[en] It is well known that in vitro subculture represents a selection pressure on cell lines, and over time this may result in a genetic drift in the cancer cells. In addition, long-term cultures harbor the risk of cross-contamination with other cell lines. The consequences may have major impact on experimental results obtained in various laboratories, where the cell lines no longer reflect the original tumors that they are supposed to represent. Much neglected in the scientific community is a close monitoring of cell cultures by regular phenotypic and genetic characterization. In this report, we present a thorough characterization of the commonly used glioblastoma (GBM) model U-251, which in numerous publications has been wrongly identified as U-373, due to an earlier cross-contamination. In this work, the original U-251 and three subclones of U-251, commonly referred to as U-251 or U-373, were analyzed with regard to their DNA profile, morphology, phenotypic expression, and growth pattern. By array comparative genomic hybridization (aCGH), we show that only the original low-passaged U-251 cells, established in the 1960s, maintain a DNA copy number resembling a typical GBM profile, whereas all long-term subclones lost the typical GBM profile. Also the long-term passaged subclones displayed variations in phenotypic marker expression and showed an increased growth rate in vitro and a more aggressive growth in vivo. Taken together, the variations in genotype and phenotype as well as differences in growth characteristics may explain different results reported in various laboratories related to the U-251 cell line.
Disciplines :
Oncologie
Auteur, co-auteur :
Torsvik, Anja; Department of Biomedicine, University of Bergen, Bergen, Norway.
Stieber, Daniel
Enger, Per Øyvind
GOLEBIEWSKA, Anna ; NorLux Neuro-Oncology Laboratory, Department of Oncology, Centre de Recherche Public de la Santé (CRP-Santé), Luxembourg, Luxembourg
Molven, Anders
Svendsen, Agnete
Westermark, Bengt
NICLOU, Simone P. ; NorLux Neuro-Oncology Laboratory, Department of Oncology, Centre de Recherche Public de la Santé (CRP-Santé), Luxembourg, Luxembourg
Olsen, Thale Kristin
Chekenya Enger, Martha
Bjerkvig, Rolf
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
U-251 revisited: genetic drift and phenotypic consequences of long-term cultures of glioblastoma cells.
Ponten, J., and B. Westermark . 1978. Properties of human malignant glioma cells in vitro. Med. Biol. 56:184-193.
Westermark, B., J. Ponten, and R. Hugosson . 1973. Determinants for the establishment of permanent tissue culture lines from human gliomas. Acta Pathol. Microbiol. Scand. A 81:791-805.
Ponten, J., and E. H. Macintyre . 1968. Long term culture of normal and neoplastic human glia. Acta Pathol. Microbiol. Scand. 74:465-486.
Nister, M., T. A. Libermann, C. Betsholtz, M. Pettersson, L. Claesson-Welsh, C. H. Heldin, et al. 1988. Expression of messenger RNAs for platelet-derived growth factor and transforming growth factor-alpha and their receptors in human malignant glioma cell lines. Cancer Res. 48:3910-3918.
Ishii, N., D. Maier, A. Merlo, M. Tada, Y. Sawamura, A. C. Diserens, et al. 1999. Frequent co-alterations of TP53, p16/CDKN2A, p14ARF, PTEN tumor suppressor genes in human glioma cell lines. Brain Pathol. 9:469-479.
Fuxe, J., G. Akusjarvi, H. M. Goike, G. Roos, V. P. Collins, and R. F. Pettersson . 2000. Adenovirus-mediated overexpression of p15INK4B inhibits human glioma cell growth, induces replicative senescence, and inhibits telomerase activity similarly to p16INK4A. Cell Growth Differ. 11:373-384.
Azari, S., N. Ahmadi, M. J. Tehrani, and F. Shokri . 2007. Profiling and authentication of human cell lines using short tandem repeat (STR) loci: report from the National Cell Bank of Iran. Biologicals 35:195-202.
Capes-Davis, A., G. Theodosopoulos, I. Atkin, H. G. Drexler, A. Kohara, R. A. MacLeod, et al. 2010. Check your cultures! A list of cross-contaminated or misidentified cell lines. Int. J. Cancer 127:1-8.
Chatterjee, R. 2009. Cell biology. Cases of mistaken identity. Science 315:928-931.
ASN-0002 ATCCSDOW. 2010. Cell line misidentification: the beginning of the end. Nat. Rev. Cancer 10:441-448.
Mandahl, N. 2001. Methods in solid tumor cytogenetics. Pp. 165-203 in D. E. Rooney, ed. Human Cytogenetics - a practical approach: malignancy and acquired abnormalities. Vol. II. Oxford University Press, Oxford, U.K.
Franken, N. A., H. M. Rodermond, J. Stap, J. Haveman, and C. van Bree . 2006. Clonogenic assay of cells in vitro. Nat. Protoc. 1:2315-2319.
Lorenzi, P. L., W. C. Reinhold, S. Varma, A. A. Hutchinson, Y. Pommier, S. J. Chanock, et al. 2005. DNA fingerprinting of the NCI-60 cell line panel. Mol. Cancer Ther. 8:713-724.
Parson, W., R. Kirchebner, R. Muhlmann, K. Renner, A. Kofler, S. Schmidt, et al. 2005. Cancer cell line identification by short tandem repeat profiling: power and limitations. FASEB J. 19:434-436.
Poetsch, M., A. Petersmann, C. Woenckhaus, C. Protzel, T. Dittberner, E. Lignitz, et al. 2004. Evaluation of allelic alterations in short tandem repeats in different kinds of solid tumors-possible pitfalls in forensic casework. Forensic Sci. Int. 145:1-6.
Masters, J. R., J. A. Thomson, B. Daly-Burns, Y. A. Reid, W. G. Dirks, P. Packer, et al. 2001. Short tandem repeat profiling provides an international reference standard for human cell lines. Proc. Natl Acad. Sci. USA 98:8012-8017.
Li, A., J. Walling, Y. Kotliarov, A. Center, M. E. Steed, S. J. Ahn, et al. 2008. Genomic changes and gene expression profiles reveal that established glioma cell lines are poorly representative of primary human gliomas. Mol. Cancer Res. 6:21-30.
Beroukhim, R., G. Getz, L. Nghiemphu, J. Barretina, T. Hsueh, D. Linhart, et al. 2007. Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proc. Natl Acad. Sci. USA 104:20007-20012.
Greshock, J., K. Nathanson, A. M. Martin, L. Zhang, G. Coukos, B. L. Weber, et al. 2007. Cancer cell lines as genetic models of their parent histology: analyses based on array comparative genomic hybridization. Cancer Res. 67:3594-3600.
Joensuu, H., M. Puputti, H. Sihto, O. Tynninen, and N. N. Nupponen . 2005. Amplification of genes encoding KIT, PDGFRalpha and VEGFR2 receptor tyrosine kinases is frequent in glioblastoma multiforme. J. Pathol. 207:224-231.
Holtkamp, N., N. Ziegenhagen, E. Malzer, C. Hartmann, A. Giese, and A. von Deimling . 2007. Characterization of the amplicon on chromosomal segment 4q12 in glioblastoma multiforme. Neuro. Oncol. 9:291-297.
Kanu, O. O., B. Hughes, C. Di, N. Lin, J. Fu, D. D. Bigner, et al. 2009. Glioblastoma multiforme oncogenomics and signaling pathways. Clin. Med. Oncol. 3:39-52.
De Witt Hamer, P. C., A. A. Van Tilborg, P. P. Eijk, P. Sminia, D. Troost, C. J. Van Noorden, et al. 2008. The genomic profile of human malignant glioma is altered early in primary cell culture and preserved in spheroids. Oncogene 27:2091-2096.
Gillet, J. P., A. M. Calcagno, S. Varma, M. Marino, L. J. Green, M. I. Vora, et al. 2004. Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance. Proc. Natl. Acad. Sci. USA 108:18708-18713.
Lacroix, M., and G. Leclercq . 2004. Relevance of breast cancer cell lines as models for breast tumours: an update. Breast Cancer Res. Treat. 83:249-289.