[en] The paper presents the enhancement of an existing constitutive model for argillaceous hard soils-weak rocks to incorporate non-isothermal conditions to be used in coupled thermo-hydro-mechanical (THM) simulations of underground excavations subjected to temperature variations within the context of deep geological nuclear waste disposal. The proposed thermo-elastoplastic extension accounts for the effect of temperature on the yield and plastic potential functions and on the elastic stiffness. The resulting model is validated through the simulation of relevant non-isothermal laboratory tests reported in the literature. The model is then applied to the coupled THM simulation of an in situ heating test conducted at the Meuse/Haute-Marne underground research laboratory in Bure, France, excavated in the Callovo-Oxfordian claystone. Results show that the incorporation of thermal effects into the constitutive description of the host rock plays a significant role in the behaviour of the excavation when subjected to thermal loading, particularly in the evolution of the excavation fractured zone.
Disciplines :
Civil engineering
Author, co-author :
TOURCHI, Saeed ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE) ; Institute of Hydrogeology, Engineering Geology and Applied Geophysics, Faculty of Science, Charles University, Prague, Czech Republic
Mánica, Miguel A. ; Institute of Engineering, National Autonomous University of Mexico, Mexico City, Mexico
Gens, Antonio; Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Barcelona Tech, Cimne, Barcelona, Spain
Vaunat, Jean; Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Barcelona Tech, Cimne, Barcelona, Spain
Vu, Minh-Ngoc; Andra R&d, Châtenay-Malabry, France
Armand, Gilles; Meuse/Haute-Marne Underground Research Laboratory, Andra R&d, Bure, France
External co-authors :
yes
Language :
English
Title :
A thermomechanical model for argillaceous hard soils-weak rocks: application to THM simulation of deep excavations in claystone
Abuel-Naga, H. M., Bergado, D. T., Bouazza, A. & Pender, M. (2009). Thermomechanical model for saturated clays. Géotechnique 59, No. 3, 273–278, doi10.1680/geot.2009.59.3.273.
Abuel-Naga, H. M., Bergado, D. T., Ramana, G. V., Grino, L., Rujivipat, P. & Thet, Y. (2006). Experimental evaluation of engineering behavior of soft bangkok clay under elevated temperature. Journal of Geotechnical and Geoenvironmental Engineering 132, No. 7, 902–910, doi10.1061/(asce)1090-0241(2006)132:7(902).
Alonso, M., Vu, M. N., Vaunat, J., Armand, G., Gens, A., Plua, C., De Lesquen, C. & Ozanam, O. (2021). Effect of thermo-hydro-mechanical coupling on the evolution of stress in the concrete liner of an underground drift in the Cigéo project. In IOP Conference Series: Earth and Environmental Science, vol. 833, pp. 1–8, https://doi.org/10.1088/1755-1315/833/1/012200.
Armand, G., Conil, N., Talandier, J. & Seyedi, D. M. (2017). Fundamental aspects of the hydromechanical behaviour of Callovo-Oxfordian claystone: From experimental studies to model calibration and validation. Computers and Geotechnics 85, 277–286, doi10.1016/j.compgeo.2016.06.003.
Armand, G., Leveau, F., Nussbaum, C., de La Vaissiere, R., Noiret, A., Jaeggi, D., Landrein, P. & Righini, C. (2014). Geometry and properties of the excavation-induced fractures at the Meuse/Haute-Marne URL drifts. Rock Mechanics and Rock Engineering 47, No. 1, 21–41, doi10.1007/s00603-012-0339-6.
Armand, G., Noiret, A., Zghondi, J. & Seyedi, D. M. (2013). Short- and long-term behaviors of drifts in the Callovo-Oxfordian claystone at the Meuse/Haute-Marne Underground Research Laboratory. Journal of Rock Mechanics and Geotechnical Engineering 5, No. 3, 221–230, doi10.1016/j.jrmge.2013.05.005.
Baldi, G., Hueckel, T. & Pellegrini, R. (1988). Thermal volume changes of the mineral–water system in low-porosity clay soils. Canadian Geotechnical Journal 25, No. 4, 807–825, doi10.1139/t88-089.
Belmokhtar, M., Delage, P., Ghabezloo, S. & Conil, N. (2017). Thermal volume changes and creep in the Callovo-Oxfordian Claystone. Rock Mechanics and Rock Engineering 50, No. 9, 2297–2309, doi10.1007/s00603-017-1238-7.
Bumbieler, F., Plúa, C., Tourchi, S., Vu, M.-N., Vaunat, J., Gens, A. & Armand, G. (2021). Feasibility of constructing a full-scale radioactive high-level waste disposal cell and characterization of its thermo-hydro-mechanical behavior. International Journal of Rock Mechanics and Mining Sciences 137, 104555, doi10.1016/j.ijrmms.2020.104555.
Campanella, R. G. & Mitchell, J. K. (1968). Influence of temperature variations on soil behavior. Journal of the Soil Mechanics and Foundations Division 94, No. 3, 709–734, doi10.1061/JSFEAQ.0001136.
Cekerevac, C. & Laloui, L. (2004). Experimental study of thermal effects on the mechanical behaviour of a clay. International Journal for Numerical and Analytical Methods in Geomechanics 28, No. 3, 209–228, doi10.1002/nag.332.
Chaboche, J. L. (2008). A review of some plasticity and viscoplasticity constitutive theories. International Journal of Plasticity 24, No. 10, 1642–1693, doi10.1016/j.ijplas.2008.03.009.
Cheng, W., peng Chen, R., yun Hong, P., jun Cui, Y. & Pereira, J. M. (2020). A two-surface thermomechanical plasticity model considering thermal cyclic behavior. Acta Geotechnica 15, No. 10, 2741–2755, doi10.1007/s11440-020-00999-5.
Cui, Y. J., Sultan, N. & Delage, P. (2000). A thermomechanical model for saturated clays. Canadian Geotechnical Journal 37, No. 3, 607–620, doi10.1139/t99-111.
De Bruyn, D. & Thimus, J.-F. (1996). The influence of temperature on mechanical characteristics of boom clay: The results of an initial laboratory programme. Engineering Geology 41, No. 1-4, 117–126, doi10.1016/0013-7952(95)00029-1.
Di Donna, A. & Laloui, L. (2015). Response of soil subjected to thermal cyclic loading: Experimental and constitutive study. Engineering Geology 190, 65–76, doi10.1016/j.enggeo.2015.03.003.
Gens, A. (2013). On the hydromechanical behaviour of argillaceous hard soils-weak rocks. In Proceedings of the 15th European Conference on Soil Mechanics and Geotechnical Engineering - Geotechnics of Hard Soils - Weak Rocks, vol. 4 (Anagnostopoulos, A., Pachakis, M. & Tsatsanifos, C., eds.), Athens: IOS Press, pp. 71–118, https://doi.org/10.3233/978-1-61499-199-1-71.
Gens, A., Manica, M., Vaunat, J. & Ruiz, D. F. (2017). Modelling the Mechanical Behaviour of Callovo-Oxfordian Argillite. Formulation and Application. In Advances in Laboratory Testing and Modelling of Soils and Shales (ATMSS) (Ferrari, A. & Laloui, L., eds.), Villarssur-Ollon: Springer, pp. 37–44, doi10.1007/978-3-319-52773-4, https://doi.org/10.1007/978-3-319-52773-4_4.
Gens, A., Vaunat, J., Garitte, B. & Wileveau, Y. (2007). In situ behaviour of a stiff layered clay subject to thermal loading: Observations and interpretation. Stiff Sedimentary Clays: Genesis and Engineering Behaviour - Geotechnique Symposium in Print 2007 57, No. 2, 207–228, doi10.1680/ssc.41080.0011.
Golchin, A., Vardon, P. J. & Hicks, M. A. (2022). A thermodynamically consistent two surface/bubble thermo-mechanical model considering thermal and mechanical cyclic behaviour of fine-grained soils. International Journal of Solids and Structures 254-255, 111847, doi10.1016/j.ijsolstr.2022.111847.
Graham, J., Tanaka, N., Crilly, T. & Alfaro, M. (2001). Modified Cam-Clay modelling of temperature effects in clays. Canadian Geotechnical Journal 38, No. 3, 608–621, doi10.1139/t00-125.
Hamidi, A. & Tourchi, S. (2018). A thermomechanical constitutive model for unsaturated clays. International Journal of Geotechnical Engineering 12, No. 2, 185–199, doi10.1080/19386362.2016.1260312.
Hamidi, A., Tourchi, S. & Kardooni, F. (2017). A critical state based thermo-elasto-plastic constitutive model for structured clays. Journal of Rock Mechanics and Geotechnical Engineering 9, No. 6, 1094–1103, doi10.1016/j.jrmge.2017.09.002.
Hamidi, A., Tourchi, S. & Khazaei, C. (2015). Thermomechanical constitutive model for saturated clays based on critical state theory. International Journal of Geomechanics 15, No. 1, 4014038, doi10.1061/(ASCE)GM.1943-5622.0000402.
Hueckel, T. & Borsetto, M. (1990). Thermoplasticity of saturated soils and shales: Constitutive equations. Journal of Geotechnical Engineering 116, No. 12, 1765–1777, doi10.1061/(ASCE)0733-9410(1990)116:12(1765).
Laloui, L. & Cekerevac, C. (2008). Non-isothermal plasticity model for cyclic behaviour of soils. International Journal for Numerical and Analytical Methods in Geomechanics 32, No. 5, 437–460, doi10.1002/nag.629.
Laloui, L. & François, B. (2009). ACMEG-T: Soil thermoplasticity model. Journal of Engineering Mechanics 135, No. 9, 932–944, doi10.1061/(ASCE)EM.1943-7889.0000011.
Liu, Z., Shao, J., Xie, S., Conil, N. & Talandier, J. (2019). Mechanical behavior of claystone in lateral decompression test and thermal effect. Rock Mechanics and Rock Engineering 52, No. 2, 321–334, doi10.1007/s00603-018-1573-3.
Mánica, M., Gens, A., Vaunat, J. & Ruiz, D. F. (2017). A time-dependent anisotropic model for argillaceous rocks. Application to an underground excavation in Callovo-Oxfordian claystone. Computers and Geotechnics 85, 341–350, doi10.1016/j.compgeo.2016.11.004.
Mánica, M. A., Gens, A., Vaunat, J., Armand, G. & Vu, M. N. (2022a). Numerical simulation of underground excavations in an indurated clay using non-local regularisation. Part 1: formulation and base case. Geotechnique 72, No. 12, 1092–1112, doi10.1680/jgeot.20.P.246.
Mánica, M. A., Gens, A., Vaunat, J., Armand, G. & Vu, M. N. (2022b). Numerical simulation of underground excavations in an indurated clay using non-local regularisation. Part 2: sensitivity analysis. Géotechnique 72, No. 12, 1113–1128, doi10.1680/jgeot.20.p.247.
Mánica, M. A., Gens, A., Vaunat, J. & Ruiz, D. F. (2016). A cross-anisotropic formulation for elastoplastic models. Géotechnique Letters 6, No. 2, 156–162, doi10.1680/jgele.15.00182.
Menaceur, H., Delage, P., Tang, A. M. & Conil, N. (2015). The thermo-mechanical behaviour of the Callovo-Oxfordian claystone. International Journal of Rock Mechanics and Mining Sciences 78, 290–303, doi10.1016/j.ijrmms.2015.07.002.
Modaressi, H. & Laloui, L. (1997). A thermo-viscoplastic constitutive model for clays. International Journal for Numerical and Analytical Methods in Geomechanics 21, No. 5, 313–335, doi10.1002/(SICI)1096-9853(199705)21:5<313::AID-NAG872>3.0.CO;2-5.
Mohajerani, M., Delage, P., Sulem, J., Monfared, M., Tang, A. M. & Gatmiri, B. (2014). The thermal volume changes of the callovo-oxfordian claystone. Rock Mechanics and Rock Engineering 47, No. 1, 131–142, doi10.1007/s00603-013-0369-8.
Monfared, M., Sulem, J., Delage, P. & Mohajerani, M. (2012). On the THM behaviour of a sheared Boom clay sample: Application to the behaviour and sealing properties of the EDZ. Engineering Geology 124, 47–58, doi10.1016/j.enggeo.2011.10.002.
Olivella, S., Carrera, J., Gens, A. & Alonso, E. E. (1994). Non-isothermal multiphase flow of brine and gas through saline media. Transport in Porous Media 15, No. 3, 271–293, doi10.1007/BF00613282.
Plum, R. L. & Esrig, M. I. (1969). Some temperature effects on soil compressibility and pore pressure. Technical report, Issue 103, Highway Research Board.
Robinet, J.-C., Rahbaoui, A., Plas, F. & Lebon, P. (1996). A constitutive thermomechanical model for saturated clays. Engineering Geology 41, No. 1-4, 145–169, doihttps://doi.org/10.1016/0013-7952(95)00049-6.
Shetty, R., Singh, D. N. & Ferrari, A. (2019). Volume change characteristics of fine-grained soils due to sequential thermo-mechanical stresses. Engineering Geology 253, 47–54, doi10.1016/j.enggeo.2019.03.008.
Sultan, N., Delage, P. & Cui, Y. J. (2002). Temperature effects on the volume change behaviour of Boom clay. Engineering Geology 64, No. 2-3, 135–145, doi10.1016/S0013-7952(01)00143-0.
Tourchi, S. (2020). THM analysis of argillaceous rocks with application to nuclear waste underground storage. Phd, Technical University of Catalonia.
Tourchi, S. & Hamidi, A. (2015). Thermo-mechanical constitutive modeling of unsaturated clays based on the critical state concepts. Journal of Rock Mechanics and Geotechnical Engineering 7, No. 2, 193–198, doi10.1016/j.jrmge.2015.02.004.
Tourchi, S., Vaunat, J., Gens, A., Bumbieler, F., Vu, M. N. & Armand, G. (2021). A full-scale in situ heating test in Callovo-Oxfordian claystone: observations, analysis and interpretation. Computers and Geotechnics 133, 104045, doi10.1016/j.compgeo.2021.104045.
Tourchi, S., Vaunat, J., Gens, A., Vu, M. N. & Bumbieler, F. (2019a). Coupled THM analysis of long-term anisotropic convergence in the full-scale micro tunnel excavated in the Callovo-Oxfordian argillite. In VIII International Conference on Computational Methods for Coupled Problems in Science and Engineering, Sitges, Spain: ECCOMAS, pp. 292–299.
Tourchi, S., Vaunat, J., Gens, A., Vu, M. N. & Bumbieler, F. (2019b). Thermo-hydro-mechanical simulation of a full-scale steel-lined micro-tunnel excavated in the callovooxfordian claystone. In XIV International Conference on Computational Plasticity. Fundamentals and Applications (Onate, E., Owen, D. R. J., Peric, D. & Chiumenti, M., eds.), Barcelona, Spain: ECCOMAS, pp. 544–552.
Tsutsumi, A. & Tanaka, H. (2012). Combined effects of strain rate and temperature on consolidation behavior of clayey soils. Soils and Foundations 52, No. 2, 207–215, doi10.1016/j.sandf.2012.02.001.
van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal 44, No. 5, 892–898, doi10.2136/sssaj1980.03615995004400050002x.
Wileveau, Y., Cornet, F. H., Desroches, J. & Blumling, P. (2007). Complete in situ stress determination in an argillite sedimentary formation. Physics and Chemistry of the Earth 32, No. 8-14, 866–878, doi10.1016/j.pce.2006.03.018.
Wittke, W. (1990). Rock mechanics: theory and applications with case histories. Springer-Verlag Berlin Heidelberg.
Yao, Y. P. & Zhou, A. N. (2013). Non-isothermal unified hardening model: a thermo-elasto-plastic model for clays. Géotechnique 63, No. 15, 1328–1345, doi10.1680/geot.13.P.035.
Zhang, C. L., Conil, N. & Armand, G. (2017). Thermal effects on clay rocks for deep disposal of high-level radioactive waste. Journal of Rock Mechanics and Geotechnical Engineering 9, No. 3, 463–478, doi10.1016/j.jrmge.2016.08.006.
Zhang, C. L., Rothfuchs, T., Su, K. & Hoteit, N. (2007). Experimental study of the thermo-hydro-mechanical behaviour of indurated clays. Physics and Chemistry of the Earth 32, No. 8-14, 957–965, doi10.1016/j.pce.2006.04.038.
Zhang, F., Hu, D. W., Xie, S. Y. & Shao, J. F. (2014). Influences of temperature and water content on mechanical property of argillite. European Journal of Environmental and Civil Engineering 18, No. 2, 173–189, doi10.1080/19648189.2013.852485.
Zhou, C., Fong, K. Y. & Ng, C. W. W. (2017). A new bounding surface model for thermal cyclic behaviour. International Journal for Numerical and Analytical Methods in Geomechanics 41, No. 16, 1656–1666, doi10.1002/nag.2688.