Humans; Neoplasms/blood supply; Neoplastic Stem Cells/pathology; Neovascularization, Pathologic; Signal Transduction
Résumé :
[en] Most cancers contain tumor cells that display stem cell-like characteristics. How and when such cells appear in tumors are not clear, but may involve both stochastic as well as hierarchical events. Most likely, tumor cells that display stem cell-like characteristics can undergo asymmetric cell division giving rise to tumor cells that trigger angiogenic programs. As normal stem cells the cancer stem-like cells seem to adapt to hypoxic environments and will use metabolic pathways that involve increased conversion of glucose to pyruvate and lactate, and a concomitant decrease in mitochondrial metabolism and mitochondrial mass. The molecular pathways responsible for inducing glycolysis are now being explored. These pathways seem to mediate multiple metabolic functions in cancer stem-like cells, leading to a highly migratory and angiogenesis-independent phenotype. Future challenges will be to identify and validate molecular targets involved in anaerobic metabolic pathways active in cancer stem-like cells and to determine how these pathways differ from regulatory pathways involved in normal stem cell function.
Disciplines :
Oncologie
Auteur, co-auteur :
Bjerkvig, Rolf; NorLux Neuro-Oncology, Department of Biomedicine, University of Bergen, N-5009, Bergen, Norway. rolf.bjerkvig@biomed.uib.no
Johansson, Mikael
Miletic, Hrvoje
NICLOU, Simone P. ; NorLux Neuro-Oncology Laboratory, Centre de Recherche Public Santé, L-1526 Luxembourg
Nowell P.C. The clonal evolution of tumor cell populations. Science 194 (1976) 23-28
Cohnheim J. Ueber entzundung und eiterung. Path Anat Physiol Klin Med 40 (1867) 1-79
Durante F. Nesso fisio-pathologico tra la struttura dei nei materni e la genesi di alcuni tumori maligni. Arch Memor Observ Chir Pract 11 (1874) 217-226
Reya T., Morrison S.J., Clarke M.F., and Weissman I.L. Stem cells, cancer, and cancer stem cells. Nature 414 (2001) 105-111
Tysnes B.B., and Bjerkvig R. Cancer initiation and progression: involvement of stem cells and the microenvironment. Biochim Biophys Acta 1775 (2007) 283-297
Cahill D.P., Kinzler K.W., Vogelstein B., and Lengauer C. Genetic instability and darwinian selection in tumours. Trends Cell Biol 9 (1999) M57-60
Frank S.A., and Nowak M.A. Problems of somatic mutation and cancer. Bioessays 26 (2004) 291-299
Armitage P., and Doll R. The age distribution of cancer and a multi-stage theory of carcinogenesis. Br J Cancer 8 (1954) 1-12
Hanahan D., and Weinberg R.A. The hallmarks of cancer. Cell 100 (2000) 57-70
Renan M.J. How many mutations are required for tumorigenesis? Implications from human cancer data. Mol Carcinog 7 (1993) 139-146
Pardal R., Clarke M.F., and Morrison S.J. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3 (2003) 895-902
Blair A., Hogge D.E., Ailles L.E., Lansdorp P.M., and Sutherland H.J. Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood 89 (1997) 3104-3112
Bonnet D., and Dick J.E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3 (1997) 730-737
Fang B., Zheng C., Liao L., Han Q., Sun Z., Jiang X., et al. Identification of human chronic myelogenous leukemia progenitor cells with hemangioblastic characteristics. Blood 105 (2005) 2733-2740
Lapidot T., Sirard C., Vormoor J., Murdoch B., Hoang T., Caceres-Cortes J., et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367 (1994) 645-648
Al-Hajj M., Wicha M.S., Benito-Hernandez A., Morrison S.J., and Clarke M.F. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100 (2003) 3983-3988
Galli R., Binda E., Orfanelli U., Cipelletti B., Gritti A., De Vitis S., et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64 (2004) 7011-7021
Singh S.K., Hawkins C., Clarke I.D., Squire J.A., Bayani J., Hide T., et al. Identification of human brain tumour initiating cells. Nature 432 (2004) 396-401
Gibbs C.P., Kukekov V.G., Reith J.D., Tchigrinova O., Suslov O.N., Scott E.W., et al. Stem-like cells in bone sarcomas: implications for tumorigenesis. Neoplasia 7 (2005) 967-976
Kim C.F., Jackson E.L., Woolfenden A.E., Lawrence S., Babar I., Vogel S., et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121 (2005) 823-835
Fang D., Nguyen T.K., Leishear K., Finko R., Kulp A.N., Hotz S., et al. tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 65 (2005) 9328-9337
Collins A.T., Berry P.A., Hyde C., Stower M.J., and Maitland N.J. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65 (2005) 10946-10951
Bjerkvig R., Tysnes B.B., Aboody K.S., Najbauer J., and Terzis A.J. Opinion: the origin of the cancer stem cell: current controversies and new insights. Nat Rev Cancer 5 (2005) 899-904
Perez-Losada J., and Balmain A. Stem-cell hierarchy in skin cancer. Nat Rev Cancer 3 (2003) 434-443
Jordan C.T. Cancer stem cell biology: from leukemia to solid tumors. Curr Opin Cell Biol 16 (2004) 708-712
Beier D., Hau P., Proescholdt M., Lohmeier A., Wischhusen J., Oefner P.J., et al. Beier CP. CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 67 (2007) 4010-4015
Cozzio A., Passegue E., Ayton P.M., Karsunky H., Cleary M.L., and Weissman I.L. Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev 17 (2003) 3029-3035
Jamieson C.H., Weissman I.L., and Passegue E. Chronic versus acute myelogenous leukemia: a question of self-renewal. Cancer Cell 6 (2004) 531-533
Passegue E., Jamieson C.H., Ailles L.E., and Weissman I.L. Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics?. Proc Natl Acad Sci USA 100 Suppl. 1 (2003) 11842-11849
Wang J., Sakariassen P.O., Tsinkalovsky O., Immervoll H., Boe S.O., Svendsen A., et al. CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. Int J Cancer 122 (2008) 761-768
Quintana E., Shackleton M., Sabel M.S., Fullen D.R., Johnson T.M., and Morrison S.J. Efficient tumour formation by single human melanoma cells. Nature 456 (2008) 593-598
Hill R.P. Identifying cancer stem cells in solid tumors: case not proven. Cancer Res 66 (2006) 1891-1895 [discussion 0]
Kelly P.N., Dakic A., Adams J.M., Nutt S.L., and Strasser A. Tumor growth need not be driven by rare cancer stem cells. Science (2007) 317-337
Odoux C., Fohrer H., Hoppo T., Guzik L., Stolz D.B., Lewis D.W., et al. A stochastic model for cancer stem cell origin in metastatic colon cancer. Cancer Res 68 (2008) 6932-6941
Warburg O, Posener K, Negelein E. Ueber den Stoffwechsel der Tumoren. Biochemische Zeitschrift 1924; 152:319-44.
Warburg O, Wind E, Negelein E. On the metabolism of tumours in the body. In: The Metabolism of Tumours: Investigations from the Kaiser Wilhelm Institute for Biology, Berlin-Dahlen, London: Constable&Co., Ltd; 1930
Gatenby R.A., and Gillies R.J. Why do cancers have high aerobic glycolysis?. Nat Rev Cancer 4 (2004) 891-899
He X., Brenchley P.E., Jayson G.C., Hampson L., Davies J., and Hampson I.N. Hypoxia increases heparanase-dependent tumor cell invasion, which can be inhibited by antiheparanase antibodies. Cancer Res 64 (2004) 3928-3933
Postovit L.M., Adams M.A., Lash G.E., Heaton J.P., and Graham C.H. Oxygen-mediated regulation of tumor cell invasiveness. Involvement of a nitric oxide signaling pathway. J Biol Chem 277 (2002) 35730-35737
Postovit L.M., Adams M.A., Lash G.E., Heaton J.P., and Graham C.H. Nitric oxide-mediated regulation of hypoxia-induced B16F10 melanoma metastasis. Int J Cancer 108 (2004) 47-53
Cipolleschi M.G., Dello Sbarba P., and Olivotto M. The role of hypoxia in the maintenance of hematopoietic stem cells. Blood 82 (1993) 2031-2037
Kubota Y., Takubo K., and Suda T. Bone marrow long label-retaining cells reside in the sinusoidal hypoxic niche. Biochem Biophys Res Commun 9 (2008) 335-366
Vlaski M., Lafarge X., Chevaleyre J., Duchez P., Boiron J.M., and Ivanovic Z. Low oxygen concentration as a general physiologic regulator of erythropoiesis beyond the EPO-related downstream tuning and a tool for the optimization of red blood cell production ex vivo. Exp Hematol 37 (2009) 573-584
Ito K., Hirao A., Arai F., Takubo K., Matsuoka S., Miyamoto K., et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med 12 (2006) 446-451
Palmer T.D., Schwartz P.H., Taupin P., Kaspar B., Stein S.A., and Gage F.H. Cell culture. progenitor cells from human brain after death. Nature 411 (2001) 42-43
Das B., Tsuchida R., Malkin D., Koren G., Baruchel S., and Yeger H. Hypoxia enhances tumor stemness by increasing the invasive and tumorigenic side population fraction. Stem Cells 26 (2008) 1818-1830
Kendall S.E., Najbauer J., Johnston H.F., Metz M.Z., Li S., Bowers M., et al. Neural stem cell targeting of glioma is dependent on phosphoinositide 3-kinase signaling. Stem Cells 26 (2008) 1575-1586
Bleau A.M., Hambardzumyan D., Ozawa T., Fomchenko E.I., Huse J.T., Brennan C.W., et al. PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell 4 (2009) 226-235
Miyamoto K., Araki K.Y., Naka K., Arai F., Takubo K., Yamazaki S., et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 1 (2007) 101-112
Parmar K., Mauch P., Vergilio J.A., Sackstein R., and Down J.D. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci USA 104 (2007) 5431-5436
Iwasaki H., and Suda T. Cancer stem cells and their niche. Cancer Sci 100 (2009) 1166-1172
Elstrom R.L., Bauer D.E., Buzzai M., Karnauskas R., Harris M.H., Plas D.R., et al. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 64 (2004) 3892-3899
Robey R.B., and Hay N. Is Akt the "Warburg kinase"? Akt-energy metabolism interactions and oncogenesis. Semin Cancer Biol 19 (2009) 25-31
Brugarolas J.B., Vazquez F., Reddy A., Sellers W.R., and Kaelin Jr. W.G. TSC2 regulates VEGF through mTOR-dependent and -independent pathways. Cancer Cell 4 (2003) 147-158
Nogueira V., Park Y., Chen C.C., Xu P.Z., Chen M.L., Tonic I., et al. Akt determines replicative senescence and oxidative or oncogenic premature senescence and sensitizes cells to oxidative apoptosis. Cancer Cell 14 (2008) 458-470
Folkman J. Tumor angiogenesis. Adv Cancer Res 43 (1985) 175-203
Folkman J. Toward an understanding of angiogenesis: search and discovery. Perspect Biol Med 29 (1985) 10-36
Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 285 (1971) 1182-1186
Hillen F., and Griffioen A.W. Tumour vascularization: sprouting angiogenesis and beyond. Cancer Metastasis Rev 26 (2007) 489-502
Leenders W.P., Kusters B., Verrijp K., Maass C., Wesseling P., Heerschap A., et al. Antiangiogenic therapy of cerebral melanoma metastases results in sustained tumor progression via vessel co-option. Clin Cancer Res 10 (2004) 6222-6230
Wedge S.R., Ogilvie D.J., Dukes M., Kendrew J., Chester R., Jackson J.A., et al. ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Research 62 (2002) 4645-4655
Dickson P.V., Hamner J.B., Sims T.L., Fraga C.H., Ng C.Y., Rajasekeran S., et al. Bevacizumab-induced transient remodeling of the vasculature in neuroblastoma xenografts results in improved delivery and efficacy of systemically administered chemotherapy. Clin Cancer Res 13 (2007) 3942-3950
Zuniga R.M., Torcuator R., Jain R., Anderson J., Doyle T., Ellika S., et al. Efficacy, safety and patterns of response and recurrence in patients with recurrent high-grade gliomas treated with bevacizumab plus irinotecan. J Neurooncol 91 (2009) 329-336
Sakariassen P.O., Prestegarden L., Wang J., Skaftnesmo K.O., Mahesparan R., Molthoff C., et al. Angiogenesis-independent tumor growth mediated by stem-like cancer cells. Proc Natl Acad Sci USA 103 (2006) 16466-16471
Thorsen F., Jirak D., Wang J., Sykova E., Bjerkvig R., Enger P.O., et al. Two distinct tumor phenotypes isolated from glioblastomas show different MRS characteristics. NMR Biomed 21 (2008) 830-838
Calabrese C., Poppleton H., Kocak M., Hogg T.L., Fuller C., Hamner B., et al. A perivascular niche for brain tumor stem cells. Cancer Cell 11 (2007) 69-82
Kreisl T.N., Kim L., Moore K., Duic P., Royce C., Stroud I., et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol 27 (2009) 740-745
Nghiemphu P.L., Liu W., Lee Y., Than T., Graham C., Lai A., et al. Bevacizumab and chemotherapy for recurrent glioblastoma: a single-institution experience. Neurology 72 (2009) 1217-1222
Shahrzad S., Bertrand K., Minhas K., and Coomber B.L. Induction of DNA hypomethylation by tumor hypoxia. Epigenetics 2 (2007) 119-125