[en] The vast majority of malignant gliomas relapse after surgery and standard radio-chemotherapy. Novel molecular and cellular therapies are thus being developed, targeting specific aspects of tumor growth. While histopathology remains the gold standard for tumor classification, neuroimaging has over the years taken a central role in the diagnosis and treatment follow up of brain tumors. It is used to detect and localize lesions, define the target area for biopsies, plan surgical and radiation interventions and assess tumor progression and treatment outcome. In recent years the application of novel drugs including anti-angiogenic agents that affect the tumor vasculature, has drastically modulated the outcome of brain tumor imaging. To properly evaluate the effects of emerging experimental therapies and successfully support treatment decisions, neuroimaging will have to evolve. Multi-modal imaging systems with existing and new contrast agents, molecular tracers, technological advances and advanced data analysis can all contribute to the establishment of disease relevant biomarkers that will improve disease management and patient care. In this review, we address the challenges of glioma imaging in the context of novel molecular and cellular therapies, and take a prospective look at emerging experimental and pre-clinical imaging techniques that bear the promise of meeting these challenges.
Disciplines :
Oncology
Author, co-author :
Keunen, Olivier; NorLux Neuro-Oncology Laboratory, Department of Oncology, Centre de Recherche Public de la Santé, Luxembourg, Luxembourg, Translational Cancer Research, Department of Biomedicine, University of Bergen, Norway. Electronic address: olivier.keunen@crp-sante.lu.
Taxt, Torfinn; Translational Cancer Research, Department of Biomedicine, University of Bergen, Norway, Department of Radiology, Haukeland University Hospital, Bergen, Norway.
Grüner, Renate; Department of Radiology, Haukeland University Hospital, Bergen, Norway.
Lund-Johansen, Morten; Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway, Department of Clinical Medicine, University of Bergen, Norway.
Tonn, Joerg-Christian; Department of Nuclear Medicine, University of Munich, Munich, Germany.
Pavlin, Tina; Molecular Imaging Center, Department of Biomedicine, University of Bergen, Norway.
Bjerkvig, Rolf; NorLux Neuro-Oncology Laboratory, Department of Oncology, Centre de Recherche Public de la Santé, Luxembourg, Luxembourg, Translational Cancer Research, Department of Biomedicine, University of Bergen, Norway, The Kristian Gerhard Jebsen Brain Tumour Research Center, Department of Biomedicine, University of Bergen, Norway.
NICLOU, Simone P. ; NorLux Neuro-Oncology Laboratory, Department of Oncology, Centre de Recherche Public de la Santé, Luxembourg, Luxembourg
Thorsen, Frits; Translational Cancer Research, Department of Biomedicine, University of Bergen, Norway, Molecular Imaging Center, Department of Biomedicine, University of Bergen, Norway, The Kristian Gerhard Jebsen Brain Tumour Research Center, Department of Biomedicine, University of Bergen, Norway.
External co-authors :
yes
Language :
English
Title :
Multimodal imaging of gliomas in the context of evolving cellular and molecular therapies.
Stupp R., Mason W.P., van den Bent M.J., Weller M., Fisher B., Taphoorn M.J., Belanger K., Brandes A.A., Marosi C., Bogdahn U., Curschmann J., Janzer R.C., Ludwin S.K., Gorlia T., Allgeier A., Lacombe D., Cairncross J.G., Eisenhauer E., Mirimanoff R.O., R.European Organisation for, T.Treatment of Cancer Brain, G.Radiotherapy, G.National Cancer Institute of Canada Clinical Trials Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 2005, 352:987-996.
Stupp R., Hegi M.E., Mason W.P., van den Bent M.J., Taphoorn M.J., Janzer R.C., Ludwin S.K., Allgeier A., Fisher B., Belanger K., Hau P., Brandes A.A., Gijtenbeek J., Marosi C., Vecht C.J., Mokhtari K., Wesseling P., Villa S., Eisenhauer E., Gorlia T., Weller M., Lacombe D., Cairncross J.G., Mirimanoff R.O., R.European Organisation for, T.Treatment of Cancer Brain, G.Radiation Oncology, G.National Cancer Institute of Canada Clinical Trials Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009, 10:459-466.
N.Cancer Genome Atlas Research Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008, 455:1061-1068.
Phillips H.S., Kharbanda S., Chen R., Forrest W.F., Soriano R.H., Wu T.D., Misra A., Nigro J.M., Colman H., Soroceanu L., Williams P.M., Modrusan Z., Feuerstein B.G., Aldape K. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 2006, 9:157-173.
Verhaak R.G., Hoadley K.A., Purdom E., Wang V., Qi Y., Wilkerson M.D., Miller C.R., Ding L., Golub T., Mesirov J.P., Alexe G., Lawrence M., O'Kelly M., Tamayo P., Weir B.A., Gabriel S., Winckler W., Gupta S., Jakkula L., Feiler H.S., Hodgson J.G., James C.D., Sarkaria J.N., Brennan C., Kahn A., Spellman P.T., Wilson R.K., Speed T.P., Gray J.W., Meyerson M., Getz G., Perou C.M., Hayes D.N., N.Cancer Genome Atlas Research Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010, 17:98-110.
Sturm D., Bender S., Jones D.T., Lichter P., Grill J., Becher O., Hawkins C., Majewski J., Jones C., Costello J.F., Iavarone A., Aldape K., Brennan C.W., Jabado N., Pfister S.M. Paediatric and adult glioblastoma: multiform (epi)genomic culprits emerge. Nat. Rev. Cancer 2014, 14:92-107.
Weller M., Stupp R., Hegi M., Wick W. Individualized targeted therapy for glioblastoma: fact or fiction?. Cancer J. 2012, 18:40-44.
Baehring J.M. Glioblastoma multiforme-new approaches to therapy. Cancer J. 2012, 18:11.
Upadhyay N., Waldman A.D. Conventional MRI evaluation of gliomas. Br. J. Radiol. 2011, 84(Spec No 2):S107-S111.
Nihashi T., Dahabreh I.J., Terasawa T. PET in the clinical management of glioma: evidence map. AJR Am. J. Roentgenol. 2013, 200:W654-W660.
Jain R. Perfusion CT imaging of brain tumors: an overview. AJNR Am. J. Neuroradiol. 2011, 32:1570-1577.
Ellika S.K., Jain R., Patel S.C., Scarpace L., Schultz L.R., Rock J.P., Mikkelsen T. Role of perfusion CT in glioma grading and comparison with conventional MR imaging features. AJNR Am. J. Neuroradiol. 2007, 28:1981-1987.
Harwood-Nash D.C. Neuroimaging and pediatrics. Current Opinion in Neurology and Neurosurgery 1991, 4:858-863.
Unsgard G., Solheim O., Lindseth F., Selbekk T. Intra-operative imaging with 3D ultrasound in neurosurgery. Acta Neurochir. Suppl. 2011, 109:181-186.
Aronen H.J., Gazit I.E., Louis D.N., Buchbinder B.R., Pardo F.S., Weisskoff R.M., Harsh G.R., Cosgrove G.R., Halpern E.F., Hochberg F.H., et al. Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 1994, 191:41-51.
Law M., Yang S., Wang H., Babb J.S., Johnson G., Cha S., Knopp E.A., Zagzag D. Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am. J. Neuroradiol. 2003, 24:1989-1998.
Cha S., Knopp E.A., Johnson G., Litt A., Glass J., Gruber M.L., Lu S., Zagzag D. Dynamic contrast-enhanced T2-weighted MR imaging of recurrent malignant gliomas treated with thalidomide and carboplatin. AJNR Am. J. Neuroradiol. 2000, 21:881-890.
Hu L.S., Baxter L.C., Smith K.A., Feuerstein B.G., Karis J.P., Eschbacher J.M., Coons S.W., Nakaji P., Yeh R.F., Debbins J., Heiserman J.E. Relative cerebral blood volume values to differentiate high-grade glioma recurrence from posttreatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. AJNR Am. J. Neuroradiol. 2009, 30:552-558.
Alam M.S., Sajjad Z., Azeemuddin M., Khan Z.A., Mubarak F., Akhtar W. Diffusion weighted MR imaging of ring enhancing brain lesions. J. Coll. Physicians Surg. Pak.: JCPSP 2012, 22:428-431.
Galban C.J., Chenevert T.L., Meyer C.R., Tsien C., Lawrence T.S., Hamstra D.A., Junck L., Sundgren P.C., Johnson T.D., Galban S., Sebolt-Leopold J.S., Rehemtulla A., Ross B.D. Prospective analysis of parametric response map-derived MRI biomarkers: identification of early and distinct glioma response patterns not predicted by standard radiographic assessment. Clin. Cancer Res.: Off. J. Am. Assoc. Cancer Res. 2011, 17:4751-4760.
Moffat B.A., Chenevert T.L., Lawrence T.S., Meyer C.R., Johnson T.D., Dong Q., Tsien C., Mukherji S., Quint D.J., Gebarski S.S., Robertson P.L., Junck L.R., Rehemtulla A., Ross B.D. Functional diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain tumor response. Proc. Natl. Acad. Sci. U. S. A. 2005, 102:5524-5529.
Hamstra D.A., Chenevert T.L., Moffat B.A., Johnson T.D., Meyer C.R., Mukherji S.K., Quint D.J., Gebarski S.S., Fan X., Tsien C.I., Lawrence T.S., Junck L., Rehemtulla A., Ross B.D. Evaluation of the functional diffusion map as an early biomarker of time-to-progression and overall survival in high-grade glioma. Proc. Natl. Acad. Sci. U. S. A. 2005, 102:16759-16764.
Moller-Hartmann W., Herminghaus S., Krings T., Marquardt G., Lanfermann H., Pilatus U., Zanella F.E. Clinical application of proton magnetic resonance spectroscopy in the diagnosis of intracranial mass lesions. Neuroradiology 2002, 44:371-381.
Li Y., Lupo J.M., Parvataneni R., Lamborn K.R., Cha S., Chang S.M., Nelson S.J. Survival analysis in patients with newly diagnosed glioblastoma using pre- and postradiotherapy MR spectroscopic imaging. Neuro Oncol. 2013, 15:607-617.
Rock J.P., Hearshen D., Scarpace L., Croteau D., Gutierrez J., Fisher J.L., Rosenblum M.L., Mikkelsen T. Correlations between magnetic resonance spectroscopy and image-guided histopathology, with special attention to radiation necrosis. Neurosurgery 2002, 51:912-919. (discussion 919-920).
Graves E.E., Nelson S.J., Vigneron D.B., Verhey L., McDermott M., Larson D., Chang S., Prados M.D., Dillon W.P. Serial proton MR spectroscopic imaging of recurrent malignant gliomas after gamma knife radiosurgery. AJNR Am. J. Neuroradiol. 2001, 22:613-624.
Gulyas B., Halldin C. New PET radiopharmaceuticals beyond FDG for brain tumor imaging. Q. J. Nucl. Med. Mol. Imaging: Off. Publ. Ital. Assoc. Nucl. Med. 2012, 56:173-190.
Zhuang H., Yu J.Q., Alavi A. Applications of fluorodeoxyglucose-PET imaging in the detection of infection and inflammation and other benign disorders. Radiol. Clin. North Am. 2005, 43:121-134.
Phelps M.E., Mazziotta J.C. Positron emission tomography: human brain function and biochemistry. Science 1985, 228:799-809.
Gotz L., Spehl T.S., Weber W.A., Grosu A.L. PET and SPECT for radiation treatment planning. Q. J. Nucl. Med. Mol. Imaging: Off. Publ. Ital. Assoc. Nucl. Med. 2012, 56:163-172.
Niyazi M., Geisler J., Siefert A., Schwarz S.B., Ganswindt U., Garny S., Schnell O., Suchorska B., Kreth F.W., Tonn J.C., Bartenstein P., la Fougere C., Belka C. FET-PET for malignant glioma treatment planning. Radiother. Oncol.: J. Eur. Soc. Ther. Radiol. Oncol. 2011, 99:44-48.
Niyazi M., Schnell O., Suchorska B., Schwarz S.B., Ganswindt U., Geisler J., Bartenstein P., Kreth F.W., Tonn J.C., Eigenbrod S., Belka C., la Fougere C. FET-PET assessed recurrence pattern after radio-chemotherapy in newly diagnosed patients with glioblastoma is influenced by MGMT methylation status. Radiother. Oncol.: J. Eur. Soc. Ther. Radiol. Oncol. 2012, 104:78-82.
Jansen N.L., Graute V., Armbruster L., Suchorska B., Lutz J., Eigenbrod S., Cumming P., Bartenstein P., Tonn J.C., Kreth F.W., la Fougere C. MRI-suspected low-grade glioma: is there a need to perform dynamic FET PET?. Eur. J. Nucl. Med. Mol. Imaging 2012, 39:1021-1029.
Jansen N.L., Suchorska B., Wenter V., Eigenbrod S., Schmid-Tannwald C., Zwergal A., Niyazi M., Drexler M., Bartenstein P., Schnell O., Tonn J.C., Thon N., Kreth F.W., la Fougere C. Dynamic 18F-FET PET in newly diagnosed astrocytic low-grade glioma identifies high-risk patients. J. Nucl. Med.: Off. Publ. Soc. Nucl. Med. 2014, 55:198-203.
Kunz M., Thon N., Eigenbrod S., Hartmann C., Egensperger R., Herms J., Geisler J., la Fougere C., Lutz J., Linn J., Kreth S., von Deimling A., Tonn J.C., Kretzschmar H.A., Popperl G., Kreth F.W. Hot spots in dynamic (18)FET-PET delineate malignant tumor parts within suspected WHO grade II gliomas. Neuro Oncol. 2011, 13:307-316.
Rachinger W., Goetz C., Popperl G., Gildehaus F.J., Kreth F.W., Holtmannspotter M., Herms J., Koch W., Tatsch K., Tonn J.C. Positron emission tomography with O-(2-[18F]fluoroethyl)-l-tyrosine versus magnetic resonance imaging in the diagnosis of recurrent gliomas. Neurosurgery 2005, 57:505-511. (discussion 505-511).
Miyake K., Shinomiya A., Okada M., Hatakeyama T., Kawai N., Tamiya T. Usefulness of FDG, MET and FLT-PET studies for the management of human gliomas. J. Biomed. Biotechnol. 2012, 2012:205818.
Chen W., Delaloye S., Silverman D.H., Geist C., Czernin J., Sayre J., Satyamurthy N., Pope W., Lai A., Phelps M.E., Cloughesy T. Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with [18F] fluorothymidine positron emission tomography: a pilot study. J. Clin. Oncol.: Off. J. Am. Soc. Clin. Oncol. 2007, 25:4714-4721.
Galldiks N., Kracht L.W., Burghaus L., Thomas A., Jacobs A.H., Heiss W.D., Herholz K. Use of 11C-methionine PET to monitor the effects of temozolomide chemotherapy in malignant gliomas. Eur. J. Nucl. Med. Mol. Imaging 2006, 33:516-524.
Schwarzenberg J., Czernin J., Cloughesy T.F., Ellingson B.M., Pope W.B., Geist C., Dahlbom M., Silverman D.H., Satyamurthy N., Phelps M.E., Chen W. 3'-deoxy-3'-18F-fluorothymidine PET and MRI for early survival predictions in patients with recurrent malignant glioma treated with bevacizumab. J. Nucl. Med.: Off. Publ. Soc. Nucl. Med. 2012, 53:29-36.
Galldiks N., Langen K.J., Holy R., Pinkawa M., Stoffels G., Nolte K.W., Kaiser H.J., Filss C.P., Fink G.R., Coenen H.H., Eble M.J., Piroth M.D. Assessment of treatment response in patients with glioblastoma using O-(2-18F-fluoroethyl)-L-tyrosine PET in comparison to MRI. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2012, 53:1048-1057.
Mendichovszky I., Jackson A. Imaging hypoxia in gliomas. Br. J. Radiol. 2011, 84(Spec No 2):S145-S158.
Cher L.M., Murone C., Lawrentschuk N., Ramdave S., Papenfuss A., Hannah A., O'Keefe G.J., Sachinidis J.I., Berlangieri S.U., Fabinyi G., Scott A.M. Correlation of hypoxic cell fraction and angiogenesis with glucose metabolic rate in gliomas using 18F-fluoromisonidazole, 18F-FDG PET, and immunohistochemical studies. J. Nucl. Med.: Off. Publ. Soc. Nucl. Med. 2006, 47:410-418.
Waldman A.D., Jackson A., Price S.J., Clark C.A., Booth T.C., Auer D.P., Tofts P.S., Collins D.J., Leach M.O., Rees J.H., S.National Cancer Research Institute Brain Tumour Imaging Quantitative imaging biomarkers in neuro-oncology, Nature reviews. Clin. Oncol. 2009, 6:445-454.
Macdonald D.R., Cascino T.L., Schold S.C., Cairncross J.G. Response criteria for phase II studies of supratentorial malignant glioma. J. Clin. Oncol.: Off. J. Am. Soc. Clin. Oncol. 1990, 8:1277-1280.
Brandsma D., Stalpers L., Taal W., Sminia P., van den Bent M.J. Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol. 2008, 9:453-461.
Clarke J.L., Chang S. Pseudoprogression and pseudoresponse: challenges in brain tumor imaging. Curr. Neurol. Neurosci. Rep. 2009, 9:241-246.
Wen P.Y., Macdonald D.R., Reardon D.A., Cloughesy T.F., Sorensen A.G., Galanis E., Degroot J., Wick W., Gilbert M.R., Lassman A.B., Tsien C., Mikkelsen T., Wong E.T., Chamberlain M.C., Stupp R., Lamborn K.R., Vogelbaum M.A., van den Bent M.J., Chang S.M. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J. Clin. Oncol.: Off. J. Am. Soc. Clin. Oncol. 2010, 28:1963-1972.
Stummer W., Pichlmeier U., Meinel T., Wiestler O.D., Zanella F., Reulen H.J., Group A.L.-G.S. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 2006, 7:392-401.
Ji M., Orringer D., Freudiger C., Ramkissoon S., Liu X., Lau D., Golby A., Norton I., Hayashi M., Agar N., Young G., Spino C., Santagata S., Camelo-Piragua S., Ligon K., Sagher O., Xie X. Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy. Sci. Transl. Med. 2013, 5:201ra119.
Brown M., Semelka R. Mri: Basic Principles and Applications 2010, Fourth edition.
Prince M.R., Zhang H., Morris M., MacGregor J.L., Grossman M.E., Silberzweig J., DeLapaz R.L., Lee H.J., Magro C.M., Valeri A.M. Incidence of nephrogenic systemic fibrosis at two large medical centers. Radiology 2008, 248:807-816.
Shazeeb M.S., Sotak C.H., DeLeo M., Bogdanov A. Targeted signal-amplifying enzymes enhance MRI of EGFR expression in an orthotopic model of human glioma. Cancer Res. 2011, 71:2230-2239.
He T., Smith N., Saunders D., Doblas S., Watanabe Y., Hoyle J., Silasi-Mansat R., Lupu F., Lerner M., Brackett D.J., Towner R.A. Molecular MRI assessment of vascular endothelial growth factor receptor-2 in rat C6 gliomas. J. Cell. Mol. Med. 2011, 15:837-849.
Liu Y., Yang Y., Zhang C. A concise review of magnetic resonance molecular imaging of tumor angiogenesis by targeting integrin alphavbeta3 with magnetic probes. Int. J. Nanomedicine 2013, 8:1083-1093.
Koo Y.E., Reddy G.R., Bhojani M., Schneider R., Philbert M.A., Rehemtulla A., Ross B.D., Kopelman R. Brain cancer diagnosis and therapy with nanoplatforms. Adv. Drug Deliv. Rev. 2006, 58:1556-1577.
Brigger I., Dubernet C., Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev. 2002, 54:631-651.
Jones C.K., Schlosser M.J., van Zijl P.C., Pomper M.G., Golay X., Zhou J. Amide proton transfer imaging of human brain tumors at 3T. Magn. Reson. Med.: Off. J. Soc. Magn. Reson. Med. / Soc. Magn. Reson. Med. 2006, 56:585-592.
Zhou J., Tryggestad E., Wen Z., Lal B., Zhou T., Grossman R., Wang S., Yan K., Fu D.X., Ford E., Tyler B., Blakeley J., Laterra J., van Zijl P.C. Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nat. Med. 2011, 17:130-134.
Woods M., Woessner D.E., Sherry A.D. Paramagnetic lanthanide complexes as PARACEST agents for medical imaging. Chem. Soc. Rev. 2006, 35:500-511.
Hancu I., Dixon W.T., Woods M., Vinogradov E., Sherry A.D., Lenkinski R.E. CEST and PARACEST MR contrast agents. Acta Radiol. 2010, 51:910-923.
Fernandez-Seara M.A., Edlow B.L., Hoang A., Wang J., Feinberg D.A., Detre J.A. Minimizing acquisition time of arterial spin labeling at 3T. Magn. Reson. Med.: Off. J. Soc. Magn. Reson. Med. / Soc. Magn. Reson. Med. 2008, 59:1467-1471.
Wang J., Fernandez-Seara M.A., Wang S., St Lawrence K.S. When perfusion meets diffusion: in vivo measurement of water permeability in human brain. J. Cereb. Blood Flow Metab.: Off. J. Int. Soc. Cereb. Blood Flow Metab. 2007, 27:839-849.
Warmuth C., Gunther M., Zimmer C. Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging. Radiology 2003, 228:523-532.
Wolf R.L., Wang J., Wang S., Melhem E.R., O'Rourke D.M., Judy K.D., Detre J.A. Grading of CNS neoplasms using continuous arterial spin labeled perfusion MR imaging at 3 Tesla. J. Magn. Reson. Imaging: JMRI 2005, 22:475-482.
Weber M.A., Zoubaa S., Schlieter M., Juttler E., Huttner H.B., Geletneky K., Ittrich C., Lichy M.P., Kroll A., Debus J., Giesel F.L., Hartmann M., Essig M. Diagnostic performance of spectroscopic and perfusion MRI for distinction of brain tumors. Neurology 2006, 66:1899-1906.
Ozsunar Y., Mullins M.E., Kwong K., Hochberg F.H., Ament C., Schaefer P.W., Gonzalez R.G., Lev M.H. Glioma recurrence versus radiation necrosis? A pilot comparison of arterial spin-labeled, dynamic susceptibility contrast enhanced MRI, and FDG-PET imaging. Acad. Radiol. 2010, 17:282-290.
Robinson S.P., Howe F.A., Rodrigues L.M., Stubbs M., Griffiths J.R. Magnetic resonance imaging techniques for monitoring changes in tumor oxygenation and blood flow. Semin. Radiat. Oncol. 1998, 8:197-207.
Taylor N.J., Baddeley H., Goodchild K.A., Powell M.E., Thoumine M., Culver L.A., Stirling J.J., Saunders M.I., Hoskin P.J., Phillips H., Padhani A.R., Griffiths J.R. BOLD MRI of human tumor oxygenation during carbogen breathing. J. Magn. Reson. Imaging: JMRI 2001, 14:156-163.
Ben Bashat D., Artzi M., Ben Ami H., Aizenstein O., Blumenthal D.T., Bokstein F., Corn B.W., Ram Z., Kanner A.A., Lifschitz-Mercer B., Solar I., Kolatt T., Palmon M., Edrei Y., Abramovitch R. Hemodynamic response imaging: a potential tool for the assessment of angiogenesis in brain tumors. PLoS One 2012, 7:e49416.
Mazurchuk R., Zhou R., Straubinger R.M., Chau R.I., Grossman Z. Functional magnetic resonance (fMR) imaging of a rat brain tumor model: implications for evaluation of tumor microvasculature and therapeutic response. Magn. Reson. Imaging 1999, 17:537-548.
Grabner G., Nobauer I., Elandt K., Kronnerwetter C., Woehrer A., Marosi C., Prayer D., Trattnig S., Preusser M. Longitudinal brain imaging of five malignant glioma patients treated with bevacizumab using susceptibility-weighted magnetic resonance imaging at 7T. Magn. Reson. Imaging 2012, 30:139-147.
Lupo J.M., Chuang C.F., Chang S.M., Barani I.J., Jimenez B., Hess C.P., Nelson S.J. 7-Tesla susceptibility-weighted imaging to assess the effects of radiotherapy on normal-appearing brain in patients with glioma. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82:e493-e500.
Mohammed W., Xunning H., Haibin S., Jingzhi M. Clinical applications of susceptibility-weighted imaging in detecting and grading intracranial gliomas: a review. Cancer Imaging: Off. Publ. Int. Cancer Imaging Soc. 2013, 13:186-195.
Lupo J.M., Essock-Burns E., Molinaro A.M., Cha S., Chang S.M., Butowski N., Nelson S.J. Using susceptibility-weighted imaging to determine response to combined anti-angiogenic, cytotoxic, and radiation therapy in patients with glioblastoma multiforme. Neuro Oncol. 2013, 15:480-489.
Zou Z., Ma L., Cheng L., Cai Y., Meng X. Time-resolved contrast-enhanced MR angiography of intracranial lesions. J. Magn. Reson. Imaging: JMRI 2008, 27:692-699.
Harris R.J., Cloughesy T.F., Pope W.B., Godinez S., Natsuaki Y., Nghiemphu P.L., Meyer H., Paul D., Behbahanian Y., Lai A., Ellingson B.M. Pre- and post-contrast three-dimensional double inversion-recovery MRI in human glioblastoma. J. Neuro-Oncol. 2013, 112:257-266.
Simon M., Guo J., Papazoglou S., Scholand-Engler H., Erdmann C., Melchert U., Bonsanto M., Braun J., Petersen D., Sack I., Wuerfel J. Non-invasive characterization of intracranial tumors by magnetic resonance elastography. New J. Phys. 2013, 15.
Taylor J.S., Reddick W.E. Evolution from empirical dynamic contrast-enhanced magnetic resonance imaging to pharmacokinetic MRI. Adv. Drug Deliv. Rev. 2000, 41:91-110.
Keunen O., Johansson M., Oudin A., Sanzey M., Rahim S.A., Fack F., Thorsen F., Taxt T., Bartos M., Jirik R., Miletic H., Wang J., Stieber D., Stuhr L., Moen I., Rygh C.B., Bjerkvig R., Niclou S.P. Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc. Natl. Acad. Sci. U. S. A. 2011, 108:3749-3754.
Sourbron S., Heilmann M., Biffar A., Walczak C., Vautier J., Volk A., Peller M. Bolus-tracking MRI with a simultaneous T1- and T2*-measurement. Magn. Reson. Med.: Off. J. Soc. Magn. Reson. Med. / Soc. Magn. Reson. Med. 2009, 62:672-681.
Quarles C.C., Gore J.C., Xu L., Yankeelov T.E. Comparison of dual-echo DSC-MRI- and DCE-MRI-derived contrast agent kinetic parameters. Magn. Reson. Imaging 2012, 30:944-953.
Bjornerud A., Emblem K.E. A fully automated method for quantitative cerebral hemodynamic analysis using DSC-MRI. J. Cereb. Blood Flow Metab.: Off. J. Int. Soc. Cereb Blood Flow Metab. 2010, 30:1066-1078.
Taxt T., Jirik R., Rygh C.B., Gruner R., Bartos M., Andersen E., Curry F.R., Reed R.K. Single-channel blind estimation of arterial input function and tissue impulse response in DCE-MRI. IEEE Trans. Biomed. Eng. 2012, 59:1012-1021.
White N.S., McDonald C.R., Farid N., Kuperman J.M., Kesari S., Dale A.M. Improved conspicuity and delineation of high-grade primary and metastatic brain tumors using "restriction spectrum imaging": quantitative comparison with high B-value DWI and ADC. AJNR Am. J. Neuroradiol. 2013, 34:958-964. (S951).
Kothari P.D., White N.S., Farid N., Chung R., Kuperman J.M., Girard H.M., Shankaranarayanan A., Kesari S., McDonald C.R., Dale A.M. Longitudinal restriction spectrum imaging is resistant to pseudoresponse in patients with high-grade gliomas treated with bevacizumab. AJNR Am. J. Neuroradiol. 2013, 34:1752-1757.
McDonald C.R., White N.S., Farid N., Lai G., Kuperman J.M., Bartsch H., Hagler D.J., Kesari S., Carter B.S., Chen C.C., Dale A.M. Recovery of white matter tracts in regions of peritumoral FLAIR hyperintensity with use of restriction spectrum imaging. AJNR Am. J. Neuroradiol. 2013, 34:1157-1163.
Colvin D.C., Loveless M.E., Does M.D., Yue Z., Yankeelov T.E., Gore J.C. Earlier detection of tumor treatment response using magnetic resonance diffusion imaging with oscillating gradients. Magn. Reson. Imaging 2011, 29:315-323.
Van A.T., Holdsworth S.J., Bammer R. In vivo investigation of restricted diffusion in the human brain with optimized oscillating diffusion gradient encoding. Magn. Reson. Med.: Off. J. Soc. Magn. Reson. Med. / Soc. Magn. Reson. Med. 2014, 71:83-94.
McLean M.A., Sun A., Bradstreet T.E., Schaeffer A.K., Liu H., Iannone R., Herman G., Railkar R.A., Joubert I., Gillard J.H., Price S.J., Griffiths J.R. Repeatability of edited lactate and other metabolites in astrocytoma at 3T. J. Magn. Reson. Imaging: JMRI 2012, 36:468-475.
Andronesi O.C., Kim G.S., Gerstner E., Batchelor T., Tzika A.A., Fantin V.R., Vander Heiden M.G., Sorensen A.G. Detection of 2-hydroxyglutarate in IDH-mutated glioma patients by in vivo spectral-editing and 2D correlation magnetic resonance spectroscopy. Sci. Transl. Med. 2012, 4:116ra114.
Maintz D., Heindel W., Kugel H., Jaeger R., Lackner K.J. Phosphorus-31 MR spectroscopy of normal adult human brain and brain tumours. NMR Biomed. 2002, 15:18-27.
Venkatesh H.S., Chaumeil M.M., Ward C.S., Haas-Kogan D.A., James C.D., Ronen S.M. Reduced phosphocholine and hyperpolarized lactate provide magnetic resonance biomarkers of PI3K/Akt/mTOR inhibition in glioblastoma. Neuro Oncol. 2012, 14:315-325.
Maher E.A., Marin-Valencia I., Bachoo R.M., Mashimo T., Raisanen J., Hatanpaa K.J., Jindal A., Jeffrey F.M., Choi C., Madden C., Mathews D., Pascual J.M., Mickey B.E., Malloy C.R., Deberardinis R.J. Metabolism of [U-(13) C]glucose in human brain tumors in vivo. NMR Biomed. 2012, 25:1234-1244.
Kato Y., Holm D.A., Okollie B., Artemov D. Noninvasive detection of temozolomide in brain tumor xenografts by magnetic resonance spectroscopy. Neuro Oncol. 2010, 12:71-79.
Golman K. R. in 't Zandt, M. Thaning, Real-time metabolic imaging. Proc. Natl. Acad. Sci. U. S. A. 2006, 103:11270-11275.
Park I., Bok R., Ozawa T., Phillips J.J., James C.D., Vigneron D.B., Ronen S.M., Nelson S.J. Detection of early response to temozolomide treatment in brain tumors using hyperpolarized 13C MR metabolic imaging. J. Magn. Reson. Imaging: JMRI 2011, 33:1284-1290.
Chaumeil M.M., Ozawa T., Park I., Scott K., James C.D., Nelson S.J., Ronen S.M. Hyperpolarized 13C MR spectroscopic imaging can be used to monitor Everolimus treatment in vivo in an orthotopic rodent model of glioblastoma. Neuroimage 2012, 59:193-201.
Nelson S.J., Kurhanewicz J., Vigneron D.B., Larson P.E., Harzstark A.L., Ferrone M., van Criekinge M., Chang J.W., Bok R., Park I., Reed G., Carvajal L., Small E.J., Munster P., Weinberg V.K., Ardenkjaer-Larsen J.H., Chen A.P., Hurd R.E., Odegardstuen L.I., Robb F.J., Tropp J., Murray J.A. Metabolic imaging of patients with prostate cancer using hyperpolarized [1-(1)(3)C]pyruvate. Sci. Transl. Med. 2013, 5:198ra108.
Gallagher F.A., Kettunen M.I., Hu D.E., Jensen P.R., Zandt R.I., Karlsson M., Gisselsson A., Nelson S.K., Witney T.H., Bohndiek S.E., Hansson G., Peitersen T., Lerche M.H., Brindle K.M. Production of hyperpolarized [1,4-13C2]malate from [1,4-13C2]fumarate is a marker of cell necrosis and treatment response in tumors. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:19801-19806.
Bohndiek S.E., Kettunen M.I., Hu D.E., Kennedy B.W., Boren J., Gallagher F.A., Brindle K.M. Hyperpolarized [1-13C]-ascorbic and dehydroascorbic acid: vitamin C as a probe for imaging redox status in vivo. J. Am. Chem. Soc. 2011, 133:11795-11801.
Gallagher F.A., Kettunen M.I., Day S.E., Hu D.E., Karlsson M., Gisselsson A., Lerche M.H., Brindle K.M. Detection of tumor glutamate metabolism in vivo using (13)C magnetic resonance spectroscopy and hyperpolarized [1-(13)C]glutamate. Magn. Reson. Med.: Off. J. Soc. Magn. Reson. Med. / Soc. Magn. Reson. Med. 2011, 66:18-23.
Gabellieri C., Reynolds S., Lavie A., Payne G.S., Leach M.O., Eykyn T.R. Therapeutic target metabolism observed using hyperpolarized 15N choline. J. Am. Chem. Soc. 2008, 130:4598-4599.
Chaumeil M.M., Larson P.E., Yoshihara H.A., Danforth O.M., Vigneron D.B., Nelson S.J., Pieper R.O., Phillips J.J., Ronen S.M. Non-invasive in vivo assessment of IDH1 mutational status in glioma. Nat. Commun. 2013, 4:2429.
Wilson D.M., Keshari K.R., Larson P.E., Chen A.P., Hu S., Van Criekinge M., Bok R., Nelson S.J., Macdonald J.M., Vigneron D.B., Kurhanewicz J. Multi-compound polarization by DNP allows simultaneous assessment of multiple enzymatic activities in vivo. J. Magn. Reson. 2010, 205:141-147.
Karunanithi S., Sharma P., Kumar A., Khangembam B.C., Bandopadhyaya G.P., Kumar R., Goenka A., Gupta D.K., Malhotra A., Bal C. Comparative diagnostic accuracy of contrast-enhanced MRI and (18)F-FDOPA PET-CT in recurrent glioma. Eur. Radiol. 2013, 23:2628-2635.
Karunanithi S., Sharma P., Kumar A., Khangembam B.C., Bandopadhyaya G.P., Kumar R., Gupta D.K., Malhotra A., Bal C. 18F-FDOPA PET/CT for detection of recurrence in patients with glioma: prospective comparison with 18F-FDG PET/CT. Eur. J. Nucl. Med. Mol. Imaging 2013, 40:1025-1035.
Chen W., Silverman D.H., Delaloye S., Czernin J., Kamdar N., Pope W., Satyamurthy N., Schiepers C., Cloughesy T. 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J. Nucl. Med.: Off. Publ. Soc. Nucl. Med. 2006, 47:904-911.
Harris R.J., Cloughesy T.F., Pope W.B., Nghiemphu P.L., Lai A., Zaw T., Czernin J., Phelps M.E., Chen W., Ellingson B.M. 18F-FDOPA and 18F-FLT positron emission tomography parametric response maps predict response in recurrent malignant gliomas treated with bevacizumab. Neuro Oncol. 2012, 14:1079-1089.
Samnick S., Bader J.B., Hellwig D., Moringlane J.R., Alexander C., Romeike B.F., Feiden W., Kirsch C.M. Clinical value of iodine-123-alpha-methyl-L-tyrosine single-photon emission tomography in the differential diagnosis of recurrent brain tumor in patients pretreated for glioma at follow-up. J. Clin. Oncol.: Off. J. Am. Soc. Clin. Oncol. 2002, 20:396-404.
Santra A., Kumar R., Sharma P., Bal C., Julka P.K., Malhotra A. Detection of recurrence in glioma: a comparative prospective study between Tc-99m GHA SPECT and F-18 FDG PET/CT. Clin. Nucl. Med. 2011, 36:650-655.
Santra A., Sharma P., Kumar R., Bal C., Kumar A., Julka P.K., Malhotra A. Comparison of glucoheptonate single photon emission computed tomography and contrast-enhanced MRI in detection of recurrent glioma. Nucl. Med. Commun. 2011, 32:206-211.
Blankenberg F.G. In vivo detection of apoptosis. J. Nucl. Med.: Off. Publ. Soc. Nucl. Med. 2008, 49(Suppl. 2):81S-95S.
Spence A.M., Mankoff D.A., Muzi M. Positron emission tomography imaging of brain tumors. Neuroimaging Clin. N. Am. 2003, 13:717-739.
Cai W., Chen X. Multimodality imaging of vascular endothelial growth factor and vascular endothelial growth factor receptor expression. Front. Biosci.: J. Virtual Libr. 2007, 12:4267-4279.
Hood J.D., Cheresh D.A. Role of integrins in cell invasion and migration. Nat. Rev. Cancer 2002, 2:91-100.
Cairns R.A., Khokha R., Hill R.P. Molecular mechanisms of tumor invasion and metastasis: an integrated view. Curr. Mol. Med. 2003, 3:659-671.
Haubner R., Weber W.A., Beer A.J., Vabuliene E., Reim D., Sarbia M., Becker K.F., Goebel M., Hein R., Wester H.J., Kessler H., Schwaiger M. Noninvasive visualization of the activated alphavbeta3 integrin in cancer patients by positron emission tomography and [18F]Galacto-RGD. PLoS Med. 2005, 2:e70.
Schnell O., Krebs B., Carlsen J., Miederer I., Goetz C., Goldbrunner R.H., Wester H.J., Haubner R., Popperl G., Holtmannspotter M., Kretzschmar H.A., Kessler H., Tonn J.C., Schwaiger M., Beer A.J. Imaging of integrin alpha(v)beta(3) expression in patients with malignant glioma by [18F] Galacto-RGD positron emission tomography. Neuro Oncol. 2009, 11:861-870.
Sipkins D.A., Cheresh D.A., Kazemi M.R., Nevin L.M., Bednarski M.D., Li K.C. Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging. Nat. Med. 1998, 4:623-626.
Huang M., Xiong C., Lu W., Zhang R., Zhou M., Huang Q., Weinberg J., Li C. Dual-modality micro-positron emission tomography/computed tomography and near-infrared fluorescence imaging of EphB4 in orthotopic glioblastoma xenograft models. Mol. Imaging Biol.: MIB: Off. Publ. Acad. Mol. Imaging 2014, 16:74-84.
Kim E.M., Park E.H., Cheong S.J., Lee C.M., Kim D.W., Jeong H.J., Lim S.T., Sohn M.H., Kim K., Chung J. Characterization, biodistribution and small-animal SPECT of I-125-labeled c-Met binding peptide in mice bearing c-Met receptor tyrosine kinase-positive tumor xenografts. Nucl. Med. Biol. 2009, 36:371-378.
Benezra M., Hambardzumyan D., Penate-Medina O., Veach D.R., Pillarsetty N., Smith-Jones P., Phillips E., Ozawa T., Zanzonico P.B., Longo V., Holland E.C., Larson S.M., Bradbury M.S. Fluorine-labeled dasatinib nanoformulations as targeted molecular imaging probes in a PDGFB-driven murine glioblastoma model. Neoplasia 2012, 14:1132-1143.
Dennie J., Mandeville J.B., Boxerman J.L., Packard S.D., Rosen B.R., Weisskoff R.M. NMR imaging of changes in vascular morphology due to tumor angiogenesis. Magn. Reson. Med.: Off. J. Soc. Magn. Reson. Med. / Soc. Magn. Reson. Med. 1998, 40:793-799.
Jensen J.H., Chandra R. MR imaging of microvasculature. Magn. Reson. Med.: Off. J. Soc. Magn. Reson. Med. / Soc. Magn. Reson. Med. 2000, 44:224-230.
Ullrich R.T., Jikeli J.F., Diedenhofen M., Bohm-Sturm P., Unruh M., Vollmar S., Hoehn M. In-vivo visualization of tumor microvessel density and response to anti-angiogenic treatment by high resolution MRI in mice. PLoS One 2011, 6:e19592.
Kaur G., Han S.J., Yang I., Crane C. Microglia and central nervous system immunity. Neurosurg. Clin. N. Am. 2010, 21:43-51.
Venneti S., Lopresti B.J., Wiley C.A. Molecular imaging of microglia/macrophages in the brain. Glia 2013, 61:10-23.
Waerzeggers Y., Monfared P., Viel T., Faust A., Kopka K., Schafers M., Tavitian B., Winkeler A., Jacobs A. Specific biomarkers of receptors, pathways of inhibition and targeted therapies: pre-clinical developments. Br. J. Radiol. 2011, 84(Spec No 2):S168-S178.
Bhatnagar A., Hustinx R., Alavi A. Nuclear imaging methods for non-invasive drug monitoring. Adv. Drug Deliv. Rev. 2000, 41:41-54.
Rosso L., Brock C.S., Gallo J.M., Saleem A., Price P.M., Turkheimer F.E., Aboagye E.O. A new model for prediction of drug distribution in tumor and normal tissues: pharmacokinetics of temozolomide in glioma patients. Cancer Res. 2009, 69:120-127.
Maurer M., Becker G., Wagner R., Woydt M., Hofmann E., Puls I., Lindner A., Krone A. Early postoperative transcranial sonography (TCS), CT, and MRI after resection of high grade glioma: evaluation of residual tumour and its influence on prognosis. Acta Neurochir. 2000, 142:1089-1097.
Vicenzini E., Delfini R., Magri F., Puccinelli F., Altieri M., Santoro A., Giannoni M.F., Bozzao L., Di Piero V., Lenzi G.L. Semiquantitative human cerebral perfusion assessment with ultrasound in brain space-occupying lesions: preliminary data. J. Ultrasound Med.: Off. J. Am. Inst. Ultrasound. Med. 2008, 27:685-692.
Mallidi S., Luke G.P., Emelianov S. Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance. Trends Biotechnol. 2011, 29:213-221.
Lee S.K. Diffusion tensor and perfusion imaging of brain tumors in high-field MR imaging. Neuroimaging Clin. N. Am. 2012, 22:123-134. (ix).
Di Ieva A., Matula C., Grizzi F., Grabner G., Trattnig S., Tschabitscher M. Fractal analysis of the susceptibility weighted imaging patterns in malignant brain tumors during antiangiogenic treatment: technical report on four cases serially imaged by 7T magnetic resonance during a period of four weeks. World Neurosurg. 2012, 77. (785 e711-721).
Golay X., Petersen E.T. Arterial spin labeling: benefits and pitfalls of high magnetic field. Neuroimaging Clin. N. Am. 2006, 16:259-268. (x).
Deshmane A., Gulani V., Griswold M.A., Seiberlich N. Parallel MR imaging. J. Magn. Reson. Imaging: JMRI 2012, 36:55-72.
Parallel Imaging in Clinical MR Applications 2007, S. Schoenberg, O. Dietrich, M. Reiser (Eds.).
Stollberger R., Fazekas F. Improved perfusion and tracer kinetic imaging using parallel imaging. Top. Magn. Reson. Imaging: TMRI 2004, 15:245-254.
Lebel R.M., Jones J., Ferre J.C., Law M., Nayak K.S. Highly accelerated dynamic contrast enhanced imaging. Magn. Reson. Med. 2014, 71:635-644.
Feinberg D.A., Setsompop K. Ultra-fast MRI of the human brain with simultaneous multi-slice imaging. J. Magn. Reson. 2013, 229:90-100.
Shi X., Ma X., Wu W., Huang F., Yuan C., Guo H. Parallel imaging and compressed sensing combined framework for accelerating high-resolution diffusion tensor imaging using inter-image correlation. Magn. Reson. Med. 2014, 71. May 13. [Epub ahead of print]. 10.1002/mrm.25290.
Nelson S.J., Ozhinsky E., Li Y., Park I., Crane J. Strategies for rapid in vivo 1H and hyperpolarized 13C MR spectroscopic imaging. J. Magn. Reson. 2013, 229:187-197.
Ozturk-Isik E., Chen A.P., Crane J.C., Bian W., Xu D., Han E.T., Chang S.M., Vigneron D.B., Nelson S.J. 3D sensitivity encoded ellipsoidal MR spectroscopic imaging of gliomas at 3T. Magn. Reson. Imaging 2009, 27:1249-1257.
Gatehouse P.D., Bydder G.M. Magnetic resonance imaging of short T2 components in tissue. Clin. Radiol. 2003, 58:1-19.
Lustig M., Donoho D., Pauly J.M. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn. Reson. Med.: Off. J. Soc. Magn. Reson. Med. / Soc. Magn. Reson. Med. 2007, 58:1182-1195.
Yankeelov T.E., Peterson T.E., Abramson R.G., Garcia-Izquierdo D., Arlinghaus L.R., Li X., Atuegwu N.C., Catana C., Manning H.C., Fayad Z.A., Gore J.C. Simultaneous PET-MRI in oncology: a solution looking for a problem?. Magn. Reson. Imaging 2012, 30:1342-1356.
Neuner I., Kaffanke J.B., Langen K.J., Kops E.R., Tellmann L., Stoffels G., Weirich C., Filss C., Scheins J., Herzog H., Shah N.J. Multimodal imaging utilising integrated MR-PET for human brain tumour assessment. Eur. Radiol. 2012, 22:2568-2580.
Pirotte B., Goldman S., Dewitte O., Massager N., Wikler D., Lefranc F., Ben Taib N.O., Rorive S., David P., Brotchi J., Levivier M. Integrated positron emission tomography and magnetic resonance imaging-guided resection of brain tumors: a report of 103 consecutive procedures. J. Neurosurg. 2006, 104:238-253.
Arbizu J., Tejada S., Marti-Climent J.M., Diez-Valle R., Prieto E., Quincoces G., Vigil C., Idoate M.A., Zubieta J.L., Penuelas I., Richter J.A. Quantitative volumetric analysis of gliomas with sequential MRI and (1)(1)C-methionine PET assessment: patterns of integration in therapy planning. Eur. J. Nucl. Med. Mol. Imaging 2012, 39:771-781.
Tofts P.S. Quantitative MRI if the Brain: Measuring Changes Caused by Disease 2005.
Zacharaki E.I., Wang S., Chawla S., Soo Yoo D., Wolf R., Melhem E.R., Davatzikos C. Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn. Reson. Med.: Off. J. Soc. Magn. Reson. Med. / Soc. Magn. Reson. Med. 2009, 62:1609-1618.
Zacharaki E.I., Morita N., Bhatt P., O'Rourke D.M., Melhem E.R., Davatzikos C. Survival analysis of patients with high-grade gliomas based on data mining of imaging variables. AJNR Am. J. Neuroradiol. 2012, 33:1065-1071.
Patriarche J., Erickson B. Part 2. Automated change detection and characterization applied to serial MR of brain tumors may detect progression earlier than human experts. J. Digit. Imaging 2007, 20:321-328.
Verma R., Zacharaki E.I., Ou Y., Cai H., Chawla S., Lee S.K., Melhem E.R., Wolf R., Davatzikos C. Multiparametric tissue characterization of brain neoplasms and their recurrence using pattern classification of MR images. Acad. Radiol. 2008, 15:966-977.
Davatzikos C., Zacharaki E.I., Gooya A., Clark V. Multi-parametric analysis and registration of brain tumors: constructing statistical atlases and diagnostic tools of predictive value. Conference proceedings:... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference 2011, 6979-6981.
Preul M.C., Caramanos Z., Collins D.L., Villemure J.G., Leblanc R., Olivier A., Pokrupa R., Arnold D.L. Accurate, noninvasive diagnosis of human brain tumors by using proton magnetic resonance spectroscopy. Nat. Med. 1996, 2:323-325.
Zacharaki E.I., Kanas V.G., Davatzikos C. Investigating machine learning techniques for MRI-based classification of brain neoplasms. Int. J. Comput. Assist. Radiol. Surg. 2011, 6:821-828.
Li Y., Sima D.M., Van Cauter S., Himmelreich U., Croitor Sava A.R., Pi Y., Liu Y., Van Huffel S. Unsupervised nosologic imaging for glioma diagnosis. IEEE Trans. Biomed. Eng. 2013, 60:1760-1763.
Hu X., Wong K.K., Young G.S., Guo L., Wong S.T. Support vector machine multiparametric MRI identification of pseudoprogression from tumor recurrence in patients with resected glioblastoma. J. Magn. Reson. Imaging: JMRI 2011, 33:296-305.
Liberman G., Louzoun Y., Aizenstein O., Blumenthal D.T., Bokstein F., Palmon M., Corn B.W., Ben Bashat D. Automatic multi-modal MR tissue classification for the assessment of response to bevacizumab in patients with glioblastoma. Eur. J. Radiol. 2013, 82:e87-e94.
Swanson K.R., Bridge C., Murray J.D., Alvord E.C. Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. J. Neurol. Sci. 2003, 216:1-10.
Deisboeck T.S., Zhang L., Yoon J., Costa J. In silico cancer modeling: is it ready for prime time?. Nat. Clin. Pract. Oncol. 2009, 6:34-42.
Bauer S., May C., Dionysiou D., Stamatakos G., Buchler P., Reyes M. Multiscale modeling for image analysis of brain tumor studies. IEEE Trans. Biomed. Eng. 2012, 59:25-29.
Weissleder R., Ross B.D., Rehemtulla A., Gambhir S.S. Molecular Imaging - Principles and Practice 2010, People's Medical Publishing House, USA.
Lundstrom C., Persson A., Ross S., Ljung P., Lindholm S., Gyllensvard F., Ynnerman A. State-of-the-art of visualization in post-mortem imaging. APMIS: Acta Pathol. Microbiol. Immunol. Scand. 2012, 120:316-326.
Preim B. Visualization in Medicine: Theory, Algorithms, and Applications 2007.
Alaraj A., Lemole M.G., Finkle J.H., Yudkowsky R., Wallace A., Luciano C., Banerjee P.P., Rizzi S.H., Charbel F.T. Virtual reality training in neurosurgery: Review of current status and future applications. Surg. Neurol. Int. 2011, 2:52.
Shuhaiber J.H. Augmented reality in surgery. Arch. Surg. 2004, 139:170-174.
Thomas L., Di Stefano A.L., Ducray F. Predictive biomarkers in adult gliomas: the present and the future. Curr. Opin. Oncol. 2013, 25:689-694.
Assem M., Sibenaller Z., Agarwal S., Al-Keilani M.S., Alqudah M.A., Ryken T.C. Enhancing diagnosis, prognosis, and therapeutic outcome prediction of gliomas using genomics. Omics: J. Integr. Biol. 2012, 16:113-122.
Lo H.W. EGFR-targeted therapy in malignant glioma: novel aspects and mechanisms of drug resistance. Curr. Mol. Pharmacol. 2010, 3:37-52.
Galanis E., Buckner J.C., Maurer M.J., Kreisberg J.I., Ballman K., Boni J., Peralba J.M., Jenkins R.B., Dakhil S.R., Morton R.F., Jaeckle K.A., Scheithauer B.W., Dancey J., Hidalgo M., Walsh D.J., G.North Central Cancer Treatment Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study. J. Clin. Oncol.: Off. J. Am. Soc. Clin. Oncol. 2005, 23:5294-5304.
De Witt Hamer P.C. Small molecule kinase inhibitors in glioblastoma: a systematic review of clinical studies. Neuro Oncol. 2010, 12:304-316.
Batchelor T.T., Duda D.G., di Tomaso E., Ancukiewicz M., Plotkin S.R., Gerstner E., Eichler A.F., Drappatz J., Hochberg F.H., Benner T., Louis D.N., Cohen K.S., Chea H., Exarhopoulos A., Loeffler J.S., Moses M.A., Ivy P., Sorensen A.G., Wen P.Y., Jain R.K. Phase II study of cediranib, an oral pan-vascular endothelial growth factor receptor tyrosine kinase inhibitor, in patients with recurrent glioblastoma. J. Clin. Oncol.: Off. J. Am. Soc. Clin. Oncol. 2010, 28:2817-2823.
Chinot O.L., Wick W., Mason W., Henriksson R., Saran F., Nishikawa R., Carpentier A.F., Hoang-Xuan K., Kavan P., Cernea D., Brandes A.A., Hilton M., Abrey L., Cloughesy T. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N. Engl. J. Med. 2014, 370:709-722.
Gilbert M.R., Dignam J.J., Armstrong T.S., Wefel J.S., Blumenthal D.T., Vogelbaum M.A., Colman H., Chakravarti A., Pugh S., Won M., Jeraj R., Brown P.D., Jaeckle K.A., Schiff D., Stieber V.W., Brachman D.G., Werner-Wasik M., Tremont-Lukats I.W., Sulman E.P., Aldape K.D., Curran W.J., Mehta M.P. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N. Engl. J. Med. 2014, 370:699-708.
Michelakis E.D., Sutendra G., Dromparis P., Webster L., Haromy A., Niven E., Maguire C., Gammer T.L., Mackey J.R., Fulton D., Abdulkarim B., McMurtry M.S., Petruk K.C. Metabolic modulation of glioblastoma with dichloroacetate. Sci. Transl. Med. 2010, 2:31ra34.
Sotelo J., Briceno E., Lopez-Gonzalez M.A. Adding chloroquine to conventional treatment for glioblastoma multiforme: a randomized, double-blind, placebo-controlled trial. Ann. Intern. Med. 2006, 144:337-343.
Hegi M.E., Liu L., Herman J.G., Stupp R., Wick W., Weller M., Mehta M.P., Gilbert M.R. Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity. J. Clin. Oncol.: Off. J. Am. Soc. Clin. Oncol. 2008, 26:4189-4199.
Thomas A.A., Ernstoff M.S., Fadul C.E. Immunotherapy for the treatment of glioblastoma. Cancer J. 2012, 18:59-68.
Sampson J.H., Heimberger A.B., Archer G.E., Aldape K.D., Friedman A.H., Friedman H.S., Gilbert M.R., Herndon J.E., McLendon R.E., Mitchell D.A., Reardon D.A., Sawaya R., Schmittling R.J., Shi W., Vredenburgh J.J., Bigner D.D. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J. Clin. Oncol.: Off. J. Am. Soc. Clin. Oncol. 2010, 28:4722-4729.
Yamanaka R., Homma J., Yajima N., Tsuchiya N., Sano M., Kobayashi T., Yoshida S., Abe T., Narita M., Takahashi M., Tanaka R. Clinical evaluation of dendritic cell vaccination for patients with recurrent glioma: results of a clinical phase I/II trial. Clin. Cancer Res.: Off. J. Am. Assoc. Cancer Res. 2005, 11:4160-4167.
Immonen A., Vapalahti M., Tyynela K., Hurskainen H., Sandmair A., Vanninen R., Langford G., Murray N., Yla-Herttuala S. AdvHSV-tk gene therapy with intravenous ganciclovir improves survival in human malignant glioma: a randomised, controlled study. Mol. Ther.: J. Am. Soc. Gene Ther. 2004, 10:967-972.
Wollmann G., Ozduman K., van den Pol A.N. Oncolytic virus therapy for glioblastoma multiforme: concepts and candidates. Cancer J. 2012, 18:69-81.
Westphal M., Hilt D.C., Bortey E., Delavault P., Olivares R., Warnke P.C., Whittle I.R., Jaaskelainen J., Ram Z. A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro Oncol. 2003, 5:79-88.
Bhujbal S.V., de Vos P., Niclou S.P. Drug and cell encapsulation: alternative delivery options for the treatment of malignant brain tumors. Adv. Drug Deliv. Rev. 2014, 67-68:142-153.
Bobo R.H., Laske D.W., Akbasak A., Morrison P.F., Dedrick R.L., Oldfield E.H. Convection-enhanced delivery of macromolecules in the brain. Proc. Natl. Acad. Sci. U. S. A. 1994, 91:2076-2080.
Allard E., Passirani C., Benoit J.P. Convection-enhanced delivery of nanocarriers for the treatment of brain tumors. Biomaterials 2009, 30:2302-2318.
Wei K.C., Chu P.C., Wang H.Y., Huang C.Y., Chen P.Y., Tsai H.C., Lu Y.J., Lee P.Y., Tseng I.C., Feng L.Y., Hsu P.W., Yen T.C., Liu H.L. Focused ultrasound-induced blood-brain barrier opening to enhance temozolomide delivery for glioblastoma treatment: a preclinical study. PLoS One 2013, 8:e58995.
Nariai T., Tanaka Y., Wakimoto H., Aoyagi M., Tamaki M., Ishiwata K., Senda M., Ishii K., Hirakawa K., Ohno K. Usefulness of L-[methyl-11C] methionine-positron emission tomography as a biological monitoring tool in the treatment of glioma. J. Neurosurg. 2005, 103:498-507.
Glaudemans A.W., Enting R.H., Heesters M.A., Dierckx R.A., van Rheenen R.W., Walenkamp A.M., Slart R.H. Value of 11C-methionine PET in imaging brain tumours and metastases. Eur. J. Nucl. Med. Mol. Imaging 2013, 40:615-635.
Singhal T., Narayanan T.K., Jain V., Mukherjee J., Mantil J. 11C-L-methionine positron emission tomography in the clinical management of cerebral gliomas. Mol. Imaging Biol.: MIB: Off. Publ. Acad. Mol. Imaging 2008, 10:1-18.
Dunet V., Rossier C., Buck A., Stupp R., Prior J.O. Performance of 18F-fluoro-ethyl-tyrosine (18F-FET) PET for the differential diagnosis of primary brain tumor: a systematic review and Metaanalysis. J. Nucl. Med.: Off. Publ. Soc. Nucl. Med. 2012, 53:207-214.
Galldiks N., Stoffels G., Ruge M.I., Rapp M., Sabel M., Reifenberger G., Erdem Z., Shah N.J., Fink G.R., Coenen H.H., Langen K.J. Role of O-(2-18F-fluoroethyl)-L-tyrosine PET as a diagnostic tool for detection of malignant progression in patients with low-grade glioma. J. Nucl. Med.: Off. Publ. Soc. Nucl. Med. 2013, 54:2046-2054.
Vees H., Senthamizhchelvan S., Miralbell R., Weber D.C., Ratib O., Zaidi H. Assessment of various strategies for 18F-FET PET-guided delineation of target volumes in high-grade glioma patients. Eur. J. Nucl. Med. Mol. Imaging 2009, 36:182-193.
Schwarzenberg J., Czernin J., Cloughesy T.F., Ellingson B.M., Pope W.B., Grogan T., Elashoff D., Geist C., Silverman D.H., Phelps M.E., Chen W. Treatment Response Evaluation Using 18F-FDOPA PET in Patients with Recurrent Malignant Glioma on Bevacizumab Therapy. Clin. Cancer Res.: Off. J. Am. Assoc. Cancer Res. 2014, 20:3550-3559.
Pafundi D.H., Laack N.N., Youland R.S., Parney I.F., Lowe V.J., Giannini C., Kemp B.J., Grams M.P., Morris J.M., Hoover J.M., Hu L.S., Sarkaria J.N., Brinkmann D.H. Biopsy validation of 18F-DOPA PET and biodistribution in gliomas for neurosurgical planning and radiotherapy target delineation: results of a prospective pilot study. Neuro Oncol. 2013, 15:1058-1067.
Weber W., Bartenstein P., Gross M.W., Kinzel D., Daschner H., Feldmann H.J., Reidel G., Ziegler S.I., Lumenta C., Molls M., Schwaiger M. Fluorine-18-FDG PET and iodine-123-IMT SPECT in the evaluation of brain tumors. J. Nucl. Med.: Off. Publ. Soc. Nucl. Med. 1997, 38:802-808.
Schmidt D., Gottwald U., Langen K.J., Weber F., Hertel A., Floeth F., Felsberg J., Reifenberger G., Coenen H.H., Muller-Gartner H.W. 3-[123I]Iodo-alpha-methyl-L-tyrosine uptake in cerebral gliomas: relationship to histological grading and prognosis. Eur. J. Nucl. Med. 2001, 28:855-861.
Weber W.A., Dick S., Reidl G., Dzewas B., Busch R., Feldmann H.J., Molls M., Lumenta C.B., Schwaiger M., Grosu A.L. Correlation between postoperative 3-[(123)I]iodo-L-alpha-methyltyrosine uptake and survival in patients with gliomas. J. Nucl. Med.: Off. Publ. Soc. Nucl. Med. 2001, 42:1144-1150.
Grosu A.L., Feldmann H., Dick S., Dzewas B., Nieder C., Gumprecht H., Frank A., Schwaiger M., Molls M., Weber W.A. Implications of IMT-SPECT for postoperative radiotherapy planning in patients with gliomas. Int. J. Radiat. Oncol. Biol. Phys. 2002, 54:842-854.
Yamamoto Y., Ono Y., Aga F., Kawai N., Kudomi N., Nishiyama Y. Correlation of 18F-FLT uptake with tumor grade and Ki-67 immunohistochemistry in patients with newly diagnosed and recurrent gliomas. J. Nucl. Med.: Off. Publ. Soc. Nucl. Med. 2012, 53:1911-1915.
Idema A.J., Hoffmann A.L., Boogaarts H.D., Troost E.G., Wesseling P., Heerschap A., van der Graaf W.T., Grotenhuis J.A., Oyen W.J. 3'-Deoxy-3'-18F-fluorothymidine PET-derived proliferative volume predicts overall survival in high-grade glioma patients. J. Nucl. Med.: Off. Publ. Soc. Nucl. Med. 2012, 53:1904-1910.
Shishido H., Kawai N., Miyake K., Yamamoto Y., Nishiyama Y., Tamiya T. Diagnostic Value of 11C-Methionine (MET) and 18F-Fluorothymidine (FLT) Positron Emission Tomography in Recurrent High-Grade Gliomas; Differentiation from Treatment-Induced Tissue Necrosis. Cancers 2012, 4:244-256.
Zhao F., Cui Y., Li M., Fu Z., Chen Z., Kong L., Yang G., Yu J. Prognostic value of 3'-Deoxy-3'-18F-Fluorothymidine ([F] FLT PET) in patients with recurrent malignant gliomas. Nucl. Med. Biol. 2014, 41:710-715.
Padma M.V., Said S., Jacobs M., Hwang D.R., Dunigan K., Satter M., Christian B., Ruppert J., Bernstein T., Kraus G., Mantil J.C. Prediction of pathology and survival by FDG PET in gliomas. J. Neuro-Oncol. 2003, 64:227-237.
Spence A.M., Muzi M., Mankoff D.A., O'Sullivan S.F., Link J.M., Lewellen T.K., Lewellen B., Pham P., Minoshima S., Swanson K., Krohn K.A. 18F-FDG PET of gliomas at delayed intervals: improved distinction between tumor and normal gray matter. J. Nucl. Med.: Off. Publ. Soc. Nucl. Med. 2004, 45:1653-1659.
Di Chiro G., Oldfield E., Wright D.C., De Michele D., Katz D.A., Patronas N.J., Doppman J.L., Larson S.M., Ito M., Kufta C.V. Cerebral necrosis after radiotherapy and/or intraarterial chemotherapy for brain tumors: PET and neuropathologic studies. AJR Am. J. Roentgenol. 1988, 150:189-197.
Levivier M., Goldman S., Pirotte B., Brucher J.M., Baleriaux D., Luxen A., Hildebrand J., Brotchi J. Diagnostic yield of stereotactic brain biopsy guided by positron emission tomography with [18F]fluorodeoxyglucose. J. Neurosurg. 1995, 82:445-452.
Tralins K.S., Douglas J.G., Stelzer K.J., Mankoff D.A., Silbergeld D.L., Rostomily R.C., Hummel S., Scharnhorst J., Krohn K.A., Spence A.M. Volumetric analysis of 18F-FDG PET in glioblastoma multiforme: prognostic information and possible role in definition of target volumes in radiation dose escalation. J. Nucl. Med.: Off. Publ. Soc. Nucl. Med. 2002, 43:1667-1673.
Lee J.K., Liu R.S., Shiang H.R., Pan D.H. Usefulness of semiquantitative FDG-PET in the prediction of brain tumor treatment response to gamma knife radiosurgery. J. Comput. Assist. Tomogr. 2003, 27:525-529.
Shinoura N., Nishijima M., Hara T., Haisa T., Yamamoto H., Fujii K., Mitsui I., Kosaka N., Kondo T., Hara T. Brain tumors: detection with C-11 choline PET. Radiology 1997, 202:497-503.
Utriainen M., Komu M., Vuorinen V., Lehikoinen P., Sonninen P., Kurki T., Utriainen T., Roivainen A., Kalimo H., Minn H. Evaluation of brain tumor metabolism with [11C]choline PET and 1H-MRS. J. Neuro-Oncol. 2003, 62:329-338.
Li F.M., Nie Q., Wang R.M., Chang S.M., Zhao W.R., Zhu Q., Liang Y.K., Yang P., Zhang J., Jia H.W., Fang H.H. 11C-CHO PET in optimization of target volume delineation and treatment regimens in postoperative radiotherapy for brain gliomas. Nucl. Med. Biol. 2012, 39:437-442.
Kawai N., Lin W., Cao W.D., Ogawa D., Miyake K., Haba R., Maeda Y., Yamamoto Y., Nishiyama Y., Tamiya T. Correlation between F-fluoromisonidazole PET and expression of HIF-1alpha and VEGF in newly diagnosed and recurrent malignant gliomas. Eur. J. Nucl. Med. Mol. Imaging 2014, Apr 30. [Epub ahead of print].
Yamamoto Y., Maeda Y., Kawai N., Kudomi N., Aga F., Ono Y., Nishiyama Y. Hypoxia assessed by 18F-fluoromisonidazole positron emission tomography in newly diagnosed gliomas. Nucl. Med. Commun. 2012, 33:621-625.
Spence A.M., Muzi M., Swanson K.R., O'Sullivan F., Rockhill J.K., Rajendran J.G., Adamsen T.C., Link J.M., Swanson P.E., Yagle K.J., Rostomily R.C., Silbergeld D.L., Krohn K.A. Regional hypoxia in glioblastoma multiforme quantified with [18F]fluoromisonidazole positron emission tomography before radiotherapy: correlation with time to progression and survival. Clin. Cancer Res.: Off. J. Am. Assoc. Cancer Res. 2008, 14:2623-2630.
Barajas R.F., Chang J.S., Segal M.R., Parsa A.T., McDermott M.W., Berger M.S., Cha S. Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 2009, 253:486-496.
Higano S., Yun X., Kumabe T., Watanabe M., Mugikura S., Umetsu A., Sato A., Yamada T., Takahashi S. Malignant astrocytic tumors: clinical importance of apparent diffusion coefficient in prediction of grade and prognosis. Radiology 2006, 241:839-846.
Hein P.A., Eskey C.J., Dunn J.F., Hug E.B. Diffusion-weighted imaging in the follow-up of treated high-grade gliomas: tumor recurrence versus radiation injury. AJNR Am. J. Neuroradiol. 2004, 25:201-209.
Wu J.S., Zhou L.F., Tang W.J., Mao Y., Hu J., Song Y.Y., Hong X.N., Du G.H. Clinical evaluation and follow-up outcome of diffusion tensor imaging-based functional neuronavigation: a prospective, controlled study in patients with gliomas involving pyramidal tracts. Neurosurgery 2007, 61:935-948. (discussion 948-939).
Schlemmer H.P., Bachert P., Herfarth K.K., Zuna I., Debus J., van Kaick G. Proton MR spectroscopic evaluation of suspicious brain lesions after stereotactic radiotherapy. AJNR Am. J. Neuroradiol. 2001, 22:1316-1324.
Roy B., Awasthi R., Bindal A., Sahoo P., Kumar R., Behari S., Ojha B.K., Husain N., Pandey C.M., Rathore R.K., Gupta R.K. Comparative evaluation of 3-dimensional pseudocontinuous arterial spin labeling with dynamic contrast-enhanced perfusion magnetic resonance imaging in grading of human glioma. J. Comput. Assist. Tomogr. 2013, 37:321-326.
Furtner J., Bender B., Braun C., Schittenhelm J., Skardelly M., Ernemann U., Bisdas S. Prognostic value of blood flow measurements using arterial spin labeling in gliomas. PLoS One 2014, 9:e99616.
Noguchi T., Yoshiura T., Hiwatashi A., Togao O., Yamashita K., Nagao E., Shono T., Mizoguchi M., Nagata S., Sasaki T., Suzuki S.O., Iwaki T., Kobayashi K., Mihara F., Honda H. Perfusion imaging of brain tumors using arterial spin-labeling: correlation with histopathologic vascular density. AJNR Am. J. Neuroradiol. 2008, 29:688-693.
Haberg A., Kvistad K.A., Unsgard G., Haraldseth O. Preoperative blood oxygen level-dependent functional magnetic resonance imaging in patients with primary brain tumors: clinical application and outcome. Neurosurgery 2004, 54:902-914. (discussion 914-905).
Kim H.S., Jahng G.H., Ryu C.W., Kim S.Y. Added value and diagnostic performance of intratumoral susceptibility signals in the differential diagnosis of solitary enhancing brain lesions: preliminary study. AJNR Am. J. Neuroradiol. 2009, 30:1574-1579.
Zhang H., Tan Y., Wang X.C., Qing J.B., Wang L., Wu X.F., Zhang L., Liu Q.W. Susceptibility-weighted imaging: the value in cerebral astrocytomas grading. Neurol. India 2013, 61:389-395.
Kadota T., Nakagawa H., Kuroda C. Malignant glioma. Evaluation with 3D time-of-flight MR angiography. Acta Radiol. 1998, 39:227-232.
Togao O., Yoshiura T., Keupp J., Hiwatashi A., Yamashita K., Kikuchi K., Suzuki Y., Suzuki S.O., Iwaki T., Hata N., Mizoguchi M., Yoshimoto K., Sagiyama K., Takahashi M., Honda H. Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades. Neuro Oncol. 2014, 16:441-448.
Wen Z., Hu S., Huang F., Wang X., Guo L., Quan X., Wang S., Zhou J. MR imaging of high-grade brain tumors using endogenous protein and peptide-based contrast. Neuroimage 2010, 51:616-622.
Pirotte B., Goldman S., Massager N., David P., Wikler D., Vandesteene A., Salmon I., Brotchi J., Levivier M. Comparison of 18F-FDG and 11C-methionine for PET-guided stereotactic brain biopsy of gliomas. J. Nucl. Med.: Off. Publ. Soc. Nucl. Med. 2004, 45:1293-1298.
Hutterer M., Nowosielski M., Putzer D., Waitz D., Tinkhauser G., Kostron H., Muigg A., Virgolini I.J., Staffen W., Trinka E., Gotwald T., Jacobs A.H., Stockhammer G. O-(2-18F-fluoroethyl)-L-tyrosine PET predicts failure of antiangiogenic treatment in patients with recurrent high-grade glioma. J. Nucl. Med.: Off. Publ. Soc. Nucl. Med. 2011, 52:856-864.
Bruehlmeier M., Roelcke U., Schubiger P.A., Ametamey S.M. Assessment of hypoxia and perfusion in human brain tumors using PET with 18F-fluoromisonidazole and 15O-H2O. J. Nucl. Med.: Off. Publ. Soc. Nucl. Med. 2004, 45:1851-1859.
Flament J., Geffroy F., Medina C., Robic C., Mayer J.F., Meriaux S., Valette J., Robert P., Port M., Le Bihan D., Lethimonnier F., Boumezbeur F. In vivo CEST MR imaging of U87 mice brain tumor angiogenesis using targeted LipoCEST contrast agent at 7T. Magn. Reson. Med.: Off. J. Soc. Magn. Reson. Med. / Soc. Magn. Reson. Med. 2013, 69:179-187.
White C.M., Pope W.B., Zaw T., Qiao J., Naeini K.M., Lai A., Nghiemphu P.L., Wang J.J., Cloughesy T.F., Ellingson B.M. Regional and voxel-wise comparisons of blood flow measurements between dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) and arterial spin labeling (ASL) in brain tumors. J. Neuroimaging: Off. J. Am. Soc. Neuroimaging 2014, 24:23-30.
Sehgal V., Delproposto Z., Haddar D., Haacke E.M., Sloan A.E., Zamorano L.J., Barger G., Hu J., Xu Y., Prabhakaran K.P., Elangovan I.R., Neelavalli J., Reichenbach J.R. Susceptibility-weighted imaging to visualize blood products and improve tumor contrast in the study of brain masses. J. Magn. Reson. Imaging: JMRI 2006, 24:41-51.
Farid N., Almeida-Freitas D.B., White N.S., McDonald C.R., Muller K.A., Vandenberg S.R., Kesari S., Dale A.M. Restriction-Spectrum Imaging of Bevacizumab-Related Necrosis in a Patient with GBM. Front. Oncol. 2013, 3:258.