[en] Malignant brain tumors including glioblastoma are incurable cancers. Over the last years a number of promising novel treatment approaches have been investigated including the application of inhibitors of receptor tyrosine kinases and downstream targets, immune-based therapies and anti-angiogenic agents. Unfortunately so far the major clinical trials in glioblastoma patients did not deliver clear clinical benefits. Systemic brain tumor therapy is seriously hampered by poor drug delivery to the brain. Although in glioblastoma, the blood brain barrier is disrupted in the tumor core, the major part of the tumor is largely protected by an intact blood brain barrier. Active cytotoxic compounds encapsulated into liposomes, micelles, and nanoparticles constitute novel treatment options because they can be designed to facilitate entry into the brain parenchyma. In the case of biological therapeutics, encapsulation of therapeutic cells and their implantation into the surgical cavity represents another promising approach. This technology provides long term release of the active compound at the tumor site and reduces side effects associated with systemic delivery. The proof of principle of encapsulated cell factories has been successfully demonstrated in experimental animal models and should pave the way for clinical application. Here we review the challenges associated with the treatment of brain tumors and the different encapsulation options available for drugs and living cells, with an emphasis on alginate based cell encapsulation technology.
Disciplines :
Oncology
Author, co-author :
Bhujbal, Swapnil V; NorLux Neuro-Oncology Laboratory, Department of Oncology, Centre de Recherche Public de la Santé (CRP-Santé), 84, Val Fleuri, L-1586 Luxembourg, Luxembourg, Department of Pathology and Medical Biology, Immunoendocrinology, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands. Electronic address: swapnil.bhujbal@crp-sante.lu.
de Vos, Paul; Department of Pathology and Medical Biology, Immunoendocrinology, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands. Electronic address: p.de.vos@umcg.nl.
NICLOU, Simone P. ; NorLux Neuro-Oncology Laboratory, Department of Oncology, Centre de Recherche Public de la Santé (CRP-Santé), 84, Val Fleuri, L-1586 Luxembourg, Luxembourg. Electronic address: simone.niclou@crp-sante.lu.
External co-authors :
yes
Language :
English
Title :
Drug and cell encapsulation: alternative delivery options for the treatment of malignant brain tumors.
Bondy M.L., Scheurer M.E., Malmer B., Barnholtz-Sloan J.S., Davis F.G., Il'yasova D., et al. Brain tumor epidemiology: consensus from the Brain Tumor Epidemiology Consortium. Cancer 2008, 113:1953-1968.
Kieran M.W., Walker D., Frappaz D., Prados M. Brain tumors: from childhood through adolescence into adulthood. J. Clin. Oncol. 2010, 28:4783-4789.
Louis D.N., Ohgaki H., Wiestler O.D., Cavenee W.K., Burger P.C., Jouvet A., et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007, 114:97-109.
Stupp R., Mason W.P., van den Bent M.J., Weller M., Fisher B., Taphoorn M.J.B., et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 2005, 352:987-996.
Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008, 455:1061-1068.
Parsons D.W., Jones S., Zhang X., Lin J.C.-H., Leary R.J., Angenendt P., et al. An integrated genomic analysis of human glioblastoma multiforme. Science 2008, 321:1807-1812.
Stieber D., Abdul Rahim S.A., Niclou S.P. Novel ways to target brain tumour metabolism. Expert Opin. Ther. Targets 2011, 15:1227-1239.
Yan H., Bigner D.D., Velculescu V., Parsons D.W. Mutant metabolic enzymes are at the origin of gliomas. Cancer Res. 2009, 69:9157-9159.
Hartman T.R., Nicolas E., Klein-Szanto A., Al-Saleem T., Cash T.P., Simon M.C., et al. The role of the Birt-Hogg-Dubé protein in mTOR activation and renal tumorigenesis. Oncogene 2009, 28:1594-1604.
Huang P.H., Xu A.M., White F.M. Oncogenic EGFR signaling networks in glioma. Sci. Signal. 2009, 2. (re6).
Stupp R., Hegi M.E., Mason W.P., van den Bent M.J., Taphoorn M.J.B., Janzer R.C., et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009, 10:459-466.
Arko L., Katsyv I., Park G.E., Luan W.P., Park J.K. Experimental approaches for the treatment of malignant gliomas. Pharmacol. Ther. 2010, 128:1-36.
Hottinger A.F., Stupp R., Homicsko K. Standards of care and novel approaches in the management of glioblastoma multiforme. Chin. J. Cancer. 2014, 33:32-39.
Chandramohan V., Mitchell D.A., Johnson L.A., Sampson J.H., Bigner D.D. Antibody, T-cell and dendritic cell immunotherapy for malignant brain tumors. Future Oncol. 2013, 9:977-990.
Choi B.D., Suryadevara C.M., Gedeon P.C., Herndon Ii J.E., Sanchez-Perez L., Bigner D.D., et al. Intracerebral delivery of a third generation EGFRvIII-specific chimeric antigen receptor is efficacious against human glioma. J. Clin. Neurosci. 2014, 21:189-190.
Vredenburgh J.J., Desjardins A., Herndon J.E., Marcello J., Reardon D.A., Quinn J.A., et al. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J. Clin. Oncol. 2007, 25:4722-4729.
Kreisl T.N., Kim L., Moore K., Duic P., Royce C., Stroud I., et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J. Clin. Oncol. 2009, 27:740-745.
Friedman H.S., Prados M.D., Wen P.Y., Mikkelsen T., Schiff D., Abrey L.E., et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J. Clin. Oncol. 2009, 27:4733-4740.
Brandes A.A., Franceschi E., Gorlia T., Wick W., Jacobs A.H., Baumert B.G., et al. Appropriate end-points for right results in the age of antiangiogenic agents: future options for phase II trials in patients with recurrent glioblastoma. Eur. J. Cancer 2012, 48:896-903.
RTOG 0825: Primary outcome results from a phase III randomized, placebo controlled trial evaluating bevacizumab in newly diagnosed glioblastoma. Abstr. from 4th Quadrenn. Meet. World Fed. Neuro-Oncology Held Conjunction with 18th Annu. Meet. Soc. Neuro-Oncology, Novemb. 21-24, 2013, San Francisco, California 2013.
Final efficacy and safety results from AVAglio, a phase trial of bevacizumab (BEV) plus temozolomide (TMZ) and radiotherapy (RT) in newly diagnosed glioblastoma. Abstr. from 4th Quadrenn. Meet. World Fed. Neuro-Oncology Held Conjunction with 18th Annu. Meet. Soc. Neuro-Oncology, Novemb. 21-24, 2013, San Francisco, California 2013.
Agarwal S., Sane R., Oberoi R., Ohlfest J.R., Elmquist W.F. Delivery of molecularly targeted therapy to malignant glioma, a disease of the whole brain. Expert Rev. Mol. Med. 2011, 13:e17.
Sampson J.H., Crotty L.E., Lee S., Archer G.E., Ashley D.M., Wikstrand C.J., et al. Unarmed, tumor-specific monoclonal antibody effectively treats brain tumors. Proc. Natl. Acad. Sci. U. S. A. 2000, 97:7503-7508.
Talasila K.M., Soentgerath A., Euskirchen P., Rosland G.V., Wang J., Huszthy P.C., et al. EGFR wild-type amplification and activation promote invasion and development of glioblastoma independent of angiogenesis. Acta Neuropathol. 2013, 125:683-698.
Li L., Agarwal S., Elmquist W.F. Brain efflux index to investigate the influence of active efflux on brain distribution of pemetrexed and methotrexate. Drug Metab. Dispos. 2013, 41:659-667.
Beduneau A., Saulnier P., Benoit J.P. Active targeting of brain tumors using nanocarriers. Biomaterials 2007, 28:4947-4967.
Visted T., Bjerkvig R., Enger P.O. Cell encapsulation technology as a therapeutic strategy for CNS malignancies. Neuro. Oncol. 2001, 3:201-210.
Allhenn D., Boushehri M.A.S., Lamprecht A. Drug delivery strategies for the treatment of malignant gliomas. Int. J. Pharm. 2012, 436:299-310.
Haley B., Frenkel E. Nanoparticles for drug delivery in cancer treatment. Urol. Oncol. 2008, 26:57-64.
Langer R. Drug delivery and targeting. Nature 1998, 392:5-10.
Lammers T., Kiessling F., Hennink W.E., Storm G. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J. Control. Release 2012, 161:175-187.
Gregoriadis G., Florence A.T. Liposomes in drug delivery. Clinical, diagnostic and ophthalmic potential. Drugs 1993, 45:15-28.
Allen T.M., Hansen C.B., de Menezes D.E.L. Pharmacokinetics of long-circulating liposomes. Adv. Drug Deliv. Rev. 1995, 16:267.
Kang J.S., Deluca P.P., Lee K.C. Emerging PEGylated drugs. Expert Opin. Emerg. Drugs. 2009, 14:363-380.
Mastrobattista E., Koning G., Storm G. Immunoliposomes for the targeted delivery of antitumor drugs. Adv. Drug Deliv. Rev. 1999, 40:103-127.
Mamot C., Drummond D.C., Noble C.O., Kallab V., Guo Z., Hong K., et al. Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. Cancer Res. 2005, 65:11631-11638.
Mamot C., Ritschard R., Wicki A., Stehle G., Dieterle T., Bubendorf L., et al. Tolerability, safety, pharmacokinetics, and efficacy of doxorubicin-loaded anti-EGFR immunoliposomes in advanced solid tumours: a phase 1 dose-escalation study. Lancet Oncol. 2012, 13:1234-1241.
Kannan R., Kuhlenkamp J.F., Jeandidier E., Trinh H., Ookhtens M., Kaplowitz N. Evidence for carrier-mediated transport of glutathione across the blood-brain barrier in the rat. J. Clin. Invest. 1990, 85:2009-2013.
(n.d.). http://www.clinicaltrials.gov.
Glantz M.J., Jaeckle K.A., Chamberlain M.C., Phuphanich S., Recht L., Swinnen L.J., et al. A randomized controlled trial comparing intrathecal sustained-release cytarabine (DepoCyt) to intrathecal methotrexate in patients with neoplastic meningitis from solid tumors. Clin. Cancer Res. 1999, 5:3394-3402.
Beier C.P., Schmid C., Gorlia T., Kleinletzenberger C., Beier D., Grauer O., et al. RNOP-09: pegylated liposomal doxorubicine and prolonged temozolomide in addition to radiotherapy in newly diagnosed glioblastoma-a phase II study. BMC Cancer 2009, 9:308.
Sharma A., Sharma U.S. Liposomes in drug delivery: progress and limitations. Int. J. Pharm. 1997, 154:123.
Torchilin V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 2005, 4:145-160.
Gan H.K., Kaye A.H., Luwor R.B. The EGFRvIII variant in glioblastoma multiforme. J. Clin. Neurosci. 2009, 16:748-754.
Siwak D.R., Tari A.M., Lopez-Berestein G. The potential of drug-carrying immunoliposomes as anticancer agents. Commentary re: J. W. Park et al., Anti-HER2 immunoliposomes: enhanced efficacy due to targeted delivery. Clin. Cancer Res., 8: 1172-1181, 2002. Clin. Cancer Res. 2002, 8:955-956.
Kataoka K., Harada A., Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv. Drug Deliv. Rev. 2001, 47:113-131.
Gong J., Chen M., Zheng Y., Wang S., Wang Y. Polymeric micelles drug delivery system in oncology. J. Control. Release 2012, 159:312-323.
Gaucher G., Dufresne M.-H.H., Sant V.P., Kang N., Maysinger D., Leroux J.-C.C. Block copolymer micelles: preparation, characterization and application in drug delivery. J. Control. Release 2005, 109:169-188.
Knox C., Law V., Jewison T., Liu P., Ly S., Frolkis A., et al. DrugBank 3.0: a comprehensive resource for "omics" research on drugs. Nucleic Acids Res. 2011, 39:D1035-D1041.
Morshed R.A., Cheng Y., Auffinger B., Wegscheid M.L., Lesniak M.S. The potential of polymeric micelles in the context of glioblastoma therapy. Front. Pharmacol. 2013, 4.
Rapoport N. Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog. Polym. Sci. 2007, 32:962-990.
Tan C., Wang Y., Fan W. Exploring polymeric micelles for improved delivery of anticancer agents: recent developments in preclinical studies. Pharmaceutics. 2013, 5:201-219.
Lee J.-L., Ahn J.-H., Park S.H., Lim H.Y., Kwon J.H., Ahn S., et al. Phase II study of a cremophor-free, polymeric micelle formulation of paclitaxel for patients with advanced urothelial cancer previously treated with gemcitabine and platinum. Invest. New Drugs. 2012, 30:1984-1990.
Saif M.W., Podoltsev N.A., Rubin M.S., Figueroa J.A., Lee M.Y., Kwon J., et al. Phase II clinical trial of paclitaxel loaded polymeric micelle in patients with advanced pancreatic cancer. Cancer Invest. 2010, 28:186-194.
Yokoyama M. Polymeric micelles as a new drug carrier system and their required considerations for clinical trials. Expert Opin. Drug Deliv. 2010, 7:145-158.
Chakravarthi S.S., Robinson D.H., De S. Nanoparticles prepared using natural and synthetic polymers. Nanoparticulate Drug Deliv. Syst. 2007, 51-60.
Lockman P.R., Mumper R.J., Khan M.A., Allen D.D. Nanoparticle technology for drug delivery across the blood-brain barrier. Drug Dev. Ind. Pharm. 2002, 28:1-13.
Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv. Drug Deliv. Rev. 2001, 47:65-81.
Wankhede M., Bouras A., Kaluzova M., Hadjipanayis C.G. Magnetic nanoparticles: an emerging technology for malignant brain tumor imaging and therapy. Expert. Rev. Clin. Pharmacol. 2012, 5:173-186.
Zhao J., Castranova V. Toxicology of nanomaterials used in nanomedicine. J. Toxicol. Environ. Heal. B, Crit. Rev. 2011, 14:593-632.
De Jong W.H., Borm P.J. Drug delivery and nanoparticles:applications and hazards. Int. J. Nanomedicine 2008, 3:133-149.
Read T.A., Sorensen D.R., Mahesparan R., Enger P.O., Timpl R., Olsen B.R., et al. Local endostatin treatment of gliomas administered by microencapsulated producer cells. Nat. Biotechnol. 2001, 19:29-34.
Terzis A.J.A., Niclou S.P., Rajcevic U., Danzeisen C., Bjerkvig R. Cell therapies for glioblastoma. Expert. Opin. Biol. Ther. 2006, 6:739-749.
Johansson M., Oudin A., Tiemann K., Bernard A., Golebiewska A., Keunen O., et al. The soluble form of the tumor suppressor Lrig1 potently inhibits in vivo glioma growth irrespective of EGF receptor status. Neuro. Oncol. 2013, 15(9). 1200-121.
Murua A., Portero A., Orive G., Hernández R.M., de Castro M., Pedraz J.L. Cell microencapsulation technology: towards clinical application. J. Control. Release 2008, 132:76-83.
Wang P.P., Frazier J., Brem H. Local drug delivery to the brain. Adv. Drug Deliv. Rev. 2002, 54:987-1013.
Li R.H. Materials for immunoisolated cell transplantation. Adv. Drug Deliv. Rev. 1998, 33:87-109.
Nafea E.H., Marson A., Poole-Warren L.A., Martens P.J. Immunoisolating semi-permeable membranes for cell encapsulation: focus on hydrogels. J. Control. Release 2011, 154:110-122.
Nicodemus G.D., Bryant S.J. Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng. B Rev. 2008, 14:149-165.
de Vos P., Lazarjani H.A., Poncelet D., Faas M.M. Polymers in cell encapsulation from an enveloped cell perspective. Adv. Drug Deliv. Rev. 2014, 67-68:15-34.
Lee K.Y., Mooney D.J. Alginate: properties and biomedical applications. Prog. Polym. Sci. 2012, 37:106.
Kuijlen J.M., de Haan B.J., Helfrich W., de Boer J.F., Samplonius D., Mooij J.J., et al. The efficacy of alginate encapsulated CHO-K1 single chain-TRAIL producer cells in the treatment of brain tumors. J. Neurooncol. 2006, 78:31-39.
Read T.A., Stensvaag V., Vindenes H., Ulvestad E., Bjerkvig R., Thorsen F. Cells encapsulated in alginate: a potential system for delivery of recombinant proteins to malignant brain tumours. Int. J. Dev. Neurosci. 1999, 17:653-663.
Winn S.R., Lindner M.D., Lee A., Haggett G., Francis J.M., Emerich D.F. Polymer-encapsulated genetically modified cells continue to secrete human nerve growth factor for over one year in rat ventricles: behavioral and anatomical consequences. Exp. Neurol. 1996, 140:126-138.
Thanos C.G., Bintz B.E., Emerich D.F. Stability of alginate-polyornithine microcapsules is profoundly dependent on the site of transplantation. J. Biomed. Mater. Res. A. 2007, 81:1-11.
Garcia P., Youssef I., Utvik J.K., Florent-Bechard S., Barthelemy V., Malaplate-Armand C., et al. Ciliary neurotrophic factor cell-based delivery prevents synaptic impairment and improves memory in mouse models of Alzheimer's disease. J. Neurosci. 2010, 30:7516-7527.
de Vos P., Bucko M., Gemeiner P., Navrátil M., Svitel J., Faas M., et al. Multiscale requirements for bioencapsulation in medicine and biotechnology. Biomaterials 2009, 30:2559-2570.
Bergwerf I., Tambuyzer B., De Vocht N., Reekmans K., Praet J., Daans J., et al. Recognition of cellular implants by the brain's innate immune system. Immunol. Cell Biol. 2011, 89:511-516.
de Vos P., van Hoogmoed C.G., de Haan B.J., Busscher H.J. Tissue responses against immunoisolating alginate-PLL capsules in the immediate posttransplant period. J. Biomed. Mater. Res. 2002, 62:430-437.
De Vos P., De Haan B.J., Wolters G.H., Strubbe J.H., Van Schilfgaarde R. Improved biocompatibility but limited graft survival after purification of alginate for microencapsulation of pancreatic islets. Diabetologia 1997, 40:262-270.
Morch Y.A., Donati I., Strand B.L., Skjak-Braek G. Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules 2006, 7:1471-1480.
Tam S.K., Dusseault J., Bilodeau S., Langlois G., Halle J.P., Yahia L. Factors influencing alginate gel biocompatibility. J. Biomed. Mater. Res. A. 2011, 98:40-52.
Niclou S.P., Bjerkvig R. Treatment of brain tumors with microencapsulated cell therapy. Bioartifical Pancreas Other Biohybrid Ther 2009, 587-594. Transworld Research Network. R.L. Hallé JP, P. de Vos (Eds.).
Combs S.E., Heeger S., Haselmann R., Edler L., Debus J., Schulz-Ertner D. Treatment of primary glioblastoma multiforme with cetuximab, radiotherapy and temozolomide (GERT)-phase I/II trial: study protocol. BMC Cancer 2006, 6:133.
Belda-Iniesta C., Carpeño J.de C., Saenz E.C., Gutiérrez M., Perona R., Barón M.G. Long term responses with cetuximab therapy in glioblastoma multiforme. Cancer Biol. Ther. 2006, 5:912-914.
Vredenburgh J.J., Desjardins A., Herndon J.E., Dowell J.M., Reardon D.A., Quinn J.A., et al. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin. Cancer Res. 2007, 13:1253-1259.
Klagsbrun M., Takashima S., Mamluk R. The role of neuropilin in vascular and tumor biology. Adv. Exp. Med. Biol. 2002, 515:33-48.
Kauer T.M., Figueiredo J.-L., Hingtgen S., Shah K. Encapsulated therapeutic stem cells implanted in the tumor resection cavity induce cell death in gliomas. Nat. Neurosci. 2012, 15:197-204.
Rokstad Mari A., Bjerkvig R., Espevik T., Lund-Johansen M. Cell encapsulation therapy for malignant gliomas 2005, 211-227.
Read T.-A., Thorsen F., Bjerkvig R. Localised delivery of therapeutic agents to CNS malignancies: old and new approaches. Curr. Pharm. Biotechnol. 2002, 3:257-273.
Joki T., Machluf M., Atala A., Zhu J., Seyfried N.T., Dunn I.F., et al. Continuous release of endostatin from microencapsulated engineered cells for tumor therapy. Nat. Biotechnol. 2001, 19:35-39.
Read T.A., Farhadi M., Bjerkvig R., Olsen B.R., Rokstad A.M., Huszthy P.C., et al. Intravital microscopy reveals novel antivascular and antitumor effects of endostatin delivered locally by alginate-encapsulated cells. Cancer Res. 2001, 61:6830-6837.
Marshall E. Cancer therapy. Setbacks for endostatin. Science 2002, 295:2198-2199.
Martinet O., Schreyer N., Reis E.D., Joseph J.-M. Encapsulation of packaging cell line results in successful retroviral-mediated transfer of a suicide gene in vivo in an experimental model of glioblastoma. Eur. J. Surg. Oncol. 2003, 29:351-357.
Wang Y., Poulin E.J., Coffey R.J. LRIG1 is a triple threat: ERBB negative regulator, intestinal stem cell marker and tumour suppressor. Br. J. Cancer 2013, 108:1765-1770.
Utvik JK., Niclou SP. Treatment of neurodegenerative diseases (Parkinson's, Huntington's and Alzheminer's diseases) with cell encapsulation technology. Bioartifical Pancreas Other Biohybrid Ther 2009, 607-613. Transworld Research, Network. R.L. Hallé JP, P. de Vos (Eds.).
Fjord-Larsen L., Kusk P., Tornøe J., Juliusson B., Torp M., Bjarkam C.R., et al. Long-term delivery of nerve growth factor by encapsulated cell biodelivery in the Göttingen minipig basal forebrain. Mol. Ther. 2010, 18:2164-2172.
Wahlberg L.U., Lind G., Almqvist P.M., Kusk P., Tornøe J., Juliusson B., et al. Targeted delivery of nerve growth factor via encapsulated cell biodelivery in Alzheimer disease: a technology platform for restorative neurosurgery. J. Neurosurg. 2012, 117:340-347.
Kulseng B., Thu B., Espevik T., Skjak-Braek G., Skjåk-Braek G. Alginate polylysine microcapsules as immune barrier: permeability of cytokines and immunoglobulins over the capsule membrane. Cell Transplant. 1997, 6:387-394.
Zhao W., Zhang Y., Liu Y., Tan M., Yu W., Xie H., et al. Oxygen diffusivity in alginate/chitosan microcapsules. J. Chem. Technol. Biotechnol. 2013, 88:449-455.
Whiteside T.L. Immune suppression in cancer: effects on immune cells, mechanisms and future therapeutic intervention. Semin. Cancer Biol. 2006, 16:3-15.
De Vos P., De Haan B., Pater J., Van Schilfgaarde R. Association between capsule diameter, adequacy of encapsulation, and survival of microencapsulated rat islet allografts. Transplantation 1996, 62:893-899.
Thu B., Bruheim P., Espevik T., Smidsrod O., Soon-Shiong P., Skjak-Braek G. Alginate polycation microcapsules. I. Interaction between alginate and polycation. Biomaterials 1996, 17:1031-1040.
Leung A., Lawrie G., Nielsen L.K., Trau M. Synthesis and characterization of alginate/poly-L-ornithine/alginate microcapsules for local immunosuppression. J. Microencapsul. 2008, 25:387-398.
Orive G., Hernandez R.M., Gascon A.R., Igartua M., Pedraz J.L. Development and optimisation of alginate-PMCG-alginate microcapsules for cell immobilisation. Int. J. Pharm. 2003, 259:57-68.
Tanaka H., Kurosawa H., Kokufuta E., Veliky I.A. Preparation of immobilized glucomylase using ca-alginate gel coated with partially quaterized poly(ethleneimine). Biotechnol. Bioeng. 1984, 26:1393-1394.
Lu M.Z., Lan H.L., Wang F.F., Wang Y.J. A novel cell encapsulation method using photosensitive poly(allylamine alpha-cyanocinnamylideneacetate). J. Microencapsul. 2000, 17:245-251.
Chang S.J., Lee C.H., Hsu C.Y., Wang Y.J. Biocompatible microcapsules with enhanced mechanical strength. J. Biomed. Mater. Res. 2002, 59:118-126.
Dusseault J., Leblond F.A., Robitaille R., Jourdan G., Tessier J.J., MÃnard M., et al. Microencapsulation of living cells in semi-permeable membranes with covalently cross-linked layers. Biomaterials 2005, 26:1515.
Lang M.S., Hovenkamp E., Savelkoul H.F., Knegt P., Van Ewijk W. Immunotherapy with monoclonal antibodies directed against the immunosuppressive domain of p15E inhibits tumour growth. Clin. Exp. Immunol. 1995, 102:468-475.
Xu W., Liu L., Charles I.G. Microencapsulated iNOS-expressing cells cause tumor suppression in mice. FASEB J. 2002, 16:213-215.
Zheng S., Xiao Z.X., Pan Y.L., Han M.Y., Dong Q. Continuous release of interleukin 12 from microencapsulated engineered cells for colon cancer therapy. World J. Gastroenterol. 2003, 9:951-955.
Lohr M., Hoffmeyer A., Kroger J., Freund M., Hain J., Holle A., et al. Microencapsulated cell-mediated treatment of inoperable pancreatic carcinoma. Lancet 2001, 357:1591-1592.