[en] Chinese hamster ovary (CHO) cells have a long history in the biopharmaceutical industry and currently produce the vast majority of recombinant therapeutic proteins. A key step in controlling the process and product consistency is the development of a producer cell line derived from a single cell clone. However, it is recognized that genetic and phenotypic heterogeneity between individual cells in a clonal CHO population tends to arise over time. Previous bulk analysis of CHO cell populations revealed considerable variation within the mtDNA sequence (heteroplasmy), which could have implications for the performance of the cell line. By analyzing the heteroplasmy of single cells within the same population, this heterogeneity can be characterized with greater resolution. Such analysis may identify heterogeneity in the mitochondrial genome, which impacts the overall phenotypic performance of a producer cell population, and potentially reveal routes for genetic engineering. A critical first step is the development of robust experimental and computational methods to enable single cell mtDNA sequencing (termed scmtDNAseq). Here, we present a protocol from cell culture to bioinformatic analysis and provide preliminary evidence of significant mtDNA heteroplasmy across a small panel of single CHO cells.
Disciplines :
Biotechnologie
Auteur, co-auteur :
FOLEY, Alan ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Computational Biology
Lao, Nga
Clarke, Colin
Barron, Niall
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
A complete workflow for single cell mtDNAseq in CHO cells, from cell culture to bioinformatic analysis
Blakely E. L. Mitchell A. L. Fisher N. Meunier B. Nijtmans L. G. Schaefer A. M. et al. (2005). A mitochondrial cytochrome b mutation causing severe respiratory chain enzyme deficiency in humans and yeast. FEBS J. 272, 3583–3592. 10.1111/j.1742-4658.2005.04779.x
Chial H. (2008). mtDNA and mitochondrial diseases | learn science at scitable. Available at: http://www.nature.com/scitable/topicpage/mtdna-and-mitochondrial-diseases-903 (Accessed June 5, 2023).
Dhiman H. Gerstl M. P. Ruckerbauer D. Hanscho M. Himmelbauer H. Clarke C. et al. (2019). Genetic and epigenetic variation across genes involved in energy metabolism and mitochondria of Chinese hamster ovary cell lines. Biotechnol. J. 14, 1800681. 10.1002/biot.201800681
Dimauro S. Davidzon G. (2005). Mitochondrial DNA and disease. Ann. Med. 37, 222–232. 10.1080/07853890510007368
Fisher N. Castleden C. K. Bourges I. Brasseur G. Dujardin G. Meunier B. (2004). Human disease-related mutations in cytochrome b studied in yeast. J. Biol. Chem. 279, 12951–12958. 10.1074/jbc.M313866200
Gallagher C. Kelly P. S. (2017). Selection of high-producing clones using FACS for CHO cell line development. Methods Mol. Biol. 1603, 143–152. 10.1007/978-1-4939-6972-2_9
Gilbert A. McElearney K. Kshirsagar R. Sinacore M. S. Ryll T. (2013). Investigation of metabolic variability observed in extended fed batch cell culture. Biotechnol. Prog. 29, 1519–1527. 10.1002/btpr.1787
He Y. Wu J. Dressman D. C. Iacobuzio-Donahue C. Markowitz S. D. Velculescu V. E. et al. (2010). Heteroplasmic mitochondrial DNA mutations in normal and tumour cells. Nature 464, 610–614. 10.1038/nature08802
Hertweck K. L. Dasgupta S. (2017). The landscape of mtDNA modifications in cancer: a tale of two cities. Front. Oncol. 7, 262. 10.3389/fonc.2017.00262
Itsara L. S. Kennedy S. R. Fox E. J. Yu S. Hewitt J. J. Sanchez-Contreras M. et al. (2014). Oxidative stress is not a major contributor to somatic mitochondrial DNA mutations. PLoS Genet. 10, e1003974. 10.1371/journal.pgen.1003974
Ju Y. S. Alexandrov L. B. Gerstung M. Martincorena I. Nik-Zainal S. Ramakrishna M. et al. (2014). Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer. eLife 3, e02935. 10.7554/eLife.02935
Kelley B. Kiss R. Laird M. (2018). A different perspective: how much innovation is really needed for monoclonal antibody production using mammalian cell technology? Adv. Biochem. Eng. Biotechnol. 165, 443–462. 10.1007/10_2018_59
Kelly P. S. Clarke C. Costello A. Monger C. Meiller J. Dhiman H. et al. (2017). Ultra-deep next generation mitochondrial genome sequencing reveals widespread heteroplasmy in Chinese hamster ovary cells. Metab. Eng. 41, 11–22. 10.1016/j.ymben.2017.02.001
Kowaltowski A. J. Vercesi A. E. (1999). Mitochondrial damage induced by conditions of oxidative stress. Free Radic. Biol. Med. 26, 463–471. 10.1016/s0891-5849(98)00216-0
Legati A. Zanetti N. Nasca A. Peron C. Lamperti C. Lamantea E. et al. (2021). Current and new next-generation sequencing approaches to study mitochondrial DNA. J. Mol. Diagnostics 23, 732–741. 10.1016/j.jmoldx.2021.03.002
Lorenz T. C. (2012). Polymerase chain reaction: basic protocol Plus troubleshooting and optimization strategies. J. Vis. Exp. 3998, e3998. 10.3791/3998
Maeda R. Kami D. Maeda H. Shikuma A. Gojo S. (2020). High throughput single cell analysis of mitochondrial heteroplasmy in mitochondrial diseases. Sci. Rep. 10, 10821. 10.1038/s41598-020-67686-z
Mishra P. Chan D. C. (2014). Mitochondrial dynamics and inheritance during cell division, development and disease. Nat. Rev. Mol. Cell Biol. 15, 634–646. 10.1038/nrm3877
NCBI (2023). National center for Biotechnology information. Available at: https://www.ncbi.nlm.nih.gov/(Accessed June 5, 2023).
Nissanka N. Moraes C. T. (2020). Mitochondrial DNA heteroplasmy in disease and targeted nuclease‐based therapeutic approaches. EMBO Rep. 21, e49612. 10.15252/embr.201949612
Park J. S. Sharma L. K. Li H. Xiang R. Holstein D. Wu J. et al. (2009). A heteroplasmic, not homoplasmic, mitochondrial DNA mutation promotes tumorigenesis via alteration in reactive oxygen species generation and apoptosis. Hum. Mol. Genet. 18, 1578–1589. 10.1093/hmg/ddp069
Picard M. Zhang J. Hancock S. Derbeneva O. Golhar R. Golik P. et al. (2014). Progressive increase in mtDNA 3243A>G heteroplasmy causes abrupt transcriptional reprogramming. Proc. Natl. Acad. Sci. U.S.A. 111, E4033–E4042. 10.1073/pnas.1414028111
Rossignol R. Faustin B. Rocher C. Malgat M. Mazat J.-P. Letellier T. (2003). Mitochondrial threshold effects. Biochem. J. 370, 751–762. 10.1042/bj20021594
Walsh G. Walsh E. (2022). Biopharmaceutical benchmarks 2022. Nat. Biotechnol. 40, 1722–1760. 10.1038/s41587-022-01582-x
Wei W. Schon K. R. Elgar G. Orioli A. Tanguy M. Giess A. et al. (2022). Nuclear-embedded mitochondrial DNA sequences in 66,083 human genomes. Nature 611, 105–114. 10.1038/s41586-022-05288-7
Wurm F. M. Wurm M. J. (2017). Cloning of CHO cells, productivity and genetic stability—a discussion. Processes 5, 20. 10.3390/pr5020020
Zambelli F. Vancampenhout K. Daneels D. Brown D. Mertens J. Van Dooren S. et al. (2017). Accurate and comprehensive analysis of single nucleotide variants and large deletions of the human mitochondrial genome in DNA and single cells. Eur. J. Hum. Genet. 25, 1229–1236. 10.1038/ejhg.2017.129
Zhang R. Nakahira K. Choi A. M. K. Gu Z. (2019). Heteroplasmy concordance between mitochondrial DNA and RNA. Sci. Rep. 9, 12942. 10.1038/s41598-019-49279-7
Zhang W. Cui H. Wong L.-J. C. (2012). Comprehensive one-step molecular analyses of mitochondrial genome by massively parallel sequencing. Clin. Chem. 58, 1322–1331. 10.1373/clinchem.2011.181438