automated tool; human glioblastoma; mass spectrometry; mixed samples; rodent xenografts; targeted proteomics; unique peptide selection
Abstract :
[en] The search for clinically useful protein biomarkers using advanced mass spectrometry approaches represents a major focus in cancer research. However, the direct analysis of human samples may be challenging due to limited availability, the absence of appropriate control samples, or the large background variability observed in patient material. As an alternative approach, human tumors orthotopically implanted into a different species (xenografts) are clinically relevant models that have proven their utility in pre-clinical research. Patient derived xenografts for glioblastoma have been extensively characterized in our laboratory and have been shown to retain the characteristics of the parental tumor at the phenotypic and genetic level. Such models were also found to adequately mimic the behavior and treatment response of human tumors. The reproducibility of such xenograft models, the possibility to identify their host background and perform tumor-host interaction studies, are major advantages over the direct analysis of human samples. At the proteome level, the analysis of xenograft samples is challenged by the presence of proteins from two different species which, depending on tumor size, type or location, often appear at variable ratios. Any proteomics approach aimed at quantifying proteins within such samples must consider the identification of species specific peptides in order to avoid biases introduced by the host proteome. Here, we present an in-house methodology and tool developed to select peptides used as surrogates for protein candidates from a defined proteome (e.g., human) in a host proteome background (e.g., mouse, rat) suited for a mass spectrometry analysis. The tools presented here are applicable to any species specific proteome, provided a protein database is available. By linking the information from both proteomes, PeptideManager significantly facilitates and expedites the selection of peptides used as surrogates to analyze proteins of interest.
Disciplines :
Oncology
Author, co-author :
Demeure, Kevin; NorLux Neuro-Oncology Laboratory, Department of Oncology, Centre de Recherche Public de la Santé Luxembourg, Luxembourg.
DURIEZ, Elodie ; LCP, Luxembourg Clinical Proteomics Center, Centre de Recherche Public de la Santé Strassen, Luxembourg.
Domon, Bruno; LCP, Luxembourg Clinical Proteomics Center, Centre de Recherche Public de la Santé Strassen, Luxembourg.
NICLOU, Simone P. ; NorLux Neuro-Oncology Laboratory, Department of Oncology, Centre de Recherche Public de la Santé Luxembourg, Luxembourg.
External co-authors :
yes
Language :
English
Title :
PeptideManager: a peptide selection tool for targeted proteomic studies involving mixed samples from different species.
Aebersold, R., and Mann, M. (2003). Mass spectrometry-based proteomics. Nature 422, 198-207. doi: 10.1038/nature01511.
Artimo, P., Jonnalagedda, M., Arnold, K., Baratin, D., Csardi, G., De Castro, E., Duvaud, S., Flegel, V., Fortier, A., Gasteiger, E., Grosdidier, A., Hernandez, C., Ioannidis, V., Kuznetsov, D., Liechti, R., Moretti, S., Mostaguir, K., Redaschi, N., Rossier, G., Xenarios, I., and Stockinger, H. (2012). ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res 40, W597-603. doi: 10.1093/nar/gks400.
Asara, J.M., Christofk, H.R., Freimark, L.M., and Cantley, L.C. (2008). A label-free quantification method by MS/MS TIC compared to SILAC and spectral counting in a proteomics screen. Proteomics 8, 994-999. doi: 10.1002/pmic.200700426.
Bantscheff, M., Schirle, M., Sweetman, G., Rick, J., and Kuster, B. (2007). Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 389, 1017-1031. doi: 10.1007/s00216-007-1486-6.
Bischoff, R., and Schluter, H. (2012). Amino acids: chemistry, functionality and selected non-enzymatic post283 translational modifications. J Proteomics 75, 2275-2296. doi: 10.1016/j.jprot.2012.01.041.
Brownridge, P., and Beynon, R.J. (2011). The importance of the digest: proteolysis and absolute quantification in proteomics. Methods 54, 351-360. doi: 10.1016/j.ymeth.2011.05.005.
Chait, B.T. (2006). Chemistry. Mass spectrometry: bottom-up or top-down? Science 314, 65-66. doi: 10.1126/science.1133987.
Craig, R., Cortens, J.P., and Beavis, R.C. (2004). Open source system for analyzing, validating, and storing protein identification data. J Proteome Res 3, 1234-1242. doi: 10.1021/pr049882h.
Craig, R., Cortens, J.P., and Beavis, R.C. (2005). The use of proteotypic peptide libraries for protein identification. Rapid Commun Mass Spectrom 19, 1844-1850. doi: 10.1002/rcm.1992.
Deracinois, B., Flahaut, C., Duban-Deweer, S., and Karamanos, Y. (2013). Comparative 292 and Quantitative Global Proteomics Approaches: An Overview. Proteomes 1, 180-218. doi: 10.3390/proteomes1030180.
Desiere, F., Deutsch, E.W., King, N.L., Nesvizhskii, A.I., Mallick, P., Eng, J., Chen, S., Eddes, J., Loevenich, S.N., and Aebersold, R. (2006). The PeptideAtlas project. Nucleic Acids Res 34, D655-658. doi: 10.1093/nar/gkj040.
Domon, B., and Aebersold, R. (2010). Options and considerations when selecting a quantitative proteomics strategy. Nat Biotechnol 28, 710-721. doi: 10.1038/nbt.1661.
Eng, J.K., Mccormack, A.L., and Yates, J.R. (1994). An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5, 976-989. doi: 10.1016/1044-0305(94)80016-2.
Eyers, C.E., Lawless, C., Wedge, D.C., Lau, K.W., Gaskell, S.J., and Hubbard, S.J. (2011). CONSeQuence: prediction of reference peptides for absolute quantitative proteomics using consensus machine learning approaches. Mol Cell Proteomics 10, M110 003384. doi: 10.1074/mcp.M110.003384.
Fusaro, V.A., Mani, D.R., Mesirov, J.P., and Carr, S.A. (2009). Prediction of high-responding peptides for targeted protein assays by mass spectrometry. Nat Biotechnol 27, 190-198. doi: 10.1038/nbt.1524.
Gallien, S., Duriez, E., and Domon, B. (2011). Selected reaction monitoring applied to proteomics. J Mass Spectrom 46, 298-312. doi: 10.1002/jms.1895.
Gillette, M.A., and Carr, S.A. (2013). Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry. Nat Methods 10, 28-34. doi: 10.1038/nmeth.2309.
Golebiewska, A., Bougnaud, S., Stieber, D., Brons, N.H., Vallar, L., Hertel, F., Klink, B., Schrock, E., Bjerkvig, R., and Niclou, S.P. (2013). Side population in human glioblastoma is non-tumorigenic and characterizes brain endothelial cells. Brain 136, 1462-1475. doi: 10.1093/brain/awt025.
Huszthy, P.C., Daphu, I., Niclou, S.P., Stieber, D., Nigro, J.M., Sakariassen, P.O., Miletic, H., Thorsen, F., and Bjerkvig, R. (2012). In vivo models of primary brain tumors: pitfalls and perspectives. Neuro Oncol 14, 979-993. doi: 10.1093/neuonc/nos135.
Huttenhain, R., Surinova, S., Ossola, R., Sun, Z., Campbell, D., Cerciello, F., Schiess, R., Bausch-Fluck, D., Rosenberger, G., Chen, J., Rinner, O., Kusebauch, U., Hajduch, M., Moritz, R.L., Wollscheid, B., and Aebersold, R. (2013). N-glycoprotein SRMAtlas: a resource of mass spectrometric assays for N321 glycosites enabling consistent and multiplexed protein quantification for clinical applications. Mol Cell Proteomics 12, 1005-1016. doi: 10.1074/mcp.O112.026617.
Kersey, P.J., Duarte, J., Williams, A., Karavidopoulou, Y., Birney, E., and Apweiler, R. (2004). The International Protein Index: an integrated database for proteomics experiments. Proteomics 4, 1985-1988. doi: 10.1002/pmic.200300721.
Keunen, O., Johansson, M., Oudin, A., Sanzey, M., Rahim, S.A., Fack, F., Thorsen, F., Taxt, T., Bartos, M., Jirik, R., Miletic, H., Wang, J., Stieber, D., Stuhr, L., Moen, I., Rygh, C.B., Bjerkvig, R., and Niclou, S.P. (2011). Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc Natl Acad Sci U S A 108, 3749-3754. doi: 10.1073/pnas.1014480108.
Kim, Y.J., Gallien, S., Van Oostrum, J., and Domon, B. (2013). Targeted proteomics strategy applied to biomarker evaluation. Proteomics Clin Appl 7, 739-747. doi: 10.1002/prca.201300070.
Klink, B., Miletic, H., Stieber, D., Huszthy, P.C., Valenzuela, J.A., Balss, J., Wang, J., Schubert, M., Sakariassen, P.O., Sundstrom, T., Torsvik, A., Aarhus, M., Mahesparan, R., Von Deimling, A., Kaderali, L., Niclou, S.P., Schrock, E., Bjerkvig, R., and Nigro, J.M. (2013). A novel, diffusely infiltrative xenograft model of human anaplastic oligodendroglioma with mutations in FUBP1, CIC, and IDH1. PLoS One 8, e59773. doi: 10.1371/journal.pone.0059773.
Kuster, B., Schirle, M., Mallick, P., and Aebersold, R. (2005). Scoring proteomes with proteotypic peptide probes. Nat Rev Mol Cell Biol 6, 577-583. doi: 10.1038/nrm1683.
Lange, V., Picotti, P., Domon, B., and Aebersold, R. (2008). Selected reaction monitoring for quantitative proteomics: a tutorial. Mol Syst Biol 4, 222. doi: 10.1038/msb.2008.61.
Lawless, C., and Hubbard, S.J. (2012). Prediction of missed proteolytic cleavages for the selection 341 of surrogate peptides for quantitative proteomics. OMICS 16, 449-456. doi: 10.1089/omi.2011.0156.
Lee, J.M., Han, J.J., Altwerger, G., and Kohn, E.C. (2011). Proteomics and biomarkers in clinical trials for drug development. J Proteomics 74, 2632-2641. doi: 10.1016/j.jprot.2011.04.023.
Li, J., Kelm, K.B., and Tezak, Z. (2011). Regulatory perspective on translating proteomic biomarkers to clinical diagnostics. J Proteomics 74, 2682-2690. doi: 10.1016/j.jprot.2011.07.028.
Loziuk, P.L., Wang, J., Li, Q., Sederoff, R.R., Chiang, V.L., and Muddiman, D.C. (2013). Understanding the role of proteolytic digestion on discovery and targeted proteomic measurements using liquid chromatography tandem mass spectrometry and design of experiments. J Proteome Res 12, 5820- 5829. doi: 10.1021/pr4008442.
Maclean, B., Tomazela, D.M., Shulman, N., Chambers, M., Finney, G.L., Frewen, B., Kern, R., Tabb, D.L., Liebler, D.C., and Maccoss, M.J. (2010). Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26, 966-968. doi: 10.1093/bioinformatics/btq054.
Magrane, M., and Consortium, U. (2011). UniProt Knowledgebase: a hub of integrated protein data. Database (Oxford) 2011, bar009. doi: 10.1093/database/bar009.
Mallick, P., Schirle, M., Chen, S.S., Flory, M.R., Lee, H., Martin, D., Ranish, J., Raught, B., Schmitt, R., Werner, T., Kuster, B., and Aebersold, R. (2007). Computational prediction of proteotypic peptides for quantitative proteomics. Nat Biotechnol 25, 125-131. doi: 10.1038/nbt1275. Marx, V. (2013). Targeted proteomics. Nat Methods 10, 19-22.
Meng, Z., and Veenstra, T.D. (2011). Targeted mass spectrometry approaches for protein biomarker verification. J Proteomics 74, 2650-2659. doi: 10.1016/j.jprot.2011.04.011.
Mohammed, Y., Domanski, D., Jackson, A.M., Smith, D.S., Deelder, A.M., Palmblad, M., and Borchers, C.H. (2014). PeptidePicker: A scientific workflow with web interface for selecting appropriate peptides for targeted proteomics experiments. J Proteomics 106C, 151-161. doi: 10.1016/j.jprot.2014.04.018.
Neilson, K.A., Ali, N.A., Muralidharan, S., Mirzaei, M., Mariani, M., Assadourian, G., Lee, A., Van Sluyter, S.C., and Haynes, P.A. (2011). Less label, more free: approaches in label-free quantitative mass spectrometry. Proteomics 11, 535-553. doi: 10.1002/pmic.201000553.
Nesvizhskii, A.I. (2007). Protein identification by tandem mass spectrometry and sequence database searching. Methods Mol Biol 367, 87-119. doi: 10.1385/1-59745-275-0:87.
Niclou, S.P., Danzeisen, C., Eikesdal, H.P., Wiig, H., Brons, N.H., Poli, A.M., Svendsen, A., Torsvik, A., Enger, P.O., Terzis, J.A., and Bjerkvig, R. (2008). A novel eGFP-expressing immunodeficient mouse model to study tumor-host interactions. FASEB J 22, 3120-3128. doi: 10.1096/fj.08-109611.
Pan, S., Chen, R., Brand, R.E., Hawley, S., Tamura, Y., Gafken, P.R., Milless, B.P., Goodlett, D.R., Rush, J., and Brentnall, T.A. (2012). Multiplex targeted proteomic assay for biomarker detection in plasma: a pancreatic cancer biomarker case study. J Proteome Res 11, 1937-1948. doi: 10.1021/pr201117w.
Percy, A.J., Chambers, A.G., Yang, J., Hardie, D.B., and Borchers, C.H. (2014). Advances in multiplexed MRM378 based protein biomarker quantitation toward clinical utility. Biochim Biophys Acta 1844, 917-926. doi: 10.1016/j.bbapap.2013.06.008.
Pesch, B., Bruning, T., Johnen, G., Casjens, S., Bonberg, N., Taeger, D., Muller, A., Weber, D.G., and Behrens, T. (2014). Biomarker research with prospective study designs for the early detection of cancer. Biochim Biophys Acta 1844, 874-883. doi: 10.1016/j.bbapap.2013.12.007.
Picotti, P., Clement-Ziza, M., Lam, H., Campbell, D.S., Schmidt, A., Deutsch, E.W., Rost, H., Sun, Z., Rinner, O., Reiter, L., Shen, Q., Michaelson, J.J., Frei, A., Alberti, S., Kusebauch, U., Wollscheid, B., Moritz, R.L., Beyer, A., and Aebersold, R. (2013). A complete mass-spectrometric map of the yeast proteome applied to quantitative trait analysis. Nature 494, 266-270. doi: 10.1038/nature11835.
Picotti, P., Lam, H., Campbell, D., Deutsch, E.W., Mirzaei, H., Ranish, J., Domon, B., and Aebersold, R. (2008). A database of mass spectrometric assays for the yeast proteome. Nat Methods 5, 913-914. doi: 10.1038/nmeth1108-913.
Pruitt, K.D., Brown, G.R., Hiatt, S.M., Thibaud-Nissen, F., Astashyn, A., Ermolaeva, O., Farrell, 390 C.M., Hart, J., Landrum, M.J., Mcgarvey, K.M., Murphy, M.R., O'leary, N.A., Pujar, S., Rajput, B., Rangwala, S.H., Riddick, L.D., Shkeda, A., Sun, H., Tamez, P., Tully, R.E., Wallin, C., Webb, D., Weber, J., Wu, W., Dicuccio, M., Kitts, P., Maglott, D.R., Murphy, T.D., and Ostell, J.M. (2014). RefSeq: an update on mammalian reference sequences. Nucleic Acids Res 42, D756-763. doi: 10.1093/nar/gkt1114.
Pruitt, K.D., Tatusova, T., Brown, G.R., and Maglott, D.R. (2012). NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res 40, D130-135. doi: 10.1093/nar/gkr1079.
Pruitt, K.D., Tatusova, T., and Maglott, D.R. (2007). NCBI reference sequences (RefSeq): a curated non399 redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 35, D61-65. doi: 10.1093/nar/gkl842.
Qeli, E., Omasits, U., Goetze, S., Stekhoven, D.J., Frey, J.E., Basler, K., Wollscheid, B., Brunner, E., and Ahrens, C.H. (2014). Improved prediction of peptide detectability for targeted proteomics using a rank-based algorithm and organism-specific data. J Proteomics. doi: 10.1016/j.jprot.2014.05.011.
Rajcevic, U., Petersen, K., Knol, J.C., Loos, M., Bougnaud, S., Klychnikov, O., Li, K.W., Pham, T.V., Wang, J., Miletic, H., Peng, Z., Bjerkvig, R., Jimenez, C.R., and Niclou, S.P. (2009). iTRAQ-based proteomics profiling reveals increased metabolic activity and cellular cross-talk in angiogenic compared with invasive glioblastoma phenotype. Mol Cell Proteomics 8, 2595-2612. doi: 10.1074/mcp.M900124- MCP200.
Smith, R.D. (2012). Mass spectrometry in biomarker applications: from untargeted discovery to targeted verification, and implications for platform convergence and clinical application. Clin Chem 58, 528- 530. doi: 10.1373/clinchem.2011.180596.
Tang, H.Y., Beer, L.A., Chang-Wong, T., Hammond, R., Gimotty, P., Coukos, G., and Speicher, D.W. (2012). A xenograft mouse model coupled with in-depth plasma proteome analysis facilitates identification of novel serum biomarkers for human ovarian cancer. J Proteome Res 11, 678-691. doi: 10.1021/pr200603h.
Uniprot, C. (2009). The Universal Protein Resource (UniProt) 2009. Nucleic Acids Res 37, D169-174. doi: 10.1093/nar/gkn664.
Uniprot, C. (2014). Activities at the Universal Protein Resource (UniProt). Nucleic Acids Res 42, D191-198. doi: 10.1093/nar/gkt1140.
Vizcaino, J.A., Cote, R.G., Csordas, A., Dianes, J.A., Fabregat, A., Foster, J.M., Griss, J., Alpi, E., Birim, M., Contell, J., O'kelly, G., Schoenegger, A., Ovelleiro, D., Perez-Riverol, Y., Reisinger, F., Rios, D., Wang, R., and Hermjakob, H. (2013). The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res 41, D1063-1069. doi: 10.1093/nar/gks1262.
Waldemarson, S., Krogh, M., Alaiya, A., Kirik, U., Schedvins, K., Auer, G., Hansson, K.M., Ossola, R., Aebersold, R., Lee, H., Malmstrom, J., and James, P. (2012). Protein expression changes in ovarian cancer during the transition from benign to malignant. J Proteome Res 11, 2876-2889. doi: 10.1021/pr201258q.
Wang, J., Miletic, H., Sakariassen, P.O., Huszthy, P.C., Jacobsen, H., Brekka, N., Li, X., Zhao, P., Mork, S., Chekenya, M., Bjerkvig, R., and Enger, P.O. (2009). A reproducible brain tumour model established from human glioblastoma biopsies. BMC Cancer 9, 465. doi: 10.1186/1471-2407-9-465.
Whiteaker, J.R., Lin, C., Kennedy, J., Hou, L., Trute, M., Sokal, I., Yan, P., Schoenherr, R.M., Zhao, L., Voytovich, U.J., Kelly-Spratt, K.S., Krasnoselsky, A., Gafken, P.R., Hogan, J.M., Jones, L.A., Wang, P., Amon, L., Chodosh, L.A., Nelson, P.S., Mcintosh, M.W., Kemp, C.J., and Paulovich, A.G. (2011). A targeted proteomics-based pipeline for verification of biomarkers in plasma. Nat Biotechnol 29, 625-634. doi: 10.1038/nbt.1900.
Whiteaker, J.R., Zhang, H., Zhao, L., Wang, P., Kelly-Spratt, K.S., Ivey, R.G., Piening, B.D., Feng, L.C., Kasarda, E., Gurley, K.E., Eng, J.K., Chodosh, L.A., Kemp, C.J., Mcintosh, M.W., and Paulovich, A.G. (2007). Integrated pipeline for mass spectrometry-based discovery and confirmation of biomarkers demonstrated in a mouse model of breast cancer. J Proteome Res 438 6, 3962-3975. doi: 439 10.1021/pr070202v.