Interdisciplinary Centre for Security, Reliability and Trust (SnT) > SEDAN - Service and Data Management in Distributed Systems NCER-FT - FinTech National Centre of Excellence in Research
Bank, W.: Improving smes’ access to finance and finding innovative solutions to unlock sources of capital (2023). https://www.worldbank.org/en/topic/smefinance. Accessed 10 Apr 2023
Varga, J.: Defining the economic role and benefits of micro small and medium-sized enterprises in the 21st century with a systematic review of the literature. Acta Polytechnica Hungarica 18(11), 209–228 (2021)
Rao, P., Kumar, S., Chavan, M., Lim, W.M.: A systematic literature review on SME financing: trends and future directions. J. Small Bus. Manag. 61(3), 1247– 1277 (2023)
Beaver, W.H.: Financial ratios as predictors of failure. J. Account. Res. 71–111 (1966)
Altman, E.I.: Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. J. Finan. 23(4), 589–609 (1968)
Altman, E.I., Sabato, G., Wilson, N.: The value of non-financial information in sme risk management. SSRN 1320612 (2008)
Kim, M.-J., Kang, D.-K.: Ensemble with neural networks for bankruptcy prediction. Expert Syst. Appl. 37(4), 3373–3379 (2010)
Liang, D., Lu, C.-C., Tsai, C.-F., Shih, G.-A.: Financial ratios and corporate governance indicators in bankruptcy prediction: a comprehensive study. Eur. J. Oper. Res. 252(2), 561–572 (2016)
Hosaka, T.: Bankruptcy prediction using imaged financial ratios and convolutional neural networks. Expert Syst. Appl. 117, 287–299 (2019)
Mselmi, N., Lahiani, A., Hamza, T.: Financial distress prediction: the case of French small and medium-sized firms. Int. Rev. Finan. Anal. 50, 67–80 (2017)
Son, H., Hyun, C., Phan, D., Hwang, H.J.: Data analytic approach for bankruptcy prediction. Expert Syst. Appl. 138, 112816 (2019)
Agarwal, V., Taffler, R.: Comparing the performance of market-based and accounting-based bankruptcy prediction models. J. Bank. Finan. 32(8), 1541–1551 (2008)
Mai, F., Tian, S., Lee, C., Ma, L.: Deep learning models for bankruptcy prediction using textual disclosures. Eur. J. Oper. Res. 274(2), 743–758 (2019)
Khoja, L., Chipulu, M., Jayasekera, R.: Analysis of financial distress cross countries: using macroeconomic, industrial indicators and accounting data. Int. Rev. Finan. Anal. 66, 101379 (2019)
Kumar, P.R., Ravi, V.: Bankruptcy prediction in banks and firms via statistical and intelligent techniques-a review. Eur. J. Oper. Res. 180(1), 1–28 (2007)
Lin, F., Liang, D., Chu, W.-S.: The role of non-financial features related to corporate governance in business crisis prediction. J. Mar. Sci. Technol. 18(4), 4 (2010)
Olson, D.L., Delen, D., Meng, Y.: Comparative analysis of data mining methods for bankruptcy prediction. Decis. Supp. Syst. 52(2), 464–473 (2012)
Tinoco, M.H., Wilson, N.: Financial distress and bankruptcy prediction among listed companies using accounting, market and macroeconomic variables. Int. Rev. Finan. Anal. 30, 394–419 (2013)
Tobback, E., Bellotti, T., Moeyersoms, J., Stankova, M., Martens, D.: Bankruptcy prediction for SMEs using relational data. Decis. Supp. Syst. 102, 69–81 (2017)
Kou, G., et al.: Bankruptcy prediction for SMEs using transactional data and two-stage multiobjective feature selection. Decis. Supp. Syst. 140, 113429 (2021)
Huang, B., Yao, X., Luo, Y., Li, J.: Improving financial distress prediction using textual sentiment of annual reports. Ann. Oper. Res. 330, 1–28 (2022)
Schalck, C., Yankol-Schalck, M.: Predicting French sme failures: new evidence from machine learning techniques. Appl. Econ. 53(51), 5948–5963 (2021)
Lextrait, B.: Scaling up SMEs’ credit scoring scope with lightGBM. Appl. Econ. 55, 1–19 (2022)
Grice, J.S., Dugan, M.T.: The limitations of bankruptcy prediction models: some cautions for the researcher. Rev. Quant. Finan. Acc. 17, 151–166 (2001)
Zmijewski, M.E.: Methodological issues related to the estimation of financial distress prediction models. J. Account. Res. 59–82 (1984)
Ohlson, J.A.: Financial ratios and the probabilistic prediction of bankruptcy. J. Account. Res. 109–131 (1980)
Papík, M., Papíková, L.: Impacts of crisis on SME bankruptcy prediction models’ performance. Expert Syst. Appl. 214, 119072 (2023)
Wang, X., Kräussl, Z., Zurad, M., Brorsson, M.: Effective automatic feature engineering on financial statements for bankruptcy prediction (2022)
Howard, R.A.: Information value theory. IEEE Trans. Syst. Sci. Cybern. 2(1), 22–26 (1966)
Siddiqi, N.: Credit Risk Scorecards: Developing and Implementing Intelligent Credit Scoring, vol. 3. John Wiley & Sons, Hoboken (2012)
Zhang, L., Lin, J., Karim, R.: Sliding window-based fault detection from high-dimensional data streams. IEEE Trans. Syst. Man Cybern. Syst. 47(2), 289–303 (2016)
Boguslauskas, V., Mileris, R., Adlytė, R.: The selection of financial ratios as independent variables for credit risk assessment. Econ. Manag. 16(4), 1032–1040 (2011)
Yu, Q., Miche, Y., Séverin, E., Lendasse, A.: Bankruptcy prediction using extreme learning machine and financial expertise. Neurocomputing 128, 296–302 (2014)
Zhu, Y., Zhou, L., Xie, C., Wang, G.-J., Nguyen, T.V.: Forecasting SMEs’ credit risk in supply chain finance with an enhanced hybrid ensemble machine learning approach. Int. J. Prod. Econ. 211, 22–33 (2019)
Zięba, M., Tomczak, S.K., Tomczak, J.M.: Ensemble boosted trees with synthetic features generation in application to bankruptcy prediction. Expert Syst. Appl. 58, 93–101 (2016)