Central limit theorems; Functional convergence; Gaussian fields; Nodal sets; Random waves; Total disorder; Statistical and Nonlinear Physics; Mathematical Physics
Abstract :
[en] We consider Berry’s random planar wave model (J Phys A 10(12):2083–2092, 1977), and prove spatial functional limit theorems—in the high-energy limit—for discretized and truncated versions of the random field obtained by restricting its nodal length to rectangular domains. Our analysis is crucially based on a detailed study of the projection of nodal lengths onto the so-called second Wiener chaos, whose high-energy fluctuations are given by a Gaussian total disorder field indexed by polygonal curves. Such an exact characterization is then combined with moment estimates for suprema of stationary Gaussian random fields, and with a tightness criterion by Davydov and Zitikis (Ann Inst Stat Math 60(2):345–365, 2008).
Disciplines :
Mathematics
Author, co-author :
Notarnicola, Massimo; Department of Mathematics, University of Luxembourg, Esch-sur-Alzette, Luxembourg
PECCATI, Giovanni ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
Vidotto, Anna; Department of Mathematics and Applications, University of Naples Federico II, Naples, Italy
External co-authors :
yes
Language :
English
Title :
Functional Convergence of Berry’s Nodal Lengths: Approximate Tightness and Total Disorder
Giovanni Peccati is partially supported by the FNR Grant HDSA (O21/16236290/HDSA) at Luxembourg University. Anna Vidotto is supported by the co-financing of the European Union—FSE-REACT-EU, PON Research and Innovation 2014-2020, DM 1062/2021.
Abert, M., Bergeron, N., Le Masson, E.: Eigenfunctions and random waves in the Benjamini–Schramm limit. Preprint at arXiv:1810.05601 (2021)
Ancona, M., Letendre, T.: Roots of Kostlan polynomials: moments, strong law of large numbers and central limit theorem. Ann. Henri Lebesgue 4, 1659–1703 (2021) DOI: 10.5802/ahl.113
Ancona, M., Letendre, T.: Zeros of smooth stationary Gaussian processes. Electron. J. Probab. (2021). 10.1214/21-EJP637 DOI: 10.1214/21-EJP637
Adler, R.J., Taylor, J.E.: Random Fields and Geometry. Springer Monographs in Mathematics. Springer-Verlag, New York (2007)
Beliaev, D., Cammarota, V., Wigman, I.: Two point function for critical points of a random plane wave. Int. Math. Res. Notices 2019(9), 2661–2689 (2019) DOI: 10.1093/imrn/rnx197
Berry, M.V.: Regular and irregular semiclassical wavefunctions. J. Phys. A 10(12), 2083–2092 (1977) DOI: 10.1088/0305-4470/10/12/016
Berry, M.V.: Statistics of nodal lines and points in chaotic quantum billiards: perimeter corrections, fluctuations, curvature. J. Phys. A 35(13), 3025–3038 (2002) DOI: 10.1088/0305-4470/35/13/301
Buckley, J., Sodin, M.: Fluctuations of the increment of the argument for the Gaussian entire function. J. Stat. Phys. 168(2), 300–330 (2017) DOI: 10.1007/s10955-017-1813-z
Canzani, Y., Hanin, B.: Local universality for zeros and critical points of monochromatic random waves. Commun. Math. Phys. 378, 1677–1712 (2020) DOI: 10.1007/s00220-020-03826-w
Diaconis, P., Evans, S.N.: Linear functionals of eigenvalues of random matrices. Trans. Am. Math. Soc. 353(7), 2615–2633 (2001) DOI: 10.1090/S0002-9947-01-02800-8
Dalmao, F., Nourdin, I., Peccati, G., Rossi, M.: Phase singularities in complex arithmetic random waves. Electron. J. Probab. 24, 45 (2019) DOI: 10.1214/19-EJP321
Dierickx, G., Nourdin, I., Peccati, G., Rossi, M.: Small scale CLTs for the nodal length of monochromatic waves. Commun. Math. Phys. (2022). 10.1007/s00220-022-04422-w DOI: 10.1007/s00220-022-04422-w
Dehling, H., Taqqu, M.S.: The empirical process of some long-range dependent sequences with an application to U -statistics. Ann. Stat. 17(4), 1767–1783 (1989) DOI: 10.1214/aos/1176347394
Dudley, R.M.: Real Analysis and Probability. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2002) DOI: 10.1017/CBO9780511755347
Davydov, Y., Zitikis, R.: On weak convergence of random fields. Ann. Inst. Stat. Math. 60(2), 345–365 (2008) DOI: 10.1007/s10463-006-0090-4
Ghosh, S., Lebowitz, J.L.: Fluctuations, large deviations and rigidity in hyperuniform systems: a brief survey. Indian J. Pure Appl. Math. 48(4), 609–631 (2017) DOI: 10.1007/s13226-017-0248-1
Hughes, C.P., Nikeghbali, A., Yor, M.: An arithmetic model for the total disorder process. Probab. Theory Relat. Fields 141(1), 47–59 (2008) DOI: 10.1007/s00440-007-0079-9
Ingremeau, M.: Local weak limits of Laplace eigenfunctions. Tunis. J. Math. 3(3), 481–515 (2021) DOI: 10.2140/tunis.2021.3.481
Ivanov, A.A.: Convergence of distributions of functionals of measurable random fields. Ukr. Math. J. 32(1), 19–25 (1980) DOI: 10.1007/BF01090462
Krishnapur, M., Kurlberg, P., Wigman, I.: Non-universality of nodal length distribution for arithmetic random waves. Ann. Math. 177(2), 699–737 (2013) DOI: 10.4007/annals.2013.177.2.8
Krasikov, I.: Approximations for the Bessel and Airy functions with an explicit error term. LMS J. Comput. Math. 17(1), 209–225 (2014) DOI: 10.1112/S1461157013000351
Kurlberg, P., Wigman, I.: Non-universality of the Nazarov–Sodin constant for random plane waves and arithmetic random waves. Adv. Math. 330, 516–552 (2018) DOI: 10.1016/j.aim.2018.03.026
Lebowitz, J.L.: Charge fluctuations in Coulomb systems. Phys. Rev. A 27(3), 1491–1494 (1983) DOI: 10.1103/PhysRevA.27.1491
Marinucci, D., Peccati, G.: Random fields on the sphere: representation. In: Limit Theorems and Cosmological Applications. London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (2011)
Marinucci, D., Peccati, G., Rossi, M., Wigman, I.: Non-universality of nodal length distribution for arithmetic random waves. GAFA 3, 926–960 (2016)
Muirhead, S., Rivera, A., Vanneauville, H., Köhler-Schindler, L.: The phase transition for planar Gaussian percolation models without FKG. Preprint at arXiv:2010.11770 (2020)
Marinucci, D., Wigman, I.: On the area of excursion sets of spherical Gaussian eigenfunctions. J. Math. Phys. 52(9), 093301 (2011) DOI: 10.1063/1.3624746
Neuhaus, G.: On weak convergence of stochastic processes with multidimensional time parameter. Ann. Math. Stat. 42(4), 1285–1295 (1971) DOI: 10.1214/aoms/1177693241
Nourdin, I., Peccati, G.: Normal Approximation with Malliavin Calculus: From Stein’s Method to Universality. Cambridge University Press, Cambridge (2012) DOI: 10.1017/CBO9781139084659
Nourdin, I., Peccati, G., Rossi, M.: Nodal statistics of planar random waves. Commun. Math. Phys. 369(1), 99–151 (2019) DOI: 10.1007/s00220-019-03432-5
Nazarov, F., Sodin, M.: Asymptotic laws for the spatial distribution and the number of connected components of zero sets of Gaussian random functions. J. Math. Phys. Anal. Geom. 12(3), 205–278 (2016)
Nualart, D.: The Malliavin Calculus and Related Topics. Probability and Its Applications, 2nd edn. Springer, Berlin (2006)
Paranjape, S.R., Park, C.: Distribution of the supremum of the two-parameter Yeh-Wiener process on the boundary. J. Appl. Probab. 10(4), 875–880 (1973) DOI: 10.2307/3212390
Priya, L.: Overcrowding estimates for zero count and nodal length of stationary Gaussian processes. Preprint at arXiv:2012.10857 (2020)
Peccati, G., Taqqu, M.S.: Wiener Chaos: Moments, Cumulants and Diagrams. Springer-Verlag, Berlin (2010)
Peccati, G., Vidotto, A.: Gaussian random measures generated by Berry’s nodal sets. J. Stat. Phys. 178(4), 996–1027 (2020) DOI: 10.1007/s10955-019-02477-z
Selberg, A.: Contributions to the Theory of the Riemann Zeta-Function. Archiv for mathematik og naturvidenskab. Cammermeyer, Oslo (1946)
Selberg, A.: Old and new conjectures and results about a class of Dirichlet series. In: Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori, 1989), pp. 367–385. University of Salerno, Salerno (1992)
Sodin, M., Tsirelson, B.: Random complex zeroes. I. Asymptotic normality. Isr. J. Math. 144, 125–149 (2005) DOI: 10.1007/BF02984409
Szego, G.: Orthogonal Polynomials. American Mathematical Society, Providence (1975)
Taylor, J.E., Adler, R.J.: Gaussian processes, kinematic formulae and Poincaré’s limit. Ann. Probab. 37(4), 1459–1482 (2009) DOI: 10.1214/08-AOP439
Torquato, S.: Hyperuniform states of matter. Phys. Rep. 745, 1–95 (2018) DOI: 10.1016/j.physrep.2018.03.001
Wichura, M.J.: Inequalities with applications to the weak convergence of random processes with multi-dimensional time parameters. Ann. Math. Stat. 40(2), 681–687 (1969) DOI: 10.1214/aoms/1177697741
Wieand, K.: Eigenvalue distributions of random unitary matrices. Probab. Theory Relat. Fields 123(2), 202–224 (2002) DOI: 10.1007/s004400100186
Wigman, I.: Fluctuations of the nodal length of random spherical harmonics. Commun. Math. Phys. 298(3), 787–831 (2010) DOI: 10.1007/s00220-010-1078-8
Wigman, I.: On the nodal structures of random fields—a decade of results. Preprint at arXiv:2206.10020 (2022)
Zelditch, S.: Real and complex zeros of Riemannian random waves. In: Spectral Analysis in Geometry and Number Theory, Volume 484 of Contemporary Mathematics (2009)