumor-Associated macrophages after antiangiogenic therapy is associated with poor survival among patients with recurrent glioblastoma. Neuro Oncol. 15, 1079-1087
Batchelor, T. T., Reardon, D. A., de Groot, J. F., Wick, W., and Weller, M. (2014) Antiangiogenic therapy for glioblastoma: current status and future prospects. Clin. Cancer Res. 20, 5612-5619