[en] Glioblastomas are incurable tumors infiltrating the brain. A subpopulation of glioblastoma cells forms a functional and therapy-resistant tumor cell network interconnected by tumor microtubes (TMs). Other subpopulations appear unconnected, and their biological role remains unclear. Here, we demonstrate that whole-brain colonization is fueled by glioblastoma cells that lack connections with other tumor cells and astrocytes yet receive synaptic input from neurons. This subpopulation corresponds to neuronal and neural-progenitor-like tumor cell states, as defined by single-cell transcriptomics, both in mouse models and in the human disease. Tumor cell invasion resembled neuronal migration mechanisms and adopted a Lévy-like movement pattern of probing the environment. Neuronal activity induced complex calcium signals in glioblastoma cells followed by the de novo formation of TMs and increased invasion speed. Collectively, superimposing molecular and functional single-cell data revealed that neuronal mechanisms govern glioblastoma cell invasion on multiple levels. This explains how glioblastoma's dissemination and cellular heterogeneity are closely interlinked.
Disciplines :
Oncology
Author, co-author :
Venkataramani, Varun; Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany, Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany, Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany. Electronic address: varun.venkataramani@med.uni-heidelberg.de.
Yang, Yvonne; Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
Schubert, Marc Cicero; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany.
Reyhan, Ekin; Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
Tetzlaff, Svenja Kristin; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany.
Wißmann, Niklas; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany.
Botz, Michael; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany.
Soyka, Stella Judith; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany.
Beretta, Carlo Antonio; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany.
Pramatarov, Rangel Lyubomirov; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany.
Fankhauser, Laura; Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
Garofano, Luciano; Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10027, USA.
Freudenberg, Alexander; Institute of Mathematics, University of Mannheim, 68131 Mannheim, Germany.
Wagner, Julia; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany.
Tanev, Dimitar Ivanov; Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany, Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany.
Ratliff, Miriam; Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany, Neurosurgery Clinic, University Hospital Mannheim, 68167 Mannheim, Germany.
Xie, Ruifan; Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany, Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
Kessler, Tobias; Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany, Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
Hoffmann, Dirk C; Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany, Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany, Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany.
Hai, Ling; Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany, Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
Dörflinger, Yvette; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany.
Hoppe, Simone; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany.
Yabo, Yahaya A; NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, 1526 Luxembourg, Luxembourg.
GOLEBIEWSKA, Anna ; NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, 1526 Luxembourg, Luxembourg.
NICLOU, Simone P. ; NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, 1526 Luxembourg, Luxembourg.
Sahm, Felix; Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany, Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
Lasorella, Anna; Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10027, USA.
Slowik, Martin; Institute of Mathematics, University of Mannheim, 68131 Mannheim, Germany.
Döring, Leif; Institute of Mathematics, University of Mannheim, 68131 Mannheim, Germany.
Iavarone, Antonio; Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10027, USA.
Wick, Wolfgang; Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany, Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
Kuner, Thomas; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany. Electronic address: thomas.kuner@uni-heidelberg.de.
Winkler, Frank; Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany, Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany. Electronic address: frank.winkler@med.uni-heidelberg.de.
Arnold, L.M.D., Laurens De, H., On the estimation of the extreme-value index and large quantile estimation. Ann. Stat. 17 (1989), 1795–1832.
Berg, S., Kutra, D., Kroeger, T., Straehle, C.N., Kausler, B.X., Haubold, C., Schiegg, M., Ales, J., Beier, T., Rudy, M., et al. ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16 (2019), 1226–1232.
Bhaduri, A., Di Lullo, E., Jung, D.N., Müller, S., Crouch, E.E., Espinosa, C.S., Ozawa, T., Alvarado, B., Spatazza, J., Cadwell, C.R., et al. Outer radial glia-like cancer stem cells contribute to heterogeneity of glioblastoma. Cell Stem Cell 26 (2020), 48–63.e6.
Bindocci, E., Savtchouk, I., Liaudet, N., Becker, D., Carriero, G., Volterra, A., Three-dimensional Ca(2+) imaging advances understanding of astrocyte biology. Science, 356, 2017 eaai8185.
Bodi, E., Hurtado, S.P., Carvalho, M.A., Borojevic, R., De Carvalho, A.C.C., Gap junctions in hematopoietic stroma control proliferation and differentiation of blood cell precursors. An. Acad. Bras. Cienc. 76 (2004), 743–756.
Bruce, M.H., A simple general approach to inference about the tail of a distribution. Ann. Stat. 3 (1975), 1163–1174.
Cahoy, D.O., Uchaikin, V.V., Woyczynski, W.A., Parameter estimation for fractional Poisson processes. J. Stat. Plan. Inference 140 (2010), 3106–3120.
Cao, J., Spielmann, M., Qiu, X., Huang, X., Ibrahim, D.M., Hill, A.J., Zhang, F., Mundlos, S., Christiansen, L., Steemers, F.J., et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566 (2019), 496–502.
Capper, D., Jones, D.T.W., Sill, M., Hovestadt, V., Schrimpf, D., Sturm, D., Koelsche, C., Sahm, F., Chavez, L., Reuss, D.E., et al. DNA methylation-based classification of central nervous system tumours. Nature 555 (2018), 469–474.
Cardona, A., Saalfeld, S., Schindelin, J., Arganda-Carreras, I., Preibisch, S., Longair, M., Tomancak, P., Hartenstein, V., Douglas, R.J., TrakEM2 software for neural circuit reconstruction. PLoS One, 7, 2012, e38011.
Chaligne, R., Gaiti, F., Silverbush, D., Schiffman, J.S., Weisman, H.R., Kluegel, L., Gritsch, S., Deochand, S.D., Gonzalez Castro, L.N., Richman, A.R., et al. Epigenetic encoding, heritability and plasticity of glioma transcriptional cell states. Nat. Genet. 53 (2021), 1469–1479.
Cuddapah, V.A., Robel, S., Watkins, S., Sontheimer, H., A neurocentric perspective on glioma invasion. Nat. Rev. Neurosci. 15 (2014), 455–465.
Dana, H., Sun, Y., Mohar, B., Hulse, B.K., Kerlin, A.M., Hasseman, J.P., Tsegaye, G., Tsang, A., Wong, A., Patel, R., et al. High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nat. Methods 16 (2019), 649–657.
Dirkse, A., Golebiewska, A., Buder, T., Nazarov, P.V., Muller, A., Poovathingal, S., Brons, N.H.C., Leite, S., Sauvageot, N., Sarkisjan, D., et al. Stem cell-associated heterogeneity in Glioblastoma results from intrinsic tumor plasticity shaped by the microenvironment. Nat. Commun., 10, 2019, 1787.
Dondzillo, A., Sätzler, K., Horstmann, H., Altrock, W.D., Gundelfinger, E.D., Kuner, T., Targeted three-dimensional immunohistochemistry reveals localization of presynaptic proteins Bassoon and Piccolo in the rat calyx of Held before and after the onset of hearing. J. Comp. Neurol. 518 (2010), 1008–1029.
Dorshkind, K., Green, L., Godwin, A., Fletcher, W.H., Connexin-43 type gap-junctions mediate communication between bone-marrow stromal cells. Blood 82 (1993), 38–45.
Drumm, M.R., Dixit, K.S., Grimm, S., Kumthekar, P., Lukas, R.V., Raizer, J.J., Stupp, R., Chheda, M.G., Kam, K.L., McCord, M., et al. Extensive brainstem infiltration, not mass effect, is a common feature of end-stage cerebral glioblastomas. Neuro. Oncol 22 (2020), 470–479.
Dubbs, A., Guevara, J., Yuste, R., moco: fast Motion Correction for Calcium Imaging. Front. Neuroinform., 10, 2016, 6.
Fantuzzo, J.A., Mirabella, V.R., Hamod, A.H., Hart, A.H., Zahn, J.D., Pang, Z.P., Intellicount: High-Throughput Quantification of Fluorescent Synaptic Protein Puncta by Machine Learning. eNeuro, 4, 2017, ENEURO.0219-17.2017.
Fine, H.A., Malignant gliomas: simplifying the complexity. Cancer Discov. 9 (2019), 1650–1652.
Fogarty, M.J., Hammond, L.A., Kanjhan, R., Bellingham, M.C., Noakes, P.G., A method for the three-dimensional reconstruction of Neurobiotin™-filled neurons and the location of their synaptic inputs. Front. Neural Circuits, 7, 2013, 153.
Friedl, P., Locker, J., Sahai, E., Segall, J.E., Classifying collective cancer cell invasion. Nat. Cell Biol. 14 (2012), 777–783.
Garofano, L., Migliozzi, S., Oh, Y.T., D'Angelo, F., Najac, R.D., Ko, A., Frangaj, B., Caruso, F.P., Yu, K., Yuan, J., et al. Pathway-based classification of glioblastoma uncovers a mitochondrial subtype with therapeutic vulnerabilities. Nat. Cancer 2 (2021), 141–156.
Ge, S.X., Jung, D., Yao, R., ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics 36 (2020), 2628–2629.
Gleeson, J.G., Lin, P.T., Flanagan, L.A., Walsh, C.A., Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron 23 (1999), 257–271.
Gneiting, T., Schlather, M., Stochastic models that separate fractal dimension and the Hurst effect. SIAM Rev. 46 (2004), 269–282.
Golebiewska, A., Hau, A.C., Oudin, A., Stieber, D., Yabo, Y.A., Baus, V., Barthelemy, V., Klein, E., Bougnaud, S., Keunen, O., et al. Patient-derived organoids and orthotopic xenografts of primary and recurrent gliomas represent relevant patient avatars for precision oncology. Acta Neuropathol. 140 (2020), 919–949.
Gonzalez, G.A., Montminy, M.R., Cyclic-AMP stimulates somatostatin gene-transcription by phosphorylation of Creb at Serine-133. Cell 59 (1989), 675–680.
Gritsenko, P., Leenders, W., Friedl, P., Recapitulating in vivo-like plasticity of glioma cell invasion along blood vessels and in astrocyte-rich stroma. Histochem. Cell Biol. 148 (2017), 395–406.
Gritsenko, P.G., Atlasy, N., Dieteren, C.E.J., Navis, A.C., Venhuizen, J.H., Veelken, C., Schubert, D., Acker-Palmer, A., Westerman, B.A., Wurdinger, T., et al. p120-catenin-dependent collective brain infiltration by glioma cell networks. Nat. Cell Biol. 22 (2020), 97–107.
Hai, L., Hoffmann, D.C., Mandelbaum, H., Xie, R., Ito, J., Jung, E., Weil, S., Sievers, P., Venkataramani, V., Azorin, D.D., et al. A connectivity signature for glioblastoma. Preprint at bioRxiv., 2021, 10.1101/2021.11.07.465791.
Hara, T., Chanoch-Myers, R., Mathewson, N.D., Myskiw, C., Atta, L., Bussema, L., Eichhorn, S.W., Greenwald, A.C., Kinker, G.S., Rodman, C., et al. Interactions between cancer cells and immune cells drive transitions to mesenchymal-like states in glioblastoma. Cancer Cell 39 (2021), 779–792.e11.
Horstmann, H., Körber, C., Sätzler, K., Aydin, D., Kuner, T., Serial section scanning electron microscopy (S3EM) on silicon wafers for ultra-structural volume imaging of cells and tissues. PLoS One, 7, 2012, e35172.
Huda, S., Weigelin, B., Wolf, K., Tretiakov, K.V., Polev, K., Wilk, G., Iwasa, M., Emami, F.S., Narojczyk, J.W., Banaszak, M., et al. Levy-like movement patterns of metastatic cancer cells revealed in microfabricated systems and implicated in vivo. Nat. Commun., 9, 2018, 4539.
Humphries, N.E., Weimerskirch, H., Queiroz, N., Southall, E.J., Sims, D.W., Foraging success of biological Levy flights recorded in situ. Proc. Natl. Acad. Sci. USA 109 (2012), 7169–7174.
Iwadate, Y., Epithelial-mesenchymal transition in glioblastoma progression. Oncol. Lett. 11 (2016), 1615–1620.
Jung, E., Osswald, M., Blaes, J., Wiestler, B., Sahm, F., Schmenger, T., Solecki, G., Deumelandt, K., Kurz, F.T., Xie, R., et al. Tweety-homolog 1 drives brain colonization of gliomas. J. Neurosci. 37 (2017), 6837–6850.
Jung, E., Osswald, M., Ratliff, M., Dogan, H., Xie, R., Weil, S., Hoffmann, D.C., Kurz, F.T., Kessler, T., Heiland, S., et al. Tumor cell plasticity, heterogeneity, and resistance in crucial microenvironmental niches in glioma. Nat. Commun., 12, 2021, 1014.
Kantevari, S., Gordon, G.R.J., MacVicar, B.A., Ellis-Davies, G.C.R., A practical guide to the synthesis and use of membrane-permeant acetoxymethyl esters of caged inositol polyphosphates. Nat. Protoc. 6 (2011), 327–337.
Lewis, W.H., Is mesenchyme a syncytium?. Anat. Rec. 23 (1922), 177–184.
Liang, W., Gao, R., Yang, M., Wang, X., Cheng, K., Shi, X., He, C., Li, Y., Wu, Y., Shi, L., et al. MARCKSL1 promotes the proliferation, migration and invasion of lung adenocarcinoma cells. Oncol. Lett. 19 (2020), 2272–2280.
Maere, S., Heymans, K., Kuiper, M., BiNGO: a cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21 (2005), 3448–3449.
Margineanu, D.G., Wülfert, E., Inhibition by levetiracetam of a non-GABA(A) receptor-associated epileptiform effect of bicuculline in rat hippocampus. Br. J. Pharmacol. 122 (1997), 1146–1150.
Marín, O., Valiente, M., Ge, X., Tsai, L.H., Guiding neuronal cell migrations. Cold Spring Harbor Perspect. Biol., 2, 2010, a001834.
Martini, F.J., Valiente, M., López Bendito, G., Szabó, G., Moya, F., Valdeolmillos, M., Marín, O., Biased selection of leading process branches mediates chemotaxis during tangential neuronal migration. Development 136 (2009), 41–50.
McKhann, G.M. 2nd, D'Ambrosio, R., Janigro, D., Heterogeneity of astrocyte resting membrane potentials and intercellular coupling revealed by whole-cell and gramicidin-perforated patch recordings from cultured neocortical and hippocampal slice astrocytes. J. Neurosci. 17 (1997), 6850–6863.
Meijering, E., Dzyubachyk, O., Smal, I., Methods for cell and particle tracking. Methods Enzymol. 504 (2012), 183–200.
Metzler, R., Klafter, J., The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339 (2000), 1–77.
Middei, S., Houeland, G., Cavallucci, V., Ammassari-Teule, M., D'Amelio, M., Marie, H., CREB is necessary for synaptic maintenance and learning-induced changes of the ampa receptor GluA1 subunit. Hippocampus 23 (2013), 488–499.
Nadarajah, B., Alifragis, P., Wong, R.O., Parnavelas, J.G., Neuronal migration in the developing cerebral cortex: observations based on real-time imaging. Cereb. Cortex 13 (2003), 607–611.
Nadarajah, B., Brunstrom, J.E., Grutzendler, J., Wong, R.O., Pearlman, A.L., Two modes of radial migration in early development of the cerebral cortex. Nat. Neurosci. 4 (2001), 143–150.
Neftel, C., Laffy, J., Filbin, M.G., Hara, T., Shore, M.E., Rahme, G.J., Richman, A.R., Silverbush, D., Shaw, M.L., Hebert, C.M., et al. An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell 178 (2019), 835–849.e21.
Nimmerjahn, A., Kirchhoff, F., Kerr, J.N.D., Helmchen, F., Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nat. Methods 1 (2004), 31–37.
Ohtaka-Maruyama, C., Okamoto, M., Endo, K., Oshima, M., Kaneko, N., Yura, K., Okado, H., Miyata, T., Maeda, N., Synaptic transmission from subplate neurons controls radial migration of neocortical neurons. Science 360 (2018), 313–317.
Osswald, M., Jung, E., Sahm, F., Solecki, G., Venkataramani, V., Blaes, J., Weil, S., Horstmann, H., Wiestler, B., Syed, M., et al. Brain tumour cells interconnect to a functional and resistant network. Nature 528 (2015), 93–98.
Oudin, A., Baus, V., Barthelemy, V., Fabian, C., Klein, E., Dieterle, M., Wantz, M., Hau, A.C., Dording, C., Bernard, A., et al. Protocol for derivation of organoids and patient-derived orthotopic xenografts from glioma patient tumors. Star Protoc., 2, 2021, 100534.
Parslow, A., Cardona, A., Bryson-Richardson, R.J., Sample drift correction following 4D confocal time-lapse imaging. J. Vis. Exp., 12, 2014, 51086.
Puchalski, R.B., Shah, N., Miller, J., Dalley, R., Nomura, S.R., Yoon, J.G., Smith, K.A., Lankerovich, M., Bertagnolli, D., Bickley, K., et al. An anatomic transcriptional atlas of human glioblastoma. Science 360 (2018), 660–663.
Rahim, S., Beauchamp, E.M., Kong, Y., Brown, M.L., Toretsky, J.A., Üren, A., YK-4-279 inhibits ERG and ETV1 mediated prostate cancer cell invasion. PLoS One, 6, 2011, e19343.
Raposo, E.P., Buldyrev, S.V., da Luz, M.G., Santos, M.C., Stanley, H.E., Viswanathan, G.M., Dynamical robustness of Levy search strategies. Phys. Rev. Lett., 91, 2003, 240601.
Reynolds, E.S., The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17 (1963), 208–212.
Richards, L.M., Whitley, O.K.N., MacLeod, G., Cavalli, F.M.G., Coutinho, F.J., Jaramillo, J.E., Svergun, N., Riverin, M., Croucher, D.C., Kushida, M., et al. Gradient of Developmental and Injury Response transcriptional states defines functional vulnerabilities underpinning glioblastoma heterogeneity. Nat. Cancer 2 (2021), 157–173.
Sahm, F., Capper, D., Jeibmann, A., Habel, A., Paulus, W., Troost, D., von Deimling, A., Addressing diffuse glioma as a systemic brain disease with single-cell analysis. Arch. Neurol. 69 (2012), 523–526.
Salem, O., Erdem, N., Jung, J., Münstermann, E., Wörner, A., Wilhelm, H., Wiemann, S., Körner, C., The highly expressed 5'isomiR of hsa-miR-140-3p contributes to the tumor-suppressive effects of miR-140 by reducing breast cancer proliferation and migration. BMC Genomics, 17, 2016, 566.
Santra, M., Santra, S., Roberts, C., Zhang, R.L., Chopp, M., Doublecortin induces mitotic microtubule catastrophe and inhibits glioma cell invasion. J. Neurochem. 108 (2009), 231–245.
Schätzle, P., Wuttke, R., Ziegler, U., Sonderegger, P., Automated quantification of synapses by fluorescence microscopy. J. Neurosci. Methods 204 (2012), 144–149.
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9 (2012), 676–682.
Schmid, B., Schindelin, J., Cardona, A., Longair, M., Heisenberg, M., A high-level 3D visualization API for Java and ImageJ. BMC Bioinformatics, 11, 2010, 274.
Schneider, C.A., Rasband, W.S., Eliceiri, K.W., NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9 (2012), 671–675.
Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., Ideker, T., Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13 (2003), 2498–2504.
Siebzehnrubl, F.A., Silver, D.J., Tugertimur, B., Deleyrolle, L.P., Siebzehnrubl, D., Sarkisian, M.R., Devers, K.G., Yachnis, A.T., Kupper, M.D., Neal, D., et al. The ZEB1 pathway links glioblastoma initiation, invasion and chemoresistance. EMBO Mol. Med. 5 (2013), 1196–1212.
Sims, D.W., Reynolds, A.M., Humphries, N.E., Southall, E.J., Wearmouth, V.J., Metcalfe, B., Twitchett, R.J., Hierarchical random walks in trace fossils and the origin of optimal search behavior. Proc. Natl. Acad. Sci. USA 111 (2014), 11073–11078.
Sims, D.W., Righton, D., Pitchford, J.W., Minimizing errors in identifying Levy flight behaviour of organisms. J. Anim. Ecol. 76 (2007), 222–229.
Sin, W.C., Aftab, Q., Bechberger, J.F., Leung, J.H., Chen, H., Naus, C.C., Astrocytes promote glioma invasion via the Gap junction protein connexin43. Oncogene 35 (2016), 1504–1516.
Stelzer, G., Rosen, N., Plaschkes, I., Zimmerman, S., Twik, M., Fishilevich, S., Stein, T.I., Nudel, R., Lieder, I., Mazor, Y., et al. The GeneCards Suite: from gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinformatics, 54, 2016 1 30 31–31 30 33.
Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W.M. 3rd, Hao, Y., Stoeckius, M., Smibert, P., Satija, R., Comprehensive integration of single-cell data. Cell 177 (2019), 1888–1902.e21.
Sullivan, K.F., Cleveland, D.W., Identification of conserved isotype-defining variable region sequences for four vertebrate beta tubulin polypeptide classes. Proc. Natl. Acad. Sci. USA 83 (1986), 4327–4331.
Tabata, H., Nakajima, K., Multipolar migration: the third mode of radial neuronal migration in the developing cerebral cortex. J. Neurosci. 23 (2003), 9996–10001.
Takano, T., Tian, G.F., Peng, W.G., Lou, N.H., Libionka, W., Han, X.N., Nedergaard, M., Astrocyte-mediated control of cerebral blood flow. Nat. Neurosci. 9 (2006), 260–267.
Tano, K., Mizuno, R., Okada, T., Rakwal, R., Shibato, J., Masuo, Y., Ijiri, K., Akimitsu, N., MALAT-1 enhances cell motility of lung adenocarcinoma cells by influencing the expression of motility-related genes. FEBS Lett. 584 (2010), 4575–4580.
Thestrup, T., Litzlbauer, J., Bartholomäus, I., Mues, M., Russo, L., Dana, H., Kovalchuk, Y., Liang, Y., Kalamakis, G., Laukat, Y., et al. Optimized ratiometric calcium sensors for functional in vivo imaging of neurons and T lymphocytes. Nat. Methods 11 (2014), 175–182.
Tsai, H.H., Niu, J., Munji, R., Davalos, D., Chang, J., Zhang, H., Tien, A.C., Kuo, C.J., Chan, J.R., Daneman, R., et al. Oligodendrocyte precursors migrate along vasculature in the developing nervous system. Science 351 (2016), 379–384.
Valiente, M., Martini, F.J., Migration of cortical interneurons relies on branched leading process dynamics. Cell Adh. Migr. 3 (2009), 278–280.
Valiunas, V., Doronin, S., Valiuniene, L., Potapova, I., Zuckerman, J., Walcott, B., Robinson, R.B., Rosen, M.R., Brink, P.R., Cohen, I.S., Human mesenchymal stem cells make cardiac connexins and form functional gap junctions. J. Physiol. Lond. 555 (2004), 617–626.
Van de Sande, B., Flerin, C., Davie, K., De Waegeneer, M., Hulselmans, G., Aibar, S., Seurinck, R., Saelens, W., Cannoodt, R., Rouchon, Q., et al. A scalable SCENIC workflow for single-cell gene regulatory network analysis. Nat. Protoc. 15 (2020), 2247–2276.
van der Horst, E.H., Degenhardt, Y.Y., Strelow, A., Slavin, A., Chinn, L., Orf, J., Rong, M., Li, S., See, L.H., Nguyen, K.Q., et al. Metastatic properties and genomic amplification of the tyrosine kinase gene ACK1. Proc. Natl. Acad. Sci. USA 102 (2005), 15901–15906.
Varn, F.S., Johnson, K.C., Martinek, J., Huse, J.T., Nasrallah, M.P., Wesseling, P., Cooper, L.A.D., Malta, T.M., Wade, T.E., Sabedot, T.S., et al. Glioma progression is shaped by genetic evolution and microenvironment interactions. Cell 185 (2022), 2184–2199.e16.
Venkataramani, V., Tanev, D.I., Strahle, C., Studier-Fischer, A., Fankhauser, L., Kessler, T., Körber, C., Kardorff, M., Ratliff, M., Xie, R., et al. Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature 573 (2019), 532–538.
Venkatesh, H.S., Morishita, W., Geraghty, A.C., Silverbush, D., Gillespie, S.M., Arzt, M., Tam, L.T., Espenel, C., Ponnuswami, A., Ni, L., et al. Electrical and synaptic integration of glioma into neural circuits. Nature 573 (2019), 539–545.
Viswanathan, G.M., Buldyrev, S.V., Havlin, S., da Luz, M.G.E., Raposo, E.P., Stanley, H.E., Optimizing the success of random searches. Nature 401 (1999), 911–914.
Viswanathan, G.M., Raposo, E.P., da Luz, M.G.E., Lévy flights and superdiffusion in the context of biological encounters and random searches. Phys. Life Rev. 5 (2008), 133–150.
Wang, L., Babikir, H., Müller, S., Yagnik, G., Shamardani, K., Catalan, F., Kohanbash, G., Alvarado, B., Di Lullo, E., Kriegstein, A., et al. The phenotypes of proliferating glioblastoma cells reside on a single axis of variation. Cancer Discov. 9 (2019), 1708–1719.
Wang, Y., DelRosso, N.V., Vaidyanathan, T.V., Cahill, M.K., Reitman, M.E., Pittolo, S., Mi, X., Yu, G., Poskanzer, K.E., Accurate quantification of astrocyte and neurotransmitter fluorescence dynamics for single-cell and population-level physiology. Nat. Neurosci. 22 (2019), 1936–1944.
Wefers, A.K., Haberlandt, C., Tekin, N.B., Fedorov, D.A., Timmermann, A., van der Want, J.J.L., Chaudhry, F.A., Steinhäuser, C., Schilling, K., Jabs, R., Synaptic input as a directional cue for migrating interneuron precursors. Development 144 (2017), 4125–4136.
Weigert, M., Schmidt, U., Boothe, T., Müller, A., Dibrov, A., Jain, A., Wilhelm, B., Schmidt, D., Broaddus, C., Culley, S., et al. Content-aware image restoration: pushing the limits of fluorescence microscopy. Nat. Methods 15 (2018), 1090–1097.
Weil, S., Osswald, M., Solecki, G., Grosch, J., Jung, E., Lemke, D., Ratliff, M., Hänggi, D., Wick, W., Winkler, F., Tumor microtubes convey resistance to surgical lesions and chemotherapy in gliomas. Neuro. Oncol 19 (2017), 1316–1326.
Wick, W., Osswald, M., Wick, A., Winkler, F., Treatment of glioblastoma in adults. Ther. Adv. Neurol. Diso, 11, 2018 1756286418790452.
Wimmer, V.C., Nevian, T., Kuner, T., Targeted in vivo expression of proteins in the calyx of Held. Pflugers Arch. 449 (2004), 319–333.
Xie, R., Kessler, T., Grosch, J., Hai, L., Venkataramani, V., Huang, L., Hoffmann, D.C., Solecki, G., Ratliff, M., Schlesner, M., et al. Tumor cell network integration in glioma represents a stemness feature. Neuro. Oncol. 23 (2021), 757–769.
Yu, K., Hu, Y.Q., Wu, F., Guo, Q.F., Qian, Z.H., Hu, W.E., Chen, J., Wang, K.Y., Fan, X.Y., Wu, X.L., et al. Surveying brain tumor heterogeneity by single-cell RNA-sequencing of multi-sector biopsies. Natl. Sci. Rev. 7 (2020), 1306–1318.
Zhang, H., Kelly, G., Zerillo, C., Jaworski, D.M., Hockfield, S., Expression of a cleaved brain-specific extracellular matrix protein mediates glioma cell invasion in vivo. J. Neurosci. 18 (1998), 2370–2376.
Zhang, W., Couldwell, W.T., Simard, M.F., Song, H., Lin, J.H., Nedergaard, M., Direct gap junction communication between malignant glioma cells and astrocytes. Cancer Res. 59 (1999), 1994–2003.
Zirpel, L., Janowiak, M.A., Veltri, C.A., Parks, T.N., AMPA receptor-mediated, calcium-dependent CREB phosphorylation in a subpopulation of auditory neurons surviving activity deprivation. J. Neurosci. 20 (2000), 6267–6275.