[en] Major efforts have been put in anti-angiogenic treatment for glioblastoma (GBM), an aggressive and highly vascularized brain tumor with dismal prognosis. However clinical outcome with anti-angiogenic agents has been disappointing and tumors quickly develop escape mechanisms. In preclinical GBM models we have recently shown that bevacizumab, a blocking antibody against vascular endothelial growth factor, induces hypoxia in treated tumors, which is accompanied by increased glycolytic activity and tumor invasiveness. Genome-wide transcriptomic analysis of patient derived GBM cells including stem cell lines revealed a strong up-regulation of glycolysis-related genes in response to severe hypoxia. We therefore investigated the importance of glycolytic enzymes in GBM adaptation and survival under hypoxia, both in vitro and in vivo. We found that shRNA-mediated attenuation of glycolytic enzyme expression interfered with GBM growth under normoxic and hypoxic conditions in all cellular models. Using intracranial GBM xenografts we identified seven glycolytic genes whose knockdown led to a dramatic survival benefit in mice. The most drastic effect was observed for PFKP (PFK1, +21.8%) and PDK1 (+20.9%), followed by PGAM1 and ENO1 (+14.5% each), HK2 (+11.8%), ALDOA (+10.9%) and ENO2 (+7.2%). The increase in mouse survival after genetic interference was confirmed using chemical inhibition of PFK1 with clotrimazole. We thus provide a comprehensive analysis on the importance of the glycolytic pathway for GBM growth in vivo and propose PFK1 and PDK1 as the most promising therapeutic targets to address the metabolic escape mechanisms of GBM.
Disciplines :
Oncology
Author, co-author :
Sanzey, Morgane; NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (L.I.H.), Luxembourg, Luxembourg.
Abdul Rahim, Siti Aminah; NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (L.I.H.), Luxembourg, Luxembourg.
Oudin, Anais; NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (L.I.H.), Luxembourg, Luxembourg.
Dirkse, Anne; NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (L.I.H.), Luxembourg, Luxembourg.
Kaoma, Tony; Genomics Research Unit, Luxembourg Institute of Health (L.I.H.), Luxembourg, Luxembourg.
Vallar, Laurent; Genomics Research Unit, Luxembourg Institute of Health (L.I.H.), Luxembourg, Luxembourg.
Herold-Mende, Christel; Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany.
Bjerkvig, Rolf; NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (L.I.H.), Luxembourg, Luxembourg, NorLux Neuro-Oncology Laboratory, Department of Biomedicine, University of Bergen, Bergen, Norway, KG Jebsen Brain Tumour Research Center, Department of Biomedicine, University of Bergen, Bergen, Norway.
GOLEBIEWSKA, Anna ; University of Luxembourg ; NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (L.I.H.), Luxembourg, Luxembourg.
NICLOU, Simone P. ; NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (L.I.H.), Luxembourg, Luxembourg, KG Jebsen Brain Tumour Research Center, Department of Biomedicine, University of Bergen, Bergen, Norway.
External co-authors :
yes
Language :
English
Title :
Comprehensive analysis of glycolytic enzymes as therapeutic targets in the treatment of glioblastoma.
Publication date :
2015
Journal title :
PLoS ONE
eISSN :
1932-6203
Publisher :
Public Library of Science, United States - California
Weller M, Cloughesy T, Perry JR, Wick W. Standards of care for treatment of recurrent glioblastoma - are we there yet? Neuro-oncology. 2013; 15(1):4-27. doi: 10.1093/neuonc/nos273 PMID: 23136223
Carmeliet P, Jain RK. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nature reviews Drug discovery. 2011; 10(6):417-27. doi: 10.1038/nrd3455 PMID: 21629292
Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT, Vogelbaum MA, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med. 2014; 370(8):699-708. doi: 10. 1056/NEJMoa1308573 PMID: 24552317
Chinot OL, Wick W, Cloughesy T. Bevacizumab for newly diagnosed glioblastoma. N Engl J Med. 2014; 370(21):2049. doi: 10.1056/NEJMc1402987#SA1 PMID: 24860870
Plate KH, Scholz A, Dumont DJ. Tumor angiogenesis and anti-angiogenic therapy in malignant gliomas revisited. Acta neuropathologica. 2012; 124(6):763-75. doi: 10.1007/s00401-012-1066-5 PMID: 23143192
Keunen O, Johansson M, Oudin A, Sanzey M, Rahim SA, Fack F, et al. Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proceedings of the National Academy of Sciences of the United States of America. 2011; 108(9):3749-54. doi: 10.1073/pnas.1014480108 PMID: 21321221
Fack F, Espedal H, Keunen O, Golebiewska A, Obad N, Harter PN, et al. Bevacizumab treatment induces metabolic adaptation toward anaerobic metabolism in glioblastomas. Acta neuropathologica. 2014.
Stieber D, Abdul Rahim SA, Niclou SP. Novel ways to target brain tumour metabolism. Expert Opin Ther Targets. 2011; 15(10):1227-39. doi: 10.1517/14728222.2011.588211 PMID: 21635150
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009; 324(5930):1029-33. doi: 10.1126/science.1160809 PMID: 19460998
Chen W. Clinical applications of PET in brain tumors. J Nucl Med. 2007; 48(9):1468-81. PMID: 17704239
Wolf A, Agnihotri S, Munoz D, Guha A. Developmental profile and regulation of the glycolytic enzyme hexokinase 2 in normal brain and glioblastoma multiforme. Neurobiol Dis. 2011; 44(1):84-91. doi: 10. 1016/j.nbd.2011.06.007 PMID: 21726646
Gao H, Yu B, Yan Y, Shen J, Zhao S, Zhu J, et al. Correlation of expression levels of ANXA2, PGAM1, and CALR with glioma grade and prognosis. J Neurosurg. 2013; 118(4):846-53. doi: 10.3171/2012.9. JNS112134 PMID: 23082878
Muller FL, Colla S, Aquilanti E, Manzo VE, Genovese G, Lee J, et al. Passenger deletions generate therapeutic vulnerabilities in cancer. Nature. 2012; 488(7411):337-42. doi: 10.1038/nature11331 PMID: 22895339
Mazurek S, Boschek CB, Hugo F, Eigenbrodt E. Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin Cancer Biol. 2005; 15(4):300-8. PMID: 15908230
Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature. 2008; 452(7184):230-3. doi: 10.1038/nature06734 PMID: 18337823
Velpula KK, Bhasin A, Asuthkar S, Tsung AJ. Combined targeting of PDK1 and EGFR triggers regression of glioblastoma by reversing the Warburg effect. Cancer Res. 2013; 73(24):7277-89. doi: 10.1158/ 0008-5472.CAN-13-1868 PMID: 24148623
Campos B, Wan F, Farhadi M, Ernst A, Zeppernick F, Tagscherer KE, et al. Differentiation therapy exerts antitumor effects on stem-like glioma cells. Clin Cancer Res. 2010; 16(10):2715-28. doi: 10.1158/ 1078-0432.CCR-09-1800 PMID: 20442299
Torsvik A, Stieber D, Enger PO, Golebiewska A, Molven A, Svendsen A, et al. U-251 revisited: genetic drift and phenotypic consequences of long-term cultures of glioblastoma cells. Cancer medicine. 2014; 3(4):812-24. doi: 10.1002/cam4.219 PMID: 24810477
Golebiewska A, Bougnaud S, Stieber D, Brons NH, Vallar L, Hertel F, et al. Side population in human glioblastoma is non-tumorigenic and characterizes brain endothelial cells. Brain. 2013; 136(Pt 5):1462-75. doi: 10.1093/brain/awt025 PMID: 23460667
Benjamini Y, H Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. 1995; 57(1):289-300.
Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003; 4(5):P3. PMID: 12734009
Supek F, Bosnjak M, Skunca N, Smuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PloS one. 2011; 6(7):e21800. doi: 10.1371/journal.pone.0021800 PMID: 21789182
Ahmed BY, Chakravarthy S, Eggers R, Hermens WT, Zhang JY, Niclou SP, et al. Efficient delivery of Cre-recombinase to neurons in vivo and stable transduction of neurons using adeno-associated and lentiviral vectors. BMC Neurosci. 2004; 5:4. PMID: 15005815
Niclou SP, Danzeisen C, Eikesdal HP, Wiig H, Brons NH, Poli AM, et al. A novel eGFP-expressing immunodeficient mouse model to study tumor-host interactions. Faseb J. 2008; 22(9):3120-8. doi: 10. 1096/fj.08-109611 PMID: 18495755
Lal A, Peters H, St Croix B, Haroon ZA, Dewhirst MW, Strausberg RL, et al. Transcriptional response to hypoxia in human tumors. J Natl Cancer Inst. 2001; 93(17):1337-43. PMID: 11535709
Chi JT, Wang Z, Nuyten DS, Rodriguez EH, Schaner ME, Salim A, et al. Gene expression programs in response to hypoxia: cell type specificity and prognostic significance in human cancers. PLoS Med. 2006; 3(3):e47. PMID: 16417408
Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009; 4(1):44-57. doi: 10.1038/nprot.2008.211 PMID: 19131956
Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic acids research. 2009; 37(1):1-13. doi: 10.1093/ nar/gkn923 PMID: 19033363
Du J, Yuan Z, Ma Z, Song J, Xie X, Chen Y. KEGG-PATH: Kyoto encyclopedia of genes and genomes-based pathway analysis using a path analysis model. Molecular bioSystems. 2014; 10(9):2441-7. doi: 10.1039/c4mb00287c PMID: 24994036
Kathagen A, Schulte A, Balcke G, Phillips HS, Martens T, Matschke J, et al. Hypoxia and oxygenation induce a metabolic switch between pentose phosphate pathway and glycolysis in glioma stem-like cells. Acta neuropathologica. 2013; 126(5):763-80. doi: 10.1007/s00401-013-1173-y PMID: 24005892
Zhang X, Varin E, Allouche S, Lu Y, Poulain L, Icard P. Effect of citrate on malignant pleural mesothelioma cells: a synergistic effect with cisplatin. Anticancer Res. 2009; 29(4):1249-54. PMID: 19414371
Marcondes MC, Sola-Penna M, Zancan P. Clotrimazole potentiates the inhibitory effects of ATP on the key glycolytic enzyme 6-phosphofructo-1-kinase. Arch Biochem Biophys. 2010; 497(1-2):62-7. doi: 10.1016/j.abb.2010.03.013 PMID: 20346906
Ganapathy-Kanniappan S, Vali M, Kunjithapatham R, Buijs M, Syed LH, Rao PP, et al. 3-bromopyruvate: a new targeted antiglycolytic agent and a promise for cancer therapy. Curr Pharm Biotechnol. 2010; 11(5):510-7. PMID: 20420565
De Witt Hamer PC, Van Tilborg AA, Eijk PP, Sminia P, Troost D, Van Noorden CJ, et al. The genomic profile of human malignant glioma is altered early in primary cell culture and preserved in spheroids. Oncogene. 2008; 27(14):2091-6. PMID: 17934519
Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA. Multicellular tumor spheroids: an underestimated tool is catching up again. Journal of biotechnology. 2010; 148- (1):3-15. doi: 10.1016/j.jbiotec.2010.01.012 PMID: 20097238
Goidts V, Bageritz J, Puccio L, Nakata S, Zapatka M, Barbus S, et al. RNAi screening in glioma stemlike cells identifies PFKFB4 as a key molecule important for cancer cell survival. Oncogene. 2012; 31- (27):3235-43. doi: 10.1038/onc.2011.490 PMID: 22056879
Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, et al. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer cell. 2007; 11(1):37-51. PMID: 17222789
Sutendra G, Michelakis ED. Pyruvate dehydrogenase kinase as a novel therapeutic target in oncology. Frontiers in oncology. 2013; 3:38. doi: 10.3389/fonc.2013.00038 PMID: 23471124
Michelakis ED, Sutendra G, Dromparis P, Webster L, Haromy A, Niven E, et al. Metabolic modulation of glioblastoma with dichloroacetate. Science translational medicine. 2010; 2(31):31ra4.
Kumar K, Wigfield S, Gee HE, Devlin CM, Singleton D, Li JL, et al. Dichloroacetate reverses the hypoxic adaptation to bevacizumab and enhances its antitumor effects in mouse xenografts. Journal of molecular medicine. 2013; 91(6):749-58. doi: 10.1007/s00109-013-0996-2 PMID: 23361368
Ren F, Wu H, Lei Y, Zhang H, Liu R, Zhao Y, et al. Quantitative proteomics identification of phosphoglycerate mutase 1 as a novel therapeutic target in hepatocellular carcinoma. Mol Cancer. 2010; 9:81. doi: 10.1186/1476-4598-9-81 PMID: 20403181
Yan T, Skaftnesmo KO, Leiss L, Sleire L, Wang J, Li X, et al. Neuronal markers are expressed in human gliomas and NSE knockdown sensitizes glioblastoma cells to radiotherapy and temozolomide. BMC Cancer. 2011; 11:524. doi: 10.1186/1471-2407-11-524 PMID: 22185371
Wolf A, Agnihotri S, Micallef J, Mukherjee J, Sabha N, Cairns R, et al. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J Exp Med. 2011; 208(2):313-26. doi: 10.1084/jem.20101470 PMID: 21242296
Pastorino JG, Shulga N, Hoek JB. Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J Biol Chem. 2002; 277(9):7610-8. PMID: 11751859
Penso J, Beitner R. Clotrimazole and bifonazole detach hexokinase from mitochondria of melanoma cells. Eur J Pharmacol. 1998; 342(1):113-7. PMID: 9544799