[en] Intercellular communication between cancer cells, especially between cancer and stromal cells, plays an important role in disease progression. We examined the intercellular transfer of organelles and proteins in vitro and in vivo and the role of tunneling nanotubes (TNTs) in this process. TNTs are membrane bridges that facilitate intercellular transfer of organelles of unclear origin. Using 3-dimensional quantitative and qualitative confocal microscopy, we showed that TNTs contain green fluorescent protein (GFP)-early endosome antigen (EEA) 1, GFP Rab5, GFP Rab11, GFP Rab8, transferrin (Tf), and Tf receptor (Tf-R) fused to mCherry (Tf-RmCherry). Tf-RmCherry was transferred between cancer cells by a contact-dependent but secretion-independent mechanism. Live cell imaging showed TNT formation preceding the transfer of Tf-RmCherry and involving the function of the small guanosine triphosphatase (GTPase) Rab8, which colocalized with Tf-RmCherry in the TNTs and was cotransferred to acceptor cells. Tf-RmCherry was transferred from cancer cells to fibroblasts, a noteworthy finding that suggests that this process occurs between tumor and stromal cells in vivo. We strengthened this hypothesis in a xenograft model of breast cancer using enhanced (e)GFP-expressing mice. Tf-RmCherry transferred from tumor to stromal cells and this process correlated with an increased opposite transfer of eGFP from stromal to tumor cells, together pointing toward complex intercellular communication at the tumor site.
Disciplines :
Oncology
Author, co-author :
Burtey, Anne; *Department of Biomedicine, Biomaterials, Department of Clinical Dentistry, and K. G. Jebsen Brain Tumour Research Center, University of Bergen, Bergen, Norway, Department of Pathology and Department of Clinical Medicine, Haukeland University Hospital, Bergen, Norway, and NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg a.p.burtey@ibv.uio.no.
Wagner, Marek; *Department of Biomedicine, Biomaterials, Department of Clinical Dentistry, and K. G. Jebsen Brain Tumour Research Center, University of Bergen, Bergen, Norway, Department of Pathology and Department of Clinical Medicine, Haukeland University Hospital, Bergen, Norway, and NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg.
Hodneland, Erlend; *Department of Biomedicine, Biomaterials, Department of Clinical Dentistry, and K. G. Jebsen Brain Tumour Research Center, University of Bergen, Bergen, Norway, Department of Pathology and Department of Clinical Medicine, Haukeland University Hospital, Bergen, Norway, and NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg.
Skaftnesmo, Kai Ove; *Department of Biomedicine, Biomaterials, Department of Clinical Dentistry, and K. G. Jebsen Brain Tumour Research Center, University of Bergen, Bergen, Norway, Department of Pathology and Department of Clinical Medicine, Haukeland University Hospital, Bergen, Norway, and NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg.
Schoelermann, Julia; *Department of Biomedicine, Biomaterials, Department of Clinical Dentistry, and K. G. Jebsen Brain Tumour Research Center, University of Bergen, Bergen, Norway, Department of Pathology and Department of Clinical Medicine, Haukeland University Hospital, Bergen, Norway, and NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg.
Mondragon, Ivan Rios; *Department of Biomedicine, Biomaterials, Department of Clinical Dentistry, and K. G. Jebsen Brain Tumour Research Center, University of Bergen, Bergen, Norway, Department of Pathology and Department of Clinical Medicine, Haukeland University Hospital, Bergen, Norway, and NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg.
Espedal, Heidi; *Department of Biomedicine, Biomaterials, Department of Clinical Dentistry, and K. G. Jebsen Brain Tumour Research Center, University of Bergen, Bergen, Norway, Department of Pathology and Department of Clinical Medicine, Haukeland University Hospital, Bergen, Norway, and NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg.
GOLEBIEWSKA, Anna ; NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
NICLOU, Simone P. ; NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg K. G. Jebsen Brain Tumour Research Center, University of Bergen, Bergen, Norway
Bjerkvig, Rolf; *Department of Biomedicine, Biomaterials, Department of Clinical Dentistry, and K. G. Jebsen Brain Tumour Research Center, University of Bergen, Bergen, Norway, Department of Pathology and Department of Clinical Medicine, Haukeland University Hospital, Bergen, Norway, and NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg.
Kögel, Tanja; *Department of Biomedicine, Biomaterials, Department of Clinical Dentistry, and K. G. Jebsen Brain Tumour Research Center, University of Bergen, Bergen, Norway, Department of Pathology and Department of Clinical Medicine, Haukeland University Hospital, Bergen, Norway, and NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg.
Gerdes, Hans-Hermann; *Department of Biomedicine, Biomaterials, Department of Clinical Dentistry, and K. G. Jebsen Brain Tumour Research Center, University of Bergen, Bergen, Norway, Department of Pathology and Department of Clinical Medicine, Haukeland University Hospital, Bergen, Norway, and NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg.
External co-authors :
yes
Language :
English
Title :
Intercellular transfer of transferrin receptor by a contact-, Rab8-dependent mechanism involving tunneling nanotubes.
Publication date :
November 2015
Journal title :
FASEB Journal
ISSN :
0892-6638
eISSN :
1530-6860
Publisher :
Federation of American Societies for Experimental Biology, United States - Maryland
Calvo, F., and Sahai, E. (2011) Cell communication networks in cancer invasion. Curr. Opin. Cell Biol. 23, 621-629
Kucharzewska, P., and Belting, M. (2013) Emerging roles of extracellular vesicles in the adaptive response of tumour cells to microenvironmental stress. J. Extracell. Vesicles 5, 2
Levchenko, A., Mehta, B.M., Niu, X., Kang, G., Villafania, L., Way, D., Polycarpe, D., Sadelain, M., and Larson, S. M. (2005) Intercellular transfer of P-glycoprotein mediates acquired multidrug resistance in tumor cells. Proc. Natl. Acad. Sci. USA 102, 1933-1938
Pasquier, J., Guerrouahen, B. S., Al Thawadi, H., Ghiabi, P., Maleki, M., Abu-Kaoud, N., Jacob, A., Mirshahi, M., Galas, L., Rafii, S., Le Foll, F., and Rafii, A. (2013) Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubesmodulates chemoresistance. J. Transl. Med. 11, 94
Quail, D. F., and Joyce, J. A. (2013)Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423-1437
Rustom, A., Saffrich, R., Markovic, I., Walther, P., andGerdes, H. H. (2004) Nanotubular highways for intercellular organelle transport. Science 303, 1007-1010
Bloemendal, S., and Kück, U. (2013) Cell-to-cell communication in plants, animals, and fungi: a comparative review. Naturwissenschaften 100, 3-19
Gerdes, H. H., and Carvalho, R. N. (2008) Intercellular transfer mediated by tunneling nanotubes. Curr. Opin. Cell Biol. 20, 470-475
Veranic, P., Lokar, M., Schütz, G. J., Weghuber, J., Wieser, S., Hägerstrand, H., Kralj-Iglic, V., and Iglic, A. (2008)Different types of cell-to-cell connectionsmediated by nanotubular structures. Biophys. J. 95, 4416-4425
Ady, J. W., Desir, S., Thayanithy, V., Vogel, R. I., Moreira, A. L., Downey, R. J., Fong, Y., Manova-Todorova, K., Moore, M. A., and Lou, E. (2014) Intercellular communication in malignant pleural mesothelioma: properties of tunneling nanotubes. Front. Physiol. 5, 400
Lou, E., Fujisawa, S., Morozov, A., Barlas, A., Romin, Y., Dogan, Y., Gholami, S., Moreira, A. L., Manova-Todorova, K., andMoore, M. A. (2012) Tunneling nanotubes provide a unique conduit for intercellular transfer of cellular contents in human malignant pleural mesothelioma. PLoS One 7, e33093
Vidulescu, C., Clejan, S., and O'connor, K. C. (2004) Vesicle traffic throughintercellular bridges inDU145humanprostate cancer cells. J. Cell. Mol. Med. 8, 388-396
Gurke, S., Barroso, J. F., Hodneland, E., Bukoreshtliev, N. V., Schlicker, O., and Gerdes, H. H. (2008) Tunneling nanotube (TNT)-like structures facilitate a constitutive, actomyosin-dependent exchange of endocytic organelles between normal rat kidney cells. Exp. Cell Res. 314, 3669-3683
Doherty, G. J., and McMahon, H. T. (2009) Mechanisms of endocytosis. Annu. Rev. Biochem. 78, 857-902
Stenmark, H. (2009) Rab GTPases as coordinators of vesicle traffic. Nat. Rev. Mol. Cell Biol. 10, 513-525
Peränen, J. (2011) Rab8 GTPase as a regulator of cell shape. Cytoskeleton (Hoboken) 68, 527-539
Vaibhava, V., Nagabhushana, A., Chalasani, M. L., Sudhakar, C., Kumari, A., and Swarup, G. (2012) Optineurin mediates a negative regulation of Rab8 by theGTPase-activating proteinTBC1D17. J. Cell Sci. 125, 5026-5039
Nagabhushana, A., Chalasani, M. L., Jain, N., Radha, V., Rangaraj, N., Balasubramanian, D., and Swarup, G. (2010) Regulation of endocytic trafficking of transferrin receptor by optineurin and its impairment by a glaucoma-associated mutant. BMC Cell Biol. 11, 4
Hattula, K., Furuhjelm, J., Tikkanen, J., Tanhuanpää, K., Laakkonen, P., and Peränen, J. (2006) Characterization of the Rab8-specific membrane traffic route linked to protrusion formation. J. Cell Sci. 119, 4866-4877
Hattula, K., Furuhjelm, J., Arffman, A., and Peränen, J. (2002) A Rab8-specific GDP/GTP exchange factor is involved in actin remodeling and polarized membrane transport. Mol. Biol. Cell 13, 3268-3280
Bukoreshtliev, N. V., Wang, X., Hodneland, E., Gurke, S., Barroso, J. F., andGerdes, H.H. (2009) Selective block of tunnelingnanotube (TNT) formation inhibits intercellular organelle transfer between PC12 cells. FEBS Lett. 583, 1481-1488
Gousset, K., Marzo, L., Commere, P. H., and Zurzolo, C. (2013) Myo10 is a key regulator of TNT formation in neuronal cells. J. Cell Sci. 126, 4424-4435
Niclou, S. P., Danzeisen, C., Eikesdal, H. P., Wiig, H., Brons, N. H., Poli, A. M., Svendsen, A., Torsvik, A., Enger, P. O., Terzis, J. A., and Bjerkvig, R. (2008) A novel eGFP-expressing immunodeficient mouse model to study tumor-host interactions. FASEB J. 22, 3120-3128
Kobayashi, H., Etoh, K., Ohbayashi, N., and Fukuda, M. (2014) Rab35 promotes the recruitment of Rab8, Rab13 and Rab36 to recycling endosomes throughMICAL-L1 during neurite outgrowth. Biol. Open 3, 803-814
Barry, S. C., Harder, B., Brzezinski, M., Flint, L. Y., Seppen, J., and Osborne, W. R. (2001) Lentivirus vectors encoding both central polypurine tract and posttranscriptional regulatory element provide enhanced transduction and transgene expression. Hum. Gene Ther. 12, 1103-1108
Al-Nedawi, K., Meehan, B., Kerbel, R. S., Allison, A. C., and Rak, J. (2009) Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. Proc. Natl. Acad. Sci. USA 106, 3794-3799
Daro, E., van der Sluijs, P., Galli, T., and Mellman, I. (1996) Rab4 and cellubrevin define different early endosome populations on the pathway of transferrin receptor recycling. Proc. Natl. Acad. Sci. USA 93, 9559-9564
Golebiewska, A., Bougnaud, S., Stieber, D., Brons, N. H., Vallar, L., Hertel, F., Klink, B., Schrock, E., Bjerkvig, R., and Niclou, S. P. (2013) Side population in human glioblastoma is nontumorigenic and characterizes brain endothelial cells. Brain 136, 1462-1475
Golebiewska, A., Brons, N. H., Bjerkvig, R., and Niclou, S. P. (2011) Critical appraisal of the side population assay in stemcell and cancer stem cell research. Cell Stem Cell 8, 136-147
Stieber, D., Golebiewska, A., Evers, L., Lenkiewicz, E., Brons, N. H., Nicot, N., Oudin, A., Bougnaud, S., Hertel, F., Bjerkvig, R., Vallar, L., Barrett, M. T., and Niclou, S. P. (2014)Glioblastomas are composed of genetically divergent clones with distinct tumourigenic potential and variable stem cell-associated phenotypes. Acta Neuropathol. 127, 203-219
Onfelt, B., Nedvetzki, S., Yanagi, K., and Davis, D.M. (2004) Cutting edge: membrane nanotubes connect immune cells. J. Immunol. 173, 1511-1513
Benmerah, A., Bayrou, M., Cerf-Bensussan, N., and Dautry-Varsat, A. (1999) Inhibition of clathrin-coated pit assembly by an Eps15 mutant. J. Cell Sci. 112, 1303-1311
Davis, D. M. (2007) Intercellular transfer of cell-surface proteins is common and can affect many stages of an immune response. Nat. Rev. Immunol. 7, 238-243
Joly, E., and Hudrisier, D. (2003) What is trogocytosis and what is its purpose? Nat. Immunol. 4, 815
Rainy, N., Chetrit, D., Rouger, V., Vernitsky, H., Rechavi, O., Marguet, D., Goldstein, I., Ehrlich, M., and Kloog, Y. (2013)H-Ras transfers fromB to T cells via tunneling nanotubes. Cell Death Dis. 4, e726
Shih, Y. J., Baynes, R. D., Hudson, B. G., Flowers, C. H., Skikne, B. S., and Cook, J. D. (1990) Serum transferrin receptor is a truncated form of tissue receptor. J. Biol. Chem. 265, 19077-19081
Muralidharan-Chari, V., Clancy, J., Plou, C., Romao, M., Chavrier, P., Raposo, G., and D'Souza-Schorey, C. (2009) ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr. Biol. 19, 1875-1885
Rajendran, L., Honsho, M., Zahn, T. R., Keller, P., Geiger, K. D., Verkade, P., and Simons, K. (2006)Alzheimer's disease beta-amyloid peptides are released in association with exosomes. Proc. Natl. Acad. Sci. USA 103, 11172-11177
Escola, J. M., Kleijmeer, M. J., Stoorvogel, W., Griffith, J. M., Yoshie, O., and Geuze, H. J. (1998) Selective enrichment of tetraspan proteins on the internal vesicles ofmultivesicular endosomes and on exosomes secreted by human B-lymphocytes. J. Biol. Chem. 273, 20121-20127
Février, B., and Raposo, G. (2004) Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr. Opin. Cell Biol. 16, 415-421
Onfelt, B., Purbhoo, M. A., Nedvetzki, S., Sowinski, S., and Davis, D. M. (2005) Long-distance calls between cells connected by tunneling nanotubules. Sci. STKE 2005, pe55
Kadiu, I., and Gendelman, H. E. (2011) Macrophage bridging conduit trafficking ofHIV-1 throughthe endoplasmic reticulum and Golgi network. J. Proteome Res. 10, 3225-3238
Rechavi, O., Goldstein, I., Vernitsky, H., Rotblat, B., and Kloog, Y. (2007) Intercellular transfer of oncogenic H-Ras at the immunological synapse. PLoS One 2, e1204
Molla-Herman, A., Ghossoub, R., Blisnick, T., Meunier, A., Serres, C., Silbermann, F., Emmerson, C., Romeo, K., Bourdoncle, P., Schmitt, A., Saunier, S., Spassky, N., Bastin, P., and Benmerah, A. (2010) The ciliary pocket: an endocytic membrane domain at the base of primary and motile cilia. J. Cell Sci. 123, 1785-1795
Ang, A. L., Fölsch, H., Koivisto, U. M., Pypaert, M., and Mellman, I. (2003) The Rab8 GTPase selectively regulates AP-1B-dependent basolateral transport in polarized Madin-Darby canine kidney cells. J. Cell Biol. 163, 339-350
Suetsugu, A., Honma, K., Saji, S., Moriwaki, H., Ochiya, T., and Hoffman, R. M. (2013) Imaging exosome transfer from breast cancer cells to stroma at metastatic sites in orthotopic nude-mouse models. Adv. Drug Deliv. Rev. 65, 383-390