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Abstract
We consider Berry’s random planar wave model (J Phys A 10(12):2083–2092, 1977), and
prove spatial functional limit theorems—in the high-energy limit—for discretized and trun-
cated versions of the random field obtained by restricting its nodal length to rectangular
domains. Our analysis is crucially based on a detailed study of the projection of nodal
lengths onto the so-called second Wiener chaos, whose high-energy fluctuations are given by
a Gaussian total disorder field indexed by polygonal curves. Such an exact characterization
is then combined with moment estimates for suprema of stationary Gaussian random fields,
and with a tightness criterion by Davydov and Zitikis (Ann Inst Stat Math 60(2):345–365,
2008).

Keywords Central limit theorems · Functional convergence · Gaussian fields · Nodal sets ·
Random waves · Total disorder
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1 Introduction

In this work, every random object is defined on a common probability space (�,F ,P), with
E denoting expectation with respect to P.

1.1 TheModel

The aim of this paper is to initiate the study of the high-energy functional fluctuations of
geometric quantities attached to the zero set of Berry’s Random Plane Wave model BE ={
BE (x) : x ∈ R

2
}
with parameter E > 0—thus addressing a question left open in [37].
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Berry’s model is defined as the unique (in distribution) isotropic centered Gaussian field on
the plane solving almost surely the Helmholtz equation

�BE (x) + 4π2E · BE (x) = 0, x = (x1, x2) ∈ R
2,

with � = ∂2/∂x21 + ∂2/∂x22 equal to the usual Laplace operator.1 Using e.g. [4, Theorem
5.7.2], the above characterization is equivalent to requiring that the covariance function of
BE is given by

r E (x, y) = r E (x − y) := J0
(
2π

√
E‖x − y‖

)
, x, y ∈ R

2, (1.1)

where J0 is theBessel function of the first kind of order 0. The randomfield BE was introduced
by Berry [6, 7] and subsequently studied in several works—see for instance [5, 9, 11, 23, 31,
37].

To simplify the discussion, we will sometimes write b = {
b(x) : x ∈ R

2
}
to indicate

the random field BE for E = (4π2)−1, in such a way that b is almost surely a Laplace
eigenfunction with unit eigenvalue. One should regard the random field b as a canonical
Gaussian Laplace eigenfunction on R

2, emerging as a local scaling limit in a number of
models of Gaussian random fields on 2-manifolds—see e.g. [9, 11, 21, 26, 46–48] for explicit
examples. We also recall that, in resonance with Berry’s conjecture (see e.g. [1, 9, 19, 47],
as well as [6] for the original formulation), the field b is believed to be a model for the
high-energy behaviour of deterministic Laplace eigenfunctions on manifolds where classical
dynamics are sufficiently chaotic.
Some notation Given two sequences of positive numbers {an}n and {bn}n , we write an =
o(bn) if an/bn → 0 as n →+∞, an = O(bn) if an/bn is asymptotically bounded, an ∼ bn
if an/bn → 1 as n → +∞ and an ≈ bn if an/bn → c as n → +∞, where c is a constant

that does not depend on n. Moreover, for random variables {Xn}n and X we write Xn
d→ X

if the sequence Xn converges to X in distribution.

1.2 Fluctuations of Nodal Sets

As anticipated, in this paper we will focus on the high-energy behaviour of the nodal set

B−1
E (0) = {x ∈ R

2 : BE (x) = 0
}
.

It is a well-known fact [9, 31, 37] that B−1
E (0) is almost surely equal to the union of disjoint

rectifiable curves (called nodal lines). Local and non-local functionals of such a random
set have been recently the object of an intense study, especially in connection with nodal
statistics of (approximate) Laplace eigenfunctions on Riemann surfaces (see [9, 11, 23, 27,
32, 47] for a sample of recent contributions).

For every Borel set D ⊆ R
2, now write

LE (D) := H1(B−1
E (0) ∩D), (1.2)

whereH1 denotes the 1-dimensional Hausdorff measure, to indicate the length of the portion
of the nodal lines of BE contained inD. From the above discussion, it is clear that themapping
D �→ LE (D) defines with probability one a set function with the following elementary
properties:

1 The presence of the prefactor 4π2 is inherited from [31, 37], where it was introduced in order to facilitate
the connections with the literature about Arithmetic Random Waves [21, 26].
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1. LE is a locally finite measure on B(R2);
2. The support of LE is B−1

E (0);
3. The restriction ofLE to any squareQ = [a, b] × [c, d] is completely determined by the

random partition function

(t1, t2) �→ LE ([a, t1] × [c, t2]), (t1, t2) ∈ Q. (1.3)

Several results characterizing the high-energy behaviour of LE are available. The most
relevant for our study are reported in the next statement. From now on, we use the symbolA
to denote the collection of all piecewise C1 simply connected compact subsets of R2 having
non-empty interior.

Theorem 1.1 1. (See [7, 31]) For every D ∈ A , one has that

E [LE (D)] = area(D)
π√
2

√
E and Var[LE (D)] ∼ area(D)

log E

512π
,

as E →∞.
2. (See Theorem 1.1 in [31]) For every D ∈ A , as E →∞,

L̃E (D) :=
√
512π

log E

(
LE (D) − E [LE (D)]

) d−→ N (0, area(D)), (1.4)

where N (μ, σ 2) denotes the one-dimensional Gaussian distribution with mean μ and
variance σ 2.

3. (See Theorem 3.2 in [37]) For every integer d ≥ 1 and every fixedD1,D2, . . . ,Dd ∈ A ,
we define the d × d matrix � = {�(i, j) : i, j = 1, . . . , d} by the relation

�(i, j) := area(Di ∩D j ). (1.5)

Then, as E →∞, one has that
(
L̃E (D1), L̃E (D2), . . . , L̃E (Dd)

) d−→ Nd(0, �), (1.6)

whereNd(0, �) stands for the centered d-dimensionalGaussian distributionwith covari-
ance �.

Theorem 1.1-3 shows that, in the high-energy limit, the finite-dimensional distributions
of the process

{
L̃E (D) : D ∈ A

}
converge to those of a Gaussian field with the covariance

structure of a homogeneous independently scattered random measure with unit intensity.
Such a characterization immediately implies the following result.

Proposition 1.2 (See [37])
Define the random field XE = {XE (t1, t2) : (t1, t2) ∈ [0, 1]2} as

XE (t1, t2) := L̃E ([0, t1] × [0, t2]). (1.7)

Then, as E →∞, XE converges in the sense of finite-dimensional distributions to a standard
Wiener sheet, that is, to a centered Gaussian process W = {

W(t1, t2) : (t1, t2) ∈ [0, 1]2}
with covariance function E [W(t1, t2)W(s1, s2)] = (t1 ∧ s1)(t2 ∧ s2).

Wenote that the choice of the specific rectangle [0, 1]2 is immaterial: in particular, the con-
tent of Proposition 1.2 can be easily adapted to deal with arbitrary regionsQ = [a, b]×[c, d].
It is a remarkable fact—not noted in [37]—that the content of Proposition 1.2 allows one to
directly conclude that the signed measure L̃E defined in (1.4) converges to a standard white
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noise on the space of generalised functions D ′(R), with R = (0, 1)2. Such an implication is
made clear in the next statement, where we use the symbol C∞c (R) to indicate the class of
compactly supported smooth mappings on R; we refer the reader to [16] for definitions and
background.

Proposition 1.3 (Convergence to white noise) Let the above notation prevail. For every ϕ ∈
C∞c (R), define

〈L̃E , ϕ〉 :=
√
512π

log E

(∫

R
ϕ(t)LE (dt) − π√

2

√
E
∫

R
ϕ(t)dt

)
.

Then, the mapping ϕ �→ 〈L̃E , ϕ〉 is a random element with values in D ′(R) and, as E →
∞, 〈L̃E , •〉 converges in distribution, in the sense of D ′(R), to a standard white noise. In
particular, for every integer m ≥ 1 and every ϕ1, ..., ϕm ∈ C∞c (R), the vector

(〈L̃E , ϕ1〉, . . . , 〈L̃E , ϕm〉
)

converges in distribution to a m-dimensional centered Gaussian vector with covariance

	(i, j) =
∫

R
ϕi (t)ϕ j (t)dt, i, j = 1, ...,m.

For the sake of completeness, the proof of Proposition 1.3 is reported in Sect. 1. See e.g. [2,
3, 46] for similar results involving, respectively, nodal sets of random spherical harmonics,
roots of Kostlan polynomials, and zeros of stationary Gaussian processes with fast decaying
covariance functions.
Remark on notation From now on, we will freely use the language of Gaussian stochastic
analysis andWiener chaos expansions, as detailed e.g. in [30, Chapter 2] or [33, Chapter 1].
In particular, given a square-integrable random variable X that is measurable with respect to
the σ -field σ(G) generated by a separable Gaussian field G, we write X [q], q = 0, 1, . . . ,
to indicate the projection of X onto the qth Wiener chaos associated with G, in such a
way that X = ∑

q≥0 X [q], where the series converges in L2. Similarly, given a square-

integrable and σ(G)-measurable random field Z = {Z(t) : t = (t1, t2) ∈ [0, 1]2}, we will
write Z [q] := {Z [q](t) : t ∈ [0, 1]2}, where Z [q](t) is the projection of Z(t) onto the qth
Wiener chaos. Applying these conventions to the normalized nodal length process Z = XE

introduced in (1.7), one obtains the Wiener–Itô representation

XE = XE [2] + XE [4] + RE , where RE (t) :=
∑

q≥3
XE [2q](t), (1.8)

and the series converges in L2 for every fixed t.

1.3 TheMain Question

Some additional notation is required in order to frame our contribution. Consider the unit
square [0, 1]2 and, for all fixed t = (t1, t2) ∈ [0, 1]2, define the following four regions:

Q(t, NE) := {s = (s1, s2) ∈ [0, 1]2 : s1 > t1, s2 > t2
}

Q(t, NW ) := {s = (s1, s2) ∈ [0, 1]2 : s1 < t1, s2 > t2
}

Q(t, SW ) := {s = (s1, s2) ∈ [0, 1]2 : s1 < t1, s2 < t2
}

Q(t, SE) := {s = (s1, s2) ∈ [0, 1]2 : s1 > t1, s2 < t2
}
.
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We remark that some of these regions may be empty, in the case where t belongs to the
boundary of [0, 1]2. The Skorohod space D2 = D([0, 1]2,R) is the class of functions f :
[0, 1]2 → R verifying the following continuity property for every t ∈ [0, 1]2: for every
R ∈ {NE, NW , SW , SE} and every sequence {tn : n ≥ 1} ⊂ Q(t, R) such that tn → t
as n → ∞, the limit limn→∞ f (tn) exists and is finite, and, moreover, for every sequence
{tn : n ≥ 1} ⊂ Q(t, NE) such that tn → t as n →∞, one has that limn→∞ f (tn) = f (t).

We endow the space D2 both with the σ -field generated by coordinate projections, and
with the Skorohod topology described in Neuhaus [29, p. 1289]; such a topology is generated
by a distance, noted d in [29], making D2 a separable metric space. We also define C2 =
C([0, 1]2,R) to be the subset of D2 composed of continuous mappings.

We note that, in the case where f : [0, 1]2 → R takes the form f (t) := μ([0, t1] ×
[0, t2]) for some finite measure μ on [0, 1]2, it follows from an application of the dominated
convergence theorem that f ∈ D2. In view of the above discussion, the nodal length processes
{XE : E > 0} defined in (1.7) are thus D2-valued random elements.

Our aim in this paper is to initiate the study of the following question, that was left open
in [37].

Question A As E →∞, does XE converge in distribution to a standard Brownian sheetW
in the Skorohod space D2?

As explained in [37, Section 4.3] and in the forthcoming Sect. 2.2.1, an affirmative answer
toQuestion Awould yield a convergence result that is strictly stronger than the convergence
in the senses of finite-dimensional distributions and of generalized functions, featured in
Propositions 1.2 and 1.3 above—implying in particular limit theorems for random variables
depending on the maximum of XE or of its absolute value. In view of the results of [12],
these resultwould immediately extend tomonochromatic randomwaves onRiemann surfaces
without conjugate points.

We choose to base our analysis of Question A on the following standard lemma, whose
proof is deferred to Appendix 1.

Lemma 1.4 Let {X , Xn : n ≥ 1} be a collection of random fields with values in D2 such
that P(X ∈ C2) = 1. We assume that, for every n ≥ 1, the process Xn can be written as
Xn = Un + Vn +Wn, where the fields Un, Vn,Wn are such that

(a) As n →∞, Un converges weakly to X in D2,
(b) As n →∞, Vn converges weakly to zero in D2,
(c) For every ε > 0,

lim
n→∞P

{

sup
t∈[0,1]2

|Wn(t)| > ε

}

= 0,

Then, Xn converges weakly to X in D2.

In particular, applying Lemma 1.4 to (Xn,Un, Vn,Wn) = (XE , XE [4], XE [2], RE ) in (1.8)
(and noting that P {XE [2] ∈ C2} = P {XE [4] ∈ C2} = 1, for every E > 0), suggests the
following three-step strategy for positively answering Question A:

(I) Prove that the projection XE [4] converges weakly to a standardWiener sheet as E →∞;
(II) Prove that the second chaotic projection XE [2] associated with XE converges weakly to

zero, as E →∞;
(III) Prove that the residual term RE converges uniformly to zero in probability, as E →∞.

For ease of reference, we will refer to (I)–(III) as “Strategy S”. The next result, proved
in [37, Theorem 3.4], settles Point (I).
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Theorem 1.5 ([37], Theorem 3.4) For every fixed t ∈ [0, 1]2, one has that, as E →∞,

E
[
(XE (t) − XE [4](t))2

]→ 0.

Moreover, as E →∞, XE [4] converges weakly toW in the Skorohod space D2.

As explained in the forthcoming Sect. 2, the principal aim of the present work is to fully
address Point (II), as well as to provide some decisive progress towards a full achievement of
Point (III). We will see in Sect. 2.1.2 that our way of attacking Point (II) reveals an intriguing
connection with the CLTs for zeros of Gaussian entire functions established in [8, 40]. On
the other hand, our analysis of Point (III) will allow one to prove functional convergence
results for some discretized versions of the nodal fields {XE : E > 0}—see Sect. 2.2.

2 Main Results

2.1 Second Chaos and Total Disorder

Let D be a planar domain with piecewise C1 boundary ∂D. In [31, Lemma 4.1], the authors
prove that the projection on the second Wiener chaos of the nodal lengthLE (D), as defined
in (1.2), is given by

LE [2](D) = 1

8π
√
2E

∫

∂D
BE (x)〈∇BE (x), nD(x)〉H1(dx), (2.1)

where nD(x) = (n1D(x), n2D(x)) is the outward unit normal vector to ∂D at x . One of the
main contributions of ourwork is a full characterization of the joint fluctuations of the random
variables LE [2](D), as E →∞, whenever D is a polygonal domain.

2.1.1 Some Random Fields Indexed by Curves

Wewill actually study the fluctuations of (2.1) in the context of slightly more general random
objects.

Definition 2.1 (a) An oriented segment S is the image of a mapping

γ : [0, L] → R
2

: t �→ p + t(cos θ, sin θ),

where L > 0 is the length of S, p ∈ R
2 and θ ∈ [0, 2π).

(b) A (simple) polygonal chain is an ordered collectionC = (S1, ..., Sm)of oriented segments
such that γk(Lk) = γk+1(0) = pk+1 (with obvious notation), for all k = 1, ...,m−1, and
the union∪Si defines a simple curve inR2;wewill say thatC is closed if γm(Lm) = γ1(0).
The class of all polygonal chains is denoted by C . In the discussion below, we will often
identify a chain C with the oriented curve defined by the union ∪Si .

(c) Given C = (S1, ..., Sm) ∈ C and x belonging to the relative interior of Sk , k = 1, ...,m,
we define nC(x) = (− sin θk, cos θk) to be the unit normal vector to C at the point x .
The definition of nC(x) is arbitrarily extended (for instance, by setting nC(x) = 0) to the
remaining (finitely many) points x in C. If the chain C coincides with a single segment S,
then nC(x) = nS(x) is independent of the choice of x and we simply write nS to indicate
the normal vector common to all elements of the relative interior of S.
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(d) Given two oriented segments S1, S2 we define the signed length of the intersection S1∩S2
as λ(S1, S2) := length(S1 ∩ S2) 〈nS1 , nS2〉, where 〈·, ·〉 stands for the usual Euclidean
inner product; plainly, if length(S1 ∩ S2) > 0, then 〈nS1 , nS2〉 equals either 1 or −1,
depending on whether S1 and S2 have the same, or opposite, orientations. We extend the
definition of λ to all pairs A = (T1, ..., Tn), C = (S1, ...., Sm) ∈ C by setting

λ(A, C) :=
n∑

i=1

m∑

k=1

λ(Ti , Sk). (2.2)

It is easily checked that

λ(A, C) =
∫

C∩A
〈nC(x), nA(x)〉H1(dx). (2.3)

The reader is referred to [8, Definition 3], and the discussion therein, for more properties
of signed lengths.

For C = (S1, ..., Sm) ∈ C and E > 0, we now define the random variable

φE (C) := 1

8π
√
2E

∫

C
BE (x)〈∇BE (x), nC(x)〉H1(dx) (2.4)

= 1

8π
√
2E

m∑

k=1

∫ Lk

0
BE (γk(t))〈∇BE (γk(t)), nSk 〉dt, (2.5)

where (2.5) is a straightforward representation of (2.4) in terms of line integrals.

Remark 2.2 (a) When C ∈ C is clockwise oriented and closed, then [31, Lemma 4.1] implies
that φE (C) = LE [2](D), where D is the polygonal domain enclosed by C (if C is
counterclockwise oriented, then the equality continues to hold, but with a minus sign
in front of the right-hand side). From now on, we will conventionally assume that the
boundary ∂D of any polygonal region D is a clockwise oriented closed chain.

(b) LetD be a polygonal domain, fix R > 0, and select E > 0 in such away that R = 2π
√
E .

Then, a direct computation (based e.g. on the arguments developed in [31, Proof ofLemma
4.1]) shows that

φE (∂D) = LE [2](D)
d= R−1L (b; R ·D)[2], (2.6)

where L (b; R · D) denotes the nodal length of the field b (as defined in Sect. 1.1),
restricted to the region R ·D.

(c) In general, it is easy to see that, for every C ∈ C , the random variable φE (C) is
an element of the second Wiener chaos associated with BE . Indeed, denoting by Ip
the Wiener isometry of order p, and writing BE (x) = I1( f E0 (x, ·)), ∂ j BE (x) =√
2π2E I1( f Ej (x, ·)), j = 1, 2, for suitable kernels f Ej (x, ·), j = 0, 1, 2, defined e.g.

on the Hilbert space L2([0, 1], dx) (with dx denoting the Lebesgue measure), one can
show that φE (C) = I2(uE (C)), where

uE (C) = 1

8

2∑

j=1

∫

C
f E0 (x, ·)⊗̃ f Ej (x, ·)n j

C(x)H1(dx), (2.7)

where ⊗̃ denotes the canonical symmetrization of the tensor product, and nC(x) =
(n1C(x), n2C(x)). We refer the reader to the proof of Proposition 3.3 for more details, and
to [30, Chapter 2] for background on Wiener chaos.
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(d) It is of course possible to extend the above definitions to the case where C is a piecewise
smooth simple curve of finite length (or even to the case where C is a R-chain, in the
sense of [8, Definition 1]). Since our techniques only allow one to deal with the case of
polygonal chains, we decided not to pursue such a level of generality.

2.1.2 Second Order Results

We now state our main results concerning the random variables φE (C). The first statement
characterizes their asymptotic covariance structure in the high-energy regime.

Theorem 2.3 (Asymptotic covariance structure) For every C1, C2 ∈ C , as E →∞,

Cov[φE (C1), φE (C2)] = λ(C1, C2)
16π2

√
E
+ o

(
1√
E

)
, (2.8)

where λ(C1, C2) indicates the signed length of C1 ∩ C2, as introduced in Definition 2.1-(d).
In particular, as E →∞,

Var[φE (C)] = length(C)

16π2
√
E
+ o

(
1√
E

)
. (2.9)

Specializing the content of Theorem 2.3 to the case where C = ∂D is the boundary of a
polygonal domain D ⊂ R

2 and bearing in mind Remark 2.2-(a), one infers that

Var[LE [2](D)] = length(∂D)

16π2
√
E

+ o

(
1√
E

)
,

as E →∞. This estimate refines the upper bound O(1) for the variance ofLE [2](D) derived
in [31, Lemma 4.1] and shows in particular thatLE [2](D) vanishes in the high-energy limit.

In view of (2.9), we introduce the class of normalized random variables:

φ̃E (C) := 4πE1/4φE (C), C ∈ C . (2.10)

The following statement establishes a multidimensional convergence result—in the sense of
finite-dimensional distributions—for the random field

{
φ̃E (C) : C ∈ C

}
.

Theorem 2.4 For every integer d ≥ 1 and every C1, . . . , Cd ∈ C , we have that, as E →∞,

(
φ̃E (C1), . . . , φ̃E (Cd)

) d−→ Nd(0, �),

where � = {�(i, j) : i, j = 1, . . . , d} is the d × d matrix defined by

�(i, j) := λ(Ci , C j ) i, j = 1, . . . , d. (2.11)

Theorem 2.4 shows that, in the high-frequency regime, the covariance of φ̃E (C1) and
φ̃E (C2) depends on the geometry of C1 and C2 through the signed length of their intersection.
In particular, when λ(C1, C2) is zero (which is the case when C1 and C2 intersect in finitely
many points or are disjoint), φ̃E (C1) and φ̃E (C2) converge to independent centered Gaussian
random variables with variances length(C1) and length(C2), respectively.

Using the content of Remark 2.2-(b), one can immediately deduce a joint CLT for the
second chaos projections of Berry’s nodal lengths on expanding domains.

Proposition 2.5 Let D1, ...,Dd be polygonal domains. Then, as R →∞,
√
8π

R

(
L (b; R ·D1)[2], ...,L (b; R ·Dd)[2]

)
d−→ Nd(0, �) (2.12)
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where � is given by (2.11) with Ci = ∂Di . In particular, one has that, for a fixed polygonal
domain D,

Var
(
L (b; R ·D)[2]) = R · length(∂D)

8π
+ o(R), R →∞. (2.13)

Remark 2.6 (Hyperuniform scalings and total disorder)

(a) Theorem 2.4 and Proposition 2.5 should be compared with the content of [8, Theorem
1] (see also [40]). In such a reference, the authors consider the Gaussian entire function

z �→ f (z) =
∞∑

n=0

ζn
zn

n! , z ∈ C,

where {ζn : n ≥ 0} is a sequence of i.i.d. standard complex Gaussian random variables,
and study the joint fluctuations of random variables of the type�R(C), where C indicates
a smooth simple curve of finite length (not necessarily polygonal) and, for R > 0,�R(C)

represents the increment of the argument of f (Rz) along C. The main finding of [8] is
that, for the constant c = √

π/4 ζ(3/2),

Var(�R(C)) = cR · length(C)+ o(R), R →∞, (2.14)

and

1√
cR

((�R(C1) − E(�R(C1)), ..., (�R(Cd) − E�R(Cd))) d−→ Nd(0, �), (2.15)

where � is given by (2.11) [once the notion of signed length is extended to generic
smooth curves by using (2.3)]. Specializing these findings to the case where each Ci is
the counterclockwise oriented boundary of a smooth domainDi , and denoting by nR(D)

the number of zeros of f in the domain R ·D, one deduces that, for c0 = ζ(3/2)/(8π3/2),

Var (nR(D)) = c0R · length(∂D) + o(R), R →∞, (2.16)

and

1√
c0R

((nR(D1) − E(nR(D1)), ..., (nR(Dd) − EnR(Dd)))
d−→ Nd(0, �), (2.17)

where � is given by (2.11) with Ci = ∂Di . This yields joint Gaussian fluctuations of the
same nature as (2.12).

(b) Variance estimates such as (2.13) and (2.16) mean that, as R → ∞, the variances of
L (b; R · D) and nR(D) scale as the length of the boundary of R · D, rather than as
area(R ·D) � R2. Such a behaviour emerges for many point processes that are relevant
in modern probability and statistical mechanics, and is known as hyperuniformity—see
Point (d) below, as well as [17, 43] and the references therein.

(c) Consider a centered Gaussian field G = {G(C) : C ∈ C } indexed by polygonal chains
and such that E[G(C1)G(C2)] = λ(C1, C2). Then, it is easily seen that G is necessarily a
total disorder process, that is, the linear span of G contains an uncountable collection of
i.i.d. centered Gaussian random variables with unit variance. The same conclusion holds
if one replaces C with the collection of closed polygonal chains, or even with the set of
closed chains that are the boundary of a rectangle.

(d) A multivariate CLT similar to (2.12) and (2.17) appears in the physics paper [24] on
charge fluctuations for Coulomb systems. Here, the author considers the net electric
charge Q	 contained in a subregion 	 of an infinite equilibrium system and establishes
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joint CLTs for pairs (Q	1 , Q	2), where 	1,	2 are growing regions. For instance, for
cubes 	1,	2 of side length L →∞, it turns out that variance of the considered objects
scales hyperuniformly as � L , and the limiting covariance is only non-zero when the
cubes share a face. Total disorder processes also appear in several works in random
matrix theory. In [45] (see also [10, Theorem 6.3]) the authors consider the number
Nn(α, β) of eigenvalues lying in a circular interval (eiα, eiβ) of random n × n unitary
matrices sampled according to the Haar measure. It is shown that the finite-dimensional
distributions of the normalized process

{
Nn(α, β) − E [Nn(α, β)]

π−1
√
log n

: 0 < α < β < 2π

}

converge to those of a centred Gaussian process {Z(α, β) : 0 < α < β < 2π} with
covariance function

E
[
Z(α, β)Z(α′, β ′)

] =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 α = α′, β = β ′
−1 α = β ′, α′ = β

1/2 α = α′ or β = β ′ but not both
−1/2 α = β ′ or β = α′ but not both
0 α, β, α′, β ′ distinct

.

From such a covariance structure, it becomes clear that, unless two intervals (eiα, eiβ)

and (eiα
′
, eiβ

′
) have at least one endpoint in common, the limiting random variables

Z(α, β) and Z(α′, β ′) are independent. Finally, in [18] the authors prove that the finite-
dimensional distributions of a complex Gaussian total disorder process appear as the
limiting distribution of the multi-dimensional extension of Selberg’s Central Limit The-
orem for the logarithm of the Riemann Zeta function (see [38, 39]).

2.1.3 Applications to Functional Convergence

For t = (t1, t2) ∈ [0, 1]2, we set Dt := [0, t1] × [0, t2] and write as before LE [2](Dt)

for the projection of LE (Dt) on the second Wiener chaos. The next statement is a direct
consequence of Theorem 2.4.

Theorem 2.7 For every t ∈ [0, 1]2, we set
YE (t) := 4πE1/4 LE [2](Dt).

For every integer d ≥ 1 and every collection of t1, . . . , td ∈ [0, 1]2, we have that, as E →∞,

(YE (t1), . . . , YE (td))
d−→ Nd(0, �)

whereNd(0, �) denotes the centred d-dimensional Gaussian distribution whose covariance
matrix � is given by (2.11) with Ci = ∂Dti . In particular, as E → ∞, the random func-
tions

{
YE (t) : t ∈ [0, 1]2} converge in the sense of finite-dimensional distributions to a total

disorder random field.

Combining Theorem 2.7 with a suitable tightness criterion by Davydov and Zitikis [15]
for proving weak convergence of stochastic processes on [0, 1]d (see Proposition 3.4), and
with some moment estimates for suprema of stationary Gaussian fields (see Proposition 3.6),
one deduces the next characterization of the high-energy behaviour of XE [2], as defined in
(1.8). This settles Point (II) of Strategy S, as outlined in Sect. 1.3.

123



Functional Convergence of Berry’s Nodal... Page 11 of 41 97

Corollary 2.8 As E →∞, the field
{
XE [2](t) : t ∈ [0, 1]2} weakly converges to zero in D2.

We will now show how Corollary 2.8, together with the content of Theorem 1.5, can be
used in order to partially address Point (III) of Strategy S.

2.2 Approximate Tightness

2.2.1 Discretized Nodal Length Process

Let us first introduce some notation. For K ≥ 1, we indicate by �K the partition of [0, 1]2
formed by the collection of squares of side length 2−K . For every vector i = (i1, i2) ∈{
0, . . . , 2K

}2
, we define the partition points pi (K , K ) := (pi1(K ), pi2(K )) ∈ [0, 1]2 by

pi1(K ) := i1
2K

, pi2(K ) := i2
2K

, i1, i2 = 0, 1, . . . , 2K .

For t = (t1, t2) ∈ [0, 1]2, we write iK ,K (t) = (i1,K (t1), i2,K (t2)
)
for the vector verifying

pi1,K (t1) ≤ t1 < pi1,K (t1)+1, pi2,K (t2) ≤ t2 < pi2,K (t2)+1,

that is, the vector iK ,K (t) is such that piK ,K (t)(K , K ) is the closest partition point to t on
the left (by convention, if t = (t1, 1), with t1 < 1, one sets iK ,K (t) = (i1,K (t1), 2K

)
, and

analogous conventions are adopted when t = (1, t2), t2 < 1 and t = (1, 1)).
We now introduce a notion of discretized nodal length.

Definition 2.9 (Discretized nodal length field) Let K ≥ 1 be an integer and �K a partition
of [0, 1]2 as described above. For t ∈ [0, 1]2, we define the discretized nodal length at t as

L K
E ([0, t1] × [0, t2]) := LE

([0, pi1,K (t1)(K )] × [0, pi2,K (t2)(K )])

and write XK
E for its normalized version:

XK
E (t) =

√
512π

log E

(
L K

E ([0, t1] × [0, t2]) − E

[
L K

E ([0, t1] × [0, t2])
])

.

As usual, we write XK
E [q] for the projection of XK

E on the qth Wiener chaos and set RK
E =∑

q≥3 XK
E [2q].

In short, the quantity XK
E (t) represents the normalized nodal length contained in the rectangle

formed by the partition coordinates that are closest to t, thus yielding a discrete approximation
of XE (t). Moreover, L K

E is P-almost surely an element of D2. The following result shows
that there exists a suitable partition �K of [0, 1]2 associated with a sequence K = K (E)

such that the discretized residue process RK
E converges to zero uniformly on the unit square,

thus showing a discretized version of Point (III) of Strategy S. The proof of Theorem 2.10
relies on a planar chaining argument inspired by [13, 28].

Theorem 2.10 Let {K (E) : E > 0} be a numerical sequence such that K (E) → ∞ and
K (E) = o((log E)1/10) as E →∞. Then, for every ε > 0,

P

{

sup
t∈[0,1]2

∣∣∣RK (E)
E (t)

∣∣∣ > ε

}

→ 0.
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Combining the findings of Theorem 2.10, Corollary 2.8 and the weak convergence of
XE [4] proved in [37] (see Theorem 1.5), allows us to deduce the followingweak convergence
result for the discretized nodal length process.

Corollary 2.11 Let {K (E) : E > 0} be a numerical sequence such that K (E) → ∞ and
K (E) = o((log E)1/10), as E →∞. Then, the normalized process XK (E)

E converges weakly
to a standard Wiener sheetW on [0, 1]2 in the Skorohod space D2.

Corollary 2.11 gives access to a number of new limit theorems dealing with specific func-
tionals of the discretized nodal length process. Of particular interest is, for instance, the
asymptotic behaviour of the maximal discrepancy between the discretized nodal length and
its expectation, given by the supremum of XK

E . Such statistics provide global indications on
how the nodal length process deviates from its mean and are intimately related to overcrowd-
ing estimates and concentration inequalities. We refer the reader e.g. to [35] for the study
of such events in the framework of zero counts and nodal length associated with stationary
Gaussian processes.

Corollary 2.12 Let {K (E) : E > 0} be a numerical sequence such that K (E) → ∞ and
K (E) = o((log E)1/10) as E →∞. Then, as E →∞, we have that

sup
t∈[0,1]2

∣∣∣XK (E)
E (t)

∣∣∣
d−→ sup

t∈[0,1]2
|W(t)|.

To the best of our expertise, the probability distribution of the supremum of the Wiener sheet
is not known. In [34], the authors provide a number of explicit expressions for the probability
distribution function of the supremum of Wiener sheets restricted to the boundary of planar
domains. For instance, the following statement is a direct consequence of Corollary 2.12 and
[34, Theorem 3], yielding a closed formula for the asymptotic distribution function of the
supremum of XK

E on the boundary of the unit square. We refer the reader to [34] for more
examples in this direction.

Corollary 2.13 Let {K (E) : E > 0} be a numerical sequence such that K (E) → ∞ and
K (E) = o((log E)1/10) as E →∞. Then, for every z ∈ R, we have that, as E →∞,

P

{

sup
t∈∂[0,1]2

∣∣∣XK (E)
E (t)

∣∣∣ ≤ z

}

→ P

{

sup
t∈∂[0,1]2

|W(t)| ≤ z

}

= 1− 3�(−z) + e4z
2
�(−3z),

where �(z) := P {N ≤ z}, with N being a standard Gaussian random variable.

Remark 2.14 The findings described above are not sufficient to obtain a weak convergence
result for the process XE and thus to fully address Part (III) of Strategy S. Ourmain difficulty
for directly dealing with the residual term RE (instead of its discretized version RK

E ) appears
in the chaining argument used in the proof of Theorem 2.10 and is essentially explained
by the fact that the expectation of XE (which is of order

√
E/ log E) grows considerably

faster than the normalizing factor log E . Carrying out the planar chaining argument with RE

typically requires the quantity

∣∣E [XE (t)]− E
[
XE (piK ,K (t)(K , K ))

]∣∣ ≈
√
E√

log E

1

2K

to be bounded, thus imposing K = K (E) to be of logarithmic order. Such a requirement is
however incompatible with the choice o((log E)1/10), as is needed in the above statements.
Such a difficulty is eschewed when dealing with the discretized versions, since in this case
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E
[
XK
E (t)

] = E
[
XK
E (piK ,K (t)(K , K ))

]
by construction of XK

E , implying that the above dif-
ference is zero. One possible strategy for providing a complete answer to (III) would be to
prove that for every ε > 0

P

{

sup
t∈[0,1]2

∣∣∣RK (E)
E (t) − RE (t)

∣∣∣ > ε

}

→ 0,

as E →∞, where K (E) is as in Theorem 2.10. However, our arguments allow one to prove
that such an asymptotic relation only holds pointwise in the L2(P)-sense

E

[(
RK (E)
E (t) − RE (t)

)2] ≤ c1
1

log E

1

2K (E)

where c1 > 0 is some absolute constant, thus converging to zero in view of our choice of
K (E) (see in particular Lemma 3.9).

2.2.2 Truncated Nodal Length Process

We also point out that our results on the second Wiener chaos are sufficient to formulate a
weak convergence result for truncated nodal lengths of increasing degree, defined as follows.

Definition 2.15 (Truncated nodal length) For an integer N ≥ 1, we define the truncated
nodal length of order N by

LE (D; N ) :=
N∑

q=0

LE [2q](D).

We write XE (t; N ) for the normalized version of LE ([0, t1] × [0, t2]; N ) and RE (t; N ) :=∑N
q=3 XE [2q](t) for its chaotic projections of order 6 to 2N .

The following result shows that the process RE (•; N ) converges to zero for a well-chosen
N = N (E), as a consequence of the hypercontractivity property on Wiener chaoses.

Proposition 2.16 Let N (E) = �log5(log E)�. Then, as E →∞, the process
{
RE (t; N (E)) : t ∈ [0, 1]2}

converges weakly to zero in D2.

Combining this result with the weak convergence to zero of the second chaotic projections
XE [2] (see Corollary 2.8) and the weak convergence of XE [4], is sufficient to derive the
following functional limit theorem for the truncatednodal length processof order N = N (E).

Corollary 2.17 Let N (E) = �log5(log E)�. Then, as E →∞, the process
{
XE (t; N (E)) : t ∈ [0, 1]2}

converges weakly to a standard Wiener sheetW on [0, 1]2 in D2.

Remark 2.18 We point out that our findings outlined in Sect. 2 naturally extend to the case
of the nodal intersection point process

{NE ([0, t1] × [0, t2]) : (t1, t2) ∈ [0, 1]2} obtained
by counting the nodal intersection points of two independent Berry random waves with the
same frequency in the unit square—see in particular [31] for univariate results and [37] for
multidimensional extensions on such a quantity.

The rest of the paper is devoted to the proof of our main results.
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3 Proof of theMain Results

3.1 Proofs of Theorems 2.3 and 2.4

In order to prove Theorems 2.3 and 2.4, we first prove their analog statements when the
polygonal curves are replaced with straight line segments. More specifically, in Sect. 3.1.1,
we investigate the limiting covariance structure of φE when restricted to line segments,
by carefully taking into account all possible spatial configurations of two line segments. In
Proposition 3.1, we show that, in the high energy limit, this covariance is non-zero only when
the line segments have a non-trivial intersection, that is, when the line segments are adjacent
to each other. In Proposition 3.3, we establish a multidimensional Gaussian limit theorem
for random vectors of the form (φ̃E (S1), . . . , φ̃E (Sd)), where S1, . . . , Sd is a collection of
line segments. Our methods rely on both the Fourth Moment Theorem (see [30, Theorem
5.2.7]) for proving normal approximations of chaotic sequences and its multidimensional
counterpart (see [30, Theorem 6.2.3]).

3.1.1 Study of Line Segments

Let S1 and S2 be two line segments inR2, and consider the random variablesφE (Si ), i = 1, 2.
Our principal aim of this section is to prove the following result.

Proposition 3.1 Let S1 and S2 be two line segments. Then, we have that, as E →∞,

Cov[φE (S1), φE (S2)] = λ(S1, S2)

16π2
√
E
+ o

(
1√
E

)
, (3.1)

where λ(S1, S2) is the signed length of S1 ∩ S2.

We start with some ancillary computations. Introducing normalized derivatives ∂̃i :=√
2π2E∂i , i = 1, 2 (where ∂i := ∂xi = ∂/∂xi ) and exploiting the definition of φE in

(2.4), we have that, for every C1, C2 ∈ C (writing dx for H1(dx) for brevity),

Cov[φE (C1), φE (C2)] = E [φE (C1)φE (C2)]
= 1

128π2E∫

C1×C2
E
[
BE (x)〈∇BE (x), nC1(x)〉BE (y)〈∇BE (y), nC2(y)〉

]
dxdy

= 1

128π2E
2∑

i, j=1

∫

C1×C2
E
[
BE (x)BE (y)∂i BE (x)∂ j BE (y)

]
niC1(x)n

j
C2(y)dxdy

= 2π2E

128π2E
2∑

i, j=1

∫

C1×C2
E

[
BE (x)BE (y)∂̃i BE (x)∂̃ j BE (y)

]
niC1(x)n

j
C2(y)dxdy

=: 1

64

2∑

i, j=1

∫

C1×C2
ψ E
i, j (x, y)n

i
C1(x)n

j
C2(y)dxdy, (3.2)
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where ψ E
i, j : R2 × R

2 → R is the function

ψ E
i, j (x, y) := E

[
BE (x)BE (y)∂̃i BE (x)∂̃ j BE (y)

]
, i, j = 1, 2.

Since for every x, y ∈ R
2 and every i = 1, 2, (BE (x), BE (y), ∂̃i BE (x), ∂̃ j BE (y)) is a cen-

teredGaussian vector, we apply Feynmann’s formula (see for instance [25, Proposition 4.15])
in order to simplify the above expression: for jointly Gaussian centered random variables
Z1, . . . , Z4, we have

E [Z1Z2Z3Z4] = γ12γ34 + γ13γ24 + γ14γ23, γi j := E
[
Zi Z j

]
.

Therefore, exploiting the covariance structure of the vector (BE (x), BE (y), ∂̃i BE (x), ∂̃ j BE (y))
(see [31, Lemma 3.1]), we obtain

ψ E
i, j (x, y) = E [BE (x)BE (y)]E

[
∂̃i BE (x)∂̃ j BE (y)

]

+E

[
BE (x)∂̃i BE (x)

]
E

[
BE (y)∂̃ j BE (y)

]

+E

[
BE (x)∂̃ j BE (y)

]
E

[
BE (y)∂̃i BE (x)

]

= r E (x − y)r̃ Ei, j (x − y) − r̃ E0, j (x − y)r̃ E0,i (x − y), (3.3)

where the second term is equal to zero by independence of BE (x) and ∇BE (x) for every
fixed x ∈ R

2 and we set

r̃ Ei, j (x − y) := ∂̃xi ∂̃yi r
E (x − y), i, j = 0, 1, 2

where r E is as in (1.1) and we adopt the convention that ∂0 is the identity operator. We now
restrict (3.2) to the case where Ci = Si , i = 1, 2 are straight line segments. Denoting by

B(θ)
E (x) := BE (Rθ x), B̂(L)

E (x) := BE (x + L), x ∈ R
2, θ ∈ [0, 2π], L ∈ R

2

where Rθ ∈ M2×2(R) stands for the rotation matrix associated with angle θ , it follows

by isotropy and stationarity of Berry’s random field that BE
d= B(θ)

E and BE
d= B̂(L)

E ,

where
d= denotes equality in distribution of random fields. These observations imply that

for every choice of x, y ∈ R
2, the pairs (B(θ)

E (x), B(θ)
E (y)) and (B̂(L)

E (x), B̂(L)
E (y)) have the

same distribution as (BE (x), BE (y)). As a consequence, we reduce our investigations to line
segments given by the unit speed parametrizations

γ1 : [0, λ1] → S1, t �→ γ1(t) := te1 (3.4)

γ2 : [0, λ2] → S2, t �→ γ2(t) := p + tρ(θ) (3.5)

where λi > 0, i = 1, 2 is the length of Si , ei is the i-th canonical basis vector of R2,
p = (p1, p2) ∈ R

2 and ρ(θ) := (cos θ, sin θ) for θ ∈ [0, 2π).

Remark 3.2 In view of the definition of φE , it follows that whenever S is a line segment
given by a union of line segments S = S′ ∪ S′′ sharing only one point, then φE (S) =
φE (S′) + φE (S′′). It follows that, one can always express the covariance associated with
arbitrary line segments as a linear combination involving only covariances associated with
line segments that have the same origin. This implies that, in (3.5), we can consistently reduce
to the case p = (0, 0), that is when S1 and S2 have the same origin, except when S1 and
S2 are parallel but disjoint. Indeed, in order to see this, let us assume that S1 = [P1, Q1]
and S2 = [P2, Q2] for points P1, P2, Q1, Q2 ∈ R

2 such that p = P2 �= (0, 0). (Here for
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A, B ∈ R
2, we use the notation [A, B] to indicate the line segment joining A and B.) Denote

by �1 and �2 the lines directed by S1 and S2 respectively and let I = �1∩�2. If S1∩ S2 = {I },
we consider the four line segments [P2, I ], [I , Q2], [P1, I ] and [I , Q1]. By construction, we
thus have φE (S1) = φE ([P1, I ]) + φE ([I , Q1]) and φE (S2) = φE ([P2, I ]) + φE ([I , Q2]),
so that

Cov[φE (S1), φE (S2)] = Cov[φE ([P1, I ]), φE ([P2, I ])]
+Cov[φE ([P1, I ]), φE ([I , Q2])]
+Cov[φE ([I , Q1]), φE ([P2, I ])]
+Cov[φE ([I , Q1]), φE ([I , Q2])]

and each of these covariances contains only line segments with common point I , which
one can set to be the origin by translation invariance of the Berry random field. Similarly, if
S1∩S2 = ∅, we consider the line segments [I , P1] and [I , P2]. Then, again by linearitywe can
write (up to sign, which is determined by the orientation of S1) φE ([I , Q1])−φE ([I , P1]) =
φE (S1) and φE ([I , Q2]) − φE ([I , P2]) = φE (S2), so that

Cov[φE (S1), φE (S2)] = Cov[φE ([I , Q1]), φE ([I , Q2])]
−Cov[φE ([I , Q1]), φE ([I , P2])]
−Cov[φE ([I , P1]), φE ([I , Q2])]
+Cov[φE ([I , P1]), φE ([I , P2])],

and the covariances on the right hand side can be dealt with setting I = (0, 0) as before.

In view of the above reductions, throughout this section, we will assume that S1 and S2
are parametrized as in (3.4) and (3.5), respectively with p = (0, 0) and θ ∈ [0, 2π). The fact
that nS1(x) = e2 for every x ∈ S1 and nS2(x) = ρ(θ)⊥ = (− sin θ, cos θ) for every x ∈ S2
yields

Cov[φE (S1), φE (S2)] = 1

64

∫

S1×S2
[ψ E

2,2(x, y) cos θ − ψ E
2,1(x, y) sin θ ]dxdy

= 1

64

∫ λ1

0
dt
∫ λ2

0
ds[ψ E

2,2(γ1(t), γ2(s)) cos θ

−ψ E
2,1(γ1(t), γ2(s)) sin θ ], (3.6)

where ψ E
i, j is as in (3.3). From the parametrizations in (3.4) and (3.5), it follows that

‖γ1(t) − γ2(s)‖2 = ‖te1 − sρ(θ)‖2
= t2 + s2 − 2st〈e1, ρ(θ)〉 = t2 + s2 − 2st cos θ. (3.7)

Now, computations based on the explicit expressions of the functions r E , r̃ Ei, j for i, j =
0, 1, 2 in terms of Bessel functions (see [31, Lemma 3.1]), lead to (for γ1(t) �= γ2(s))
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ψ E
2,2(γ1(t), γ2(s)) = J0(τ

E (t, s))
(
J0(τ

E (t, s)) + J2(τ
E (t, s))

)

−2
s2 sin2 θ

‖γ1(t) − γ2(s)‖2
(
J0(τ

E (t, s))J2(τ
E (t, s)) + J1(τ

E (t, s))2
)

and

ψ E
2,1(γ1(t), γ2(s)) = 2

(t − s cos θ)s sin θ

‖γ1(t) − γ2(s)‖2
(
J0(τ

E (t, s))J2(τ
E (t, s)) + J1(τ

E (t, s))2
)

,

where we set τ E (t, s) := 2π
√
E‖γ1(t)− γ2(s)‖. As a consequence, by (3.7), we have that

ψ E
2,2(γ1(t), γ2(s)) cos θ − ψ E

2,1(γ1(t), γ2(s)) sin θ

= cos θ J0(τ
E (t, s))

(
J0(τ

E (t, s)) + J2(τ
E (t, s))

)

−
(
2s2 sin2 θ cos θ + 2(t − s cos θ)s sin2 θ

‖γ1(t) − γ2(s)‖2
)

(
J0(τ

E (t, s))J2(τ
E (t, s)) + J1(τ

E (t, s))2
)

= cos θ J0(τ
E (t, s))

(
J0(τ

E (t, s)) + J2(τ
E (t, s))

)

− 2ts sin2 θ

t2 + s2 − 2st cos θ

(
J0(τ

E (t, s))J2(τ
E (t, s)) + J1(τ

E (t, s))2
)

= 2 cos θ
J0(τ E (t, s))J1(τ E (t, s))

τ E (t, s))

− 2ts sin2 θ

t2 + s2 − 2st cos θ

(
J0(τ

E (t, s))J2(τ
E (t, s)) + J1(τ

E (t, s))2
)

,

where in the last line, we exploited the recurrence relation Jn+1(x) + Jn−1(x) =
2nJn(x)/x, n > 0, x ∈ R (see e.g. [41, Equation (1.71.5)]) implying the useful identity

J0(x) + J2(x) = 2
J1(x)

x
. (3.8)

Inserting this expression into (3.6), we obtain that

Cov[φE (S1), φE (S2)] = 2 cos θ

64

∫ λ1

0
dt
∫ λ2

0
ds

J0(τ E (t, s))J1(τ E (t, s))

τ E (t, s)

−2 sin2 θ

64

∫ λ1

0
dt

∫ λ2

0
ds

ts
(
J0(τ E (t, s))J2(τ E (t, s)) + J1(τ E (t, s))2

)

t2 + s2 − 2st cos θ

=: AE (λ1, λ2, θ) + BE (λ1, λ2, θ),

where

AE (λ1, λ2, θ) := cos θ

32

∫ λ1

0
dt
∫ λ2

0
ds

J0(τ E (t, s))J1(τ E (t, s))

τ E (t, s)
(3.9)

BE (λ1, λ2, θ) := − sin2 θ

32

∫ λ1

0
dt
∫ λ2

0
ds

ts
(
J0(τ E (t, s))J2(τ E (t, s)) + J1(τ E (t, s))2

)

t2 + s2 − 2st cos θ

(3.10)
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and where we recall the notation τ E (t, s) = 2π
√
E
√
t2 + s2 − 2st cos θ . We note that if

θ ∈ {0, π}, then BE (λ1, λ2, θ) = 0, so that for parallel line segments we immediately deduce
that

Cov[φE (S1), φE (S2)] = AE (λ1, λ2, θ).

We are now in position to prove Proposition 3.1.

Proof of Proposition 3.1 Throughout the proof, we can and will assume without loss of gen-
erality, that S1 and S2 are both oriented in the same way. Indeed, if S is a line segment with
a given orientation, then −S is the same line segment with opposite orientation to S, so that
φE (−S) = −φE (S).

In order to prove the statement, we distinguish two cases: (A) S1 and S2 are parallel, and
(B) S1 and S2 are not parallel.
Case (A) We treat the case where S1 and S2 are parallel line segments. Let γ1 : t ∈ [a, b] �→
te1 and γ2 : t ∈ [c, d] �→ te1 + Le2 where 0 ≤ a < b, 0 ≤ c < d and L ≥ 0 are fixed
real numbers be the respective parametrizations of S1 and S2. Note that the case L = 0
corresponds to the configuration where S1 and S2 are supported by the same line, whereas,
the case L > 0 corresponds to the case where S1 and S2 are supported by parallel distinct
lines. We have that ‖γ1(t) − γ2(s)‖2 = ‖(t, 0) − (s, L)‖2 = (t − s)2 + L2. Therefore,
performing the linear change of variables (u, v) = (t, t − s), we infer

Cov[φE (S1), φE (S2)] = 1

32

∫ b

a
dt

∫ d

c
ds

J0
(
2π

√
E
√

(t − s)2 + L2
)
J1
(
2π

√
E
√

(t − s)2 + L2
)

2π
√
E
√

(t − s)2 + L2

= 1

32

∫ b

a
du
∫ u−c

u−d
dv

J0
(
2π

√
E
√

v2 + L2
)
J1
(
2π

√
E
√

v2 + L2
)

2π
√
E
√

v2 + L2

= 1

32

∫ b

a
du

1

2π
√
E

∫ 2π
√
E(u−c)

2π
√
E(u−d)

dv

J0

(√
v2 + (2π

√
EL)2

)
J1

(√
v2 + (2π

√
EL)2

)

√
v2 + (2π

√
EL)2

=: 1

32

∫ b

a
duK E (u; L, c, d), (3.11)

where we set

K E (u; L, c, d) := 1

2π
√
E

∫ 2π
√
E(u−c)

2π
√
E(u−d)

dv

J0

(√
v2 + (2π2

√
EL)2

)
J1

(√
v2 + (2π

√
EL)2

)

√
v2 + (2π

√
EL)2

.

(3.12)
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Note that, using (3.8) and the bound |Jν(x)| ≤ 1, ν = 0, 1, 2 implies that
∣∣∣∣
J0(x)J1(x)

x

∣∣∣∣ =
1

2
|J0(x) (J0(x) + J2(x))| ≤ 1

so that

∣∣∣K E (u; L, c, d)

∣∣∣ ≤ 1

2π
√
E

∫ 2π
√
E(u−c)

2π
√
E(u−d)

dv = d − c,

for every u ∈ (a, b) and every c < d , so that K E (u; L, c, d) is integrable on (a, b). We now
study the two cases L > 0 and L = 0 separately.
Case(A.1) : L > 0 Fix L > 0. We show that K E (u; L, c, d) = o(1/

√
E) as E → ∞

uniformly for u ∈ (a, b). Indeed, using the fact that |Jν(x)| = O(x−1/2) for x > 0 and
ν = 0, 1, 2, we infer from (3.12) that for every u ∈ (a, b),

√
E
∣∣∣K E (u; L, c, d)

∣∣∣ ≤ O(1)

2π

∫ 2π
√
E(u−c)

2π
√
E(u−d)

dv
1

v2 + (2π
√
EL)2

≤ O(1)

2π

∫ 2π
√
E(u−c)

2π
√
E(u−d)

dv
1

E

= O(E−1/2),

where the constant involved in the ‘big-O’ notation does not depend on u. Thus,
√
EK E (u; L, c, d) → 0

as E →∞ uniformly on (a, b), and therefore we infer from (3.11)

Cov[φE (S1), φE (S2)] = O

(
1

E

)
,

as E →∞, which gives the desired conclusion.
Case(A.2) : L = 0 Setting L = 0 in (3.12), we obtain

K E (u; 0, c, d) = 1

2π
√
E

∫ 2π
√
E(u−c)

2π
√
E(u−d)

dv
J0(|v|)J1(|v|)

|v| .

In order to show (3.1), we treat the two cases (i) [a, b]∩[c, d] = ∅ and (ii) [a, b]∩[c, d] �= ∅.
We start by case (i). This is the case when a < b < c < d or c < d < a < b. We only
treat the case a < b < c < d as the other case is dealt with similarly. The assumption
a < b < c < d implies that u − c < 0 and u − d < 0 for every u ∈ (a, b). Then, using the
fact that |Jν(x)| = O(x−1/2) for x > 0, we have

√
E
∣∣∣K E (u; 0, c, d)

∣∣∣ ≤ 1

2π

∫ 2π
√
E(u−c)

2π
√
E(u−d)

dv
|J0(|v|)J1(|v|)|

|v|

= O(1)

2π

∫ 2π
√
E(u−c)

2π
√
E(u−d)

dv

v2
= O

(
1√
E

)(
1

c − u
− 1

d − u

)
,

which goes to zero as E →∞, uniformly for u ∈ (a, b). Thus, from (3.11) it follows that in
this case

Cov[φE (S1), φE (S2)] = O

(
1

E

)
,
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which implies (3.1).
We now study the case (ii) and start with the special case (c, d) = (a, b), that is when
S1 = S2. From (3.11), we write

√
ECov[φ(S1), φ(S1)] = 1

32

∫ b

a
du

√
EK E (u; 0, a, b)

with

√
EK E (u; 0, a, b) = 1

2π

∫ 2π
√
E(u−a)

2π
√
E(u−b)

dv
J0(|v|)J1(|v|)

|v| = 1

2π

∫ 2π
√
E(u−a)

2π
√
E(u−b)

dv
J0(v)J1(v)

v
,

where we used that J0 is even and J1 is odd. Now computations based on differentiation of
Bessel functions imply that d

dv
[v(J0(v)2 + J1(v)2)− J0(v)J1(v)] = J0(v)J1(v)/v, so that

√
EK E (u; 0, a, b) = 1

2π

[
v(J0(v)2 + J1(v)2) − J0(v)J1(v)

]2π
√
E(u−a)

2π
√
E(u−b)

and therefore

√
ECov[φE (S1), φE (S1)] = 1

64π

∫ b

a
du
[
v(J0(v)2 + J1(v)2)

]2π
√
E(u−a)

2π
√
E(u−b)

− 1

64π

∫ b

a
du [J0(v)J1(v)]2π

√
E(u−a)

2π
√
E(u−b)

. (3.13)

For the first term, we use the dominated convergence theorem: since |Jν(x)| ≤ Cνx−1/2, x >

0 for some constant Cν > 0, it follows that
∣∣∣∣
[
v(J0(v)2 + J1(v)2)

]2π
√
E(u−a)

2π
√
E(u−b)

∣∣∣∣ ≤ 2[C2
0 + C2

1 ]

which is integrable on (a, b). Setting f(v) := v(J0(v)2 + J1(v)2), we have f(−v) = −f(v)

and
∣∣∣∣
[
v(J0(v)2 + J1(v)2)

]2π
√
E(u−a)

2π
√
E(u−b)

∣∣∣∣ = f
(
2π

√
E(u − a)

)
− f
(
2π

√
E(u − b)

)
,

so that

lim
E→∞

∣∣∣∣
[
v(J0(v)2 + J1(v)2)

]2π
√
E(u−a)

2π
√
E(u−b)

∣∣∣∣ = lim
E→∞ 2f

(
2π

√
E(u − a)

)
= lim

y→∞ 2f(y)

since u − a > 0. Now, the asymptotic expansion of Bessel functions (see for instance [22])

Jν(y) =
√

2

π y
cos(y − ων) + O

(
y−3/2), ων := (2ν + 1)

π

4
, y →∞ (3.14)

yield

2f(y) ∼ 2y
2

π y

[

cos
(
x − π

4

)2 + cos

(
x − 3π

4

)2]

= 2y
2

π y

[
cos
(
x − π

4

)2 + sin
(
x − π

4

)2]

= 4

π
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as y →∞. Thus, by dominated convergence, we obtain

1

64π

∫ b

a
du
[
v(J0(v)2 + J1(v)2)

]2π
√
E(u−a)

2π
√
E(u−b) →

1

64π

∫ b

a

4

π
du = 1

16π2 (b − a)

as E → ∞. For the remainder term in (3.13), we use the bound |J0(x)| ≤ C0x−1/2, x ≥ 0
and |J1(x)| ≤ 1 to obtain
∫ b

a
du [J0(v)J1(v)]2π

√
E(u−a)

2π
√
E(u−b)

≤
∫ b

a

∣∣∣J0(2π
√
E(u − a))

∣∣∣
∣∣∣J1(2π

√
E(u − a))

∣∣∣

+
∣∣∣J0(2π

√
E(b − u))

∣∣∣
∣∣∣J1(2π

√
E(b − u))

∣∣∣ du

≤ c
∫ b

a

1

E1/4
√
u − a

+ 1

E1/4
√
b − u

≤ c
1

E1/4

√
b − a

for some constant c > 0. This proves that

Cov[φE (S1), φE (S1)] = 1

16π2

b − a√
E

+ o

(
1√
E

)
.

Let us now assume that S1 �= S2 but S1 ∩ S2 �= ∅. Without loss of generality, assume that
0 < a < c ≤ b < d , that is S1 ∩ S2 = [c, b] × {0}. Exploiting the linearity of φE , we write

φE (S2) = φE ([c, b] × {0}) + φE ([b, d] × {0})
and use the previous observations to obtain

Cov[φE (S1), φE (S2)] = Cov[φE ([a, c] × {0}), φE ([c, b] × {0})]
+Cov[φE ([a, c] × {0}), φE ([b, d] × {0})]
+Cov[φE ([c, b] × {0}), φE ([c, b] × {0})]
+Cov[φE ([c, b] × {0}), φE ([b, d] × {0})]

= Cov[φE ([c, b] × {0}), φE ([c, b] × {0})]+ o

(
1√
E

)

= λ(S1, S2)

16π2
√
E
+ o

(
1√
E

)
,

which is (3.1).
Case(B) We now treat the case where the line segments are not parallel. We will use the
parametrizations (3.4) and (3.5) of S1 and S2 respectively with

p = (0, 0), θ ∈ [0, 2π) \ {0, π} .
Moreover, in this case

Cov[φE (S1), φE (S2)] = AE (λ1, λ2, θ) + BE (λ1, λ2, θ) (3.15)

where AE (λ1, λ2, θ) and BE (λ1, λ2, θ) are given in (3.9) and (3.10), respectively. We show
that both the contributions of AE (λ1, λ2, θ) and BE (λ1, λ2, θ) to the covariance are of order
o(E−1/2) in the high-energy regime. By (3.8), we can write

AE (λ1, λ2, θ) = cos θ

64

∫ λ1

0
dt
∫ λ2

0
ds J0

(
τ E (t, s)

) (
J0
(
τ E (t, s)

)+ J2
(
τ E (t, s)

))
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where we recall τ E (t, s) = 2π
√
E
√
t2 + s2 − 2st cos θ . Passing to polar coordinates

(t, s) = (ρ cosφ, ρ sin φ), we have

τ E (ρ cosφ, ρ sin φ) = 2π
√
E
√

ρ2 − 2ρ2 sin φ cosφ cos θ

= 2π
√
Eρ
√
1− sin(2φ) cos θ

=: τ̃ E (ρ, φ). (3.16)

We note that τ̃ E (ρ, φ) > 0 and cos θ �= 0 for θ ∈ [0, 2π) \ {0, π}. Using polar coordinates
(ρ, φ) on rectangle [0, λ1] × [0, λ2] and the fact that the line joining the origin and the point
(λ1, λ2) forms an angle of arctan(λ2/λ1) shows that the range of integration is parametrized
according to

∫ λ1

0
dt
∫ λ2

0
ds =

∫ α1,2

0
dφ

∫ λ1/ cosφ

0
ρdρ +

∫ π/2

α1,2

dφ

∫ λ2/ sin φ

0
ρdρ, (3.17)

where we set α1,2 := arctan(λ2/λ1) ∈ (0, π/2). We split the integral

AE (λ1, λ2, θ) = cos θ

64

∫ λ1

0
dt
∫ λ2

0
ds J0

(
τ E (t, s)

) (
J0
(
τ E (t, s)

)+ J2
(
τ E (t, s)

))

= cos θ

64

∫ α1,2

0
dφ

∫ λ1/ cosφ

0
ρdρ J0

(
τ̃ E (ρ, φ)

)

(
J0
(
τ̃ E (ρ, φ)

)+ J2
(
τ̃ E (ρ, φ)

))

+cos θ

64

∫ π/2

α1,2

dφ

∫ λ2/ sin φ

0
ρdρ J0

(
τ̃ E (ρ, φ)

)

(
J0
(
τ̃ E (ρ, φ)

)+ J2
(
τ̃ E (ρ, φ)

))

=: AE,1(λ1, λ2, θ) + AE,2(λ1, λ2, θ).

We focus on the term AE,1(λ1, λ2, θ). For fixed φ ∈ (0, α1,2), we perform the change of
variable ψ = τ̃ E (ρ, φ) with dψ = τ̃ E (1, φ)dρ, yielding

AE,1(λ1, λ2, θ) = cos θ

64

∫ α1,2

0

dφ

(τ̃ E (1, φ))2

∫ τ̃ E (1,φ)λ1
cosφ

0
dψψ J0(ψ) (J0(ψ)+ J2(ψ))

=: cos θ

64

∫ α1,2

0
dφK E (φ; λ1, θ), (3.18)

with

K E (φ; λ1, θ) = 1

(τ̃ E (1, φ))2

∫ τ̃ E (1,φ)λ1
cosφ

0
dψψ J0(ψ) (J0(ψ)+ J2(ψ))

= 2

(τ̃ E (1, φ))2

∫ τ̃ E (1,φ)λ1
cosφ

0
dψ J0(ψ)J1(ψ) = 2

(τ̃ E (1, φ))2

[
− J0(ψ)2

2

] τ̃ E (1,φ)λ1
cosφ

0
,

(3.19)

where we used (3.8) and the fact that d
dψ

J0(ψ) = −J1(ψ). Thus, it follows that (since
|J0(x)| ≤ 1)

∣∣∣K E (φ; λ1, θ)

∣∣∣ ≤ 1

(τ̃ E (1, φ))2

∣∣∣∣∣
J0

(
τ̃ E (1, φ)λ1

cosφ

)2
− J0(0)

2

∣∣∣∣∣
≤ 2

(τ̃ E (1, φ))2
,
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so that by (3.18)

∣∣AE,1(λ1, λ2, θ)
∣∣ ≤
∫ α1,2

0
dφ

2

(τ̃ E (1, φ))2
= 2

4π2E

∫ α1,2

0

dφ

1− sin(2φ) cos(θ)
= O(E−1)

where the last upper bound is justified by the reverse triangular inequality |x−y| ≥ ||x |−|y||,
the assumption | cos θ | �= 1 and

∫ α1,2

0

dφ

|1− sin(2φ) cos θ | ≤
∫ α1,2

0

dφ

1− | sin(2φ)|| cos θ | ≤
α1,2

1− | cos θ | < ∞. (3.20)

Arguing similarly for the term AE,2(λ1, λ2, θ), we obtain that |AE,2(λ1, λ2, θ)| = O(E−1),
so that |AE (λ1, λ2, θ)| = O(E−1) as E → ∞. We now treat the term BE (λ1, λ2, θ). From
(3.10), we have

BE (λ1, λ2, θ) := − sin2 θ

32

∫ λ1

0
dt
∫ λ2

0
ds

ts
(
J0(τ E (t, s))J2(τ E (t, s)) + J1(τ E (t, s))2

)

t2 + s2 − 2st cos θ

Passing to polar coordinates and using (3.17), we write

BE (λ1, λ2, θ) = BE,1(λ1, λ2, θ) + BE,2(λ1, λ2, θ),

where

BE,1(λ1, λ2, θ) := − sin2 θ

32

∫ α1,2

0

dφ

(τ̃ E (1, φ))2

sin φ cosφ

1− sin(2φ) cos θ

∫ τ̃ E (1,φ)λ1
cosφ

0
dψψ

(
J0(ψ)J2(ψ)+ J1(ψ)2

)
,

and

BE,2(λ1, λ2, θ) := − sin2 θ

32

∫ π/2

α1,2

dφ

(τ̃ E (1, φ))2

sin φ cosφ

1− sin(2φ) cos θ

∫ τ̃ E (1,φ)λ2
sin φ

0
dψψ

(
J0(ψ)J2(ψ)+ J1(ψ)2

)
.

We treat the first term BE,1(λ1, λ2, θ). We write

BE,1(λ1, λ2, θ) := − sin2 θ

32

∫ α1,2

0
dφME (φ; λ1, θ), (3.21)

where

ME (φ; λ1, θ) := 1

(τ̃ E (1, φ))2

sin φ cosφ

1− sin(2φ) cos θ

∫ τ̃ E (1,φ)λ1
cosφ

0
dψψ

(
J0(ψ)J2(ψ) + J1(ψ)2

)
.

Using the asymptotic expansion of Bessel functions in (3.14) yields

ψ
(
J0(ψ)J2(ψ)+ J1(ψ)2

) = 2

π
cos
(
2ψ + π

2

)
+ O(ψ−1) = 2

π
sin(2ψ) + O(ψ−1)

as ψ →∞, so that for large E
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∫ τ̃ E (1,φ)λ2
cosφ

0
dψψ

(
J0(ψ)J2(ψ)+ J1(ψ)2

) =
∫ 1

0
dψψ

(
J0(ψ)J2(ψ)+ J1(ψ)2

)

+
∫ τ̃ E (1,φ)λ2

cosφ

1
dψψ

(
J0(ψ)J2(ψ)+ J1(ψ)2

)

= O(1)+ 2

π

∫ τ̃ E (1,φ)λ2
cosφ

1
dψ
(
sin(2ψ)+ O(ψ−1)

)

= 1

π
cos

(
2τ̃ E (1, φ)λ2

cosφ

)

+O(1)

(
1+ log

(
τ̃ E (1, φ)λ2

cosφ

))

= O(1)

(
1+ log

(
τ̃ E (1, φ)λ2

cosφ

))
.

Therefore, we conclude by (3.21)

BE,1(λ1, λ2, θ) = − sin2 θ

32

∫ α1,2

0

dφ

(τ̃ E (1, φ))2

sin φ cosφ

1− sin(2φ) cos θ

{
O(1)

(
1+ log

(
τ̃ E (1, φ)λ2

cosφ

))}

= − sin2 θ

32π

O(1)

4π2E

∫ α1,2

0
dφ

sin φ cosφ

(1− sin(2φ) cos θ)2

− sin2 θ

32π

O(1)

4π2E

∫ α1,2

0
dφ

sin φ cosφ

(1− sin(2φ) cos θ)2
log
(
τ̃ E (1, φ)λ2

)

+ sin2 θ

32π

O(1)

4π2E

∫ α1,2

0
dφ

sin φ cosφ

(1− sin(2φ) cos θ)2
log (cosφ)

=: b1E + b2E + b3E .

Clearly we have |b1E | = O(E−1) since (arguing similarly as in (3.20))

∫ α1,2

0
dφ

∣∣∣∣
sin φ cosφ

(1− sin(2φ) cos θ)2

∣∣∣∣ ≤
∫ α1,2

0

dφ

(1− | cos θ |)2 = α1,2

(1− | cos θ |)2 < ∞

since | cos θ | �= 1. Let us now consider the term b2E . Using (3.16), we write

log
(
τ̃ E (1, φ)λ2

)
= log

(
2πλ2

√
E
√
1− sin(2φ) cos θ

)

= 2−1 log E + log
(
2πλ2

√
1− sin(2φ) cos θ

)

= O(log E) + O(1),

where we used the fact that the map φ �→ log
(
2πλ2

√
1− sin(2φ) cos θ

)
is bounded. Thus,

arguing as above shows that |b2E | = O(E−1 + log(E)/E) = O(log(E)/E). For the term
b3E , we show that |b3E | = O(E−1). Indeed, since α1,2 = arctan(λ2/λ1) ≤ π/2, we have

∫ α1,2

0
dφ

∣∣∣∣
sin φ cosφ

(1− sin(2φ) cos θ)2
log (cosφ)

∣∣∣∣ ≤
1

(1− | cos θ |)2
∫ π/2

0
dφ| log(cosφ)| < ∞
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since it is straightforward to check that

∫ π/2

0
dφ| log(cosφ)| = π log 2

2
.

Indeed, the last integral is obtained as follows: Since log(cosφ)) ≤ 0 on (0, π/2), we have

∫ π/2

0
dφ| log(cosφ)| = −

∫ π/2

0
dφ log(cosφ) =: −I

By changing variable u = π/2 − φ, we have that I = ∫ π/2
0 dφ log(sin φ) and also by

symmetry I = ∫ π

π/2 dφ log(sin φ). Therefore, we have

2I =
∫ π/2

0
dφ log(cosφ sin φ) =

∫ π/2

0
dφ (log(sin 2φ)− log 2)

= 1

2

∫ π

0
log(sin φ)dφ − π log 2

2
= 1

2
× 2I − π log 2

2
= I − π log 2

2
,

so that I = −π log 2
2 as desired. Combining the contributions of each of the terms b j

E , j =
1, 2, 3, we conclude that BE,1(λ1, λ2, θ) = O(E−1 log E). The analysis for BE,2(λ1, λ2, θ)

is done analogously, so that BE,2(λ1, λ2, θ) = O(E−1 log E). We conclude from (3.15) that,
as E →∞,

Cov[φE (S1), φE (S2)] = AE (λ1, λ2, θ) + BE (λ1, λ2, θ) = O

(
log E

E

)
= o

(
1√
E

)
,

which proves the statement. This concludes the proof. ��
We now prove the following multivariate Central Limit Theorem for the normalized ran-

dom variables φ̃E (S) = 4πE1/4φE (S).

Proposition 3.3 (Multidimensional CLT for line segments) For every integer d ≥ 1 and
every line segments S1, . . . , Sd , we have that, as E →∞,

(
φ̃E (S1), . . . , φ̃E (Sd)

) d−→ Nd(0, �),

where � = {�(i, j) : i, j = 1, . . . , d} is the d × d matrix defined by

�(i, j) := λ(Si , S j ) i, j = 1, . . . , d,

where λ(Si , S j ) is the signed length of Si ∩ S j .

Proof Using the fact that for every line segment S, φ̃E (S) is an element of the second
Wiener chaos and we proved that the covariances E

[
φ̃E (S1)φ̃E (S2)

]
converge to λ(Si , S j )

as E → ∞ (see Proposition 3.1), it is sufficient to prove the statement for d = 1, since in
view of [30, Theorem 6.2.3], joint convergence is equivalent to marginal convergence for
chaotic sequences. By invariance under rigid motions of the plane of Berry’s random wave
model, we can assume without loss of generality, that S1 = [0, L] × {0} for L > 0. Using
the fact that nS1 = e2, we have

φ̃E (S1) = πE1/4

2

∫ L

0
BE (x, 0)∂̃2BE (x, 0)dx . (3.22)
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We now represent φ̃E (S1) as a multiple integral of order 2 with respect to an isonormal
Gaussian process on the Hilbert space L2([0, 1], λ), where λ denotes Lebesgue measure (see
Remark 2.2 (c)). For (x, 0) ∈ R

2, let f E0 (x, ·), f E2 (x, ·) : [0, 1] → R be such that

BE (x, 0) = I1( f
E
0 (x, ·)), ∂̃2BE (x) = I1( f

E
2 (x, ·)),

where Ip denotes theWiener–Itô isometry of order p. Using the product formula for multiple
integrals (see [30, Theorem 2.7.10]) and independence, we can write

BE (x, 0)∂̃2BE (x, 0) = I2
(
f E0 (x, ·)⊗̃ f E2 (x, ·)

)

+I0
(
f E0 (x, ·)⊗̃1 f

E
2 (x, ·)

)

= I2
(
f E0 (x, ·)⊗̃ f E2 (x, ·)

)
,

where the symbols⊗r and ⊗̃r denote the contraction operator of order r and its symmetriza-
tion respectively (see [30, Appendix B]. In particular, for r = 0 and r = 1, these are given
by (writing λ(du) = du)

f E0 (x, ·)⊗0 f
E
2 (x, ·) = f E0 (x, ·)⊗ f E2 (x, ·),

f E0 (x, ·)⊗1 f
E
2 (x, ·) =

∫ 1

0
f E0 (x, u) f E2 (x, u)du = 〈 f E0 (x, ·), f E2 (x, ·)〉L2([0,1],λ) = 0,

where the last identity follows from the isometry property for Wiener integrals and indepen-
dence. It follows from (3.22) that,

φ̃E (S1) = πE1/4

2

∫ L

0
I2
(
f E0 (x, ·)⊗̃ f E2 (x, ·)

)
dx =: I2

(
kE
)

,

where (Sym denotes the symmetrization operator)

kE (u, v) = πE1/4

2
Sym

{∫ L

0
f E0 (x, u) f E2 (x, v)dx

}

= πE1/4

4

{∫ L

0
f E0 (x, u) f E2 (x, v)dx +

∫ L

0
f E0 (x, v) f E2 (x, u)dx

}
.

(3.23)

In order to show that φ̃E (S1) satisfies a CLT as E → ∞, it suffices to show that ‖kE ⊗1

kE‖L2([0,1]2,λ⊗2) converges to zero as E →∞, in view of the Fourth Moment Theorem [30,
Theorem 5.2.7]. From (3.23) it follows that

kE ⊗1 k
E (u, v) =

∫ 1

0
dzkE (u, z)kE (v, z)

= π2
√
E

16
∫ 1

0
dz

{∫ L

0
f E0 (x, u) f E2 (x, z)dx +

∫ L

0
f E0 (x, z) f E2 (x, u)dx

}

×
{∫ L

0
f E0 (y, v) f E2 (y, z)dy +

∫ L

0
f E0 (y, z) f E2 (y, v)dy

}
,
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that is, after expanding, a sumof four terms, amongwhichoneof them (ignoringmultiplicative
constants that are independent of E) is

(u, v) �→ √
E
∫ L

0
dx
∫ L

0
dy f E0 (x, u) f E0 (y, v)

∫ 1

0
dz f E2 (x, z) f E2 (y, z)

= √
E
∫ L

0
dx
∫ L

0
dy f E0 (x, u) f E0 (y, v)E

[
∂̃2BE (x, 0)∂̃2BE (y, 0)

]

= √
E
∫ L

0
dx
∫ L

0
dy f E0 (x, u) f E0 (y, v)r̃ E2,2(x − y, 0).

From this, we compute the squared norm

‖kE ⊗1 k
E‖2L2([0,1]2,λ⊗2)

=
∫ 1

0
du
∫ 1

0
dv
[
kE ⊗1 k

E (u, v)
]2

,

which is given by a sum of 16 terms that have all the same behaviour. We will expose the
details for one of them (which is representative of the difficulty), the others can be treated
similarly. Exploiting once more the isometry property of Wiener integrals, one among them
(corresponding to the computation above) is given by

E
∫

[0,L]4
dx1 . . . dx4 r̃

E
2,2(x1 − x2, 0)r̃

E
2,2(x2 − x3, 0)r

E (x3 − x4, 0)r
E (x4 − x1, 0).

(3.24)

We now show that the integral in (3.24) converges to zero as E →∞. Performing the change
of variables (u1, u2, u3, u4) = (x1−x2, x2−x3, x3−x4, x4) yields that the integral in (3.24)
is equal to

E
∫ L

0
du4

∫ L−u4

−u4
du3

∫ L−(u3+u4)

−(u3+u4)
du2

∫ L−(u2+u3+u4)

−(u2+u3+u4)
du1 r̃

E
2,2(u1, 0)r̃

E
2,2(u2, 0)

r E (u3, 0) · r E (−u1 − u2 − u3, 0)

≤ EL
∫ L

−L
du3

∫ 2L

−2L
du2

∫ 4L

−4L
du1

∣∣∣r̃ E2,2(u3, 0)r̃
E
2,2(u2, 0)r

E (u1, 0)
∣∣∣ , (3.25)

where in the second line, we used the fact that |r E (·)| ≤ 1 and uniformly bounded the
regions of integrations. Now using [31, Lemma 3.1] and the relation (3.8) yields

r̃ E2,2(u3, 0) = J0
(
2π

√
E |u3|

)+ J2
(
2π

√
E |u3|

) = 2
J1
(
2π

√
E |u3|

)

2π
√
E |u3|

,

so that changing variable v = 2π
√
Eu3,

∫ L

−L
du3|r̃ E2,2(u3, 0)| =

1

2π
√
E

∫ 2π
√
EL

−2π
√
EL

2
|J1(|v|)|

|v| dv.

Splitting the region of integrations and using that |r̃12,2(·)| ≤ 2 yields

1

2π
√
EL

∫ 2π
√
E

−2π
√
EL

2
|J1(|v|)|

|v| dv = 1

2π
√
E

∫ 1

−1
2
|J1(|v|)|

|v| dv + 2

2π
√
E

∫ 2π
√
EL

1
2
|J1(v)|

v
dv.

The first term is O(E−1/2). For the second term, we use the bound |J1(v)| ≤ v−1/2, to obtain

2

2π
√
E

∫ 2π
√
EL

1
2
|J1(v)|

v
dv ≤ 2

2π
√
E

∫ 2π
√
EL

1

1

v3/2
= O(E−1/2).
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For the integration with respect to u1 in (3.25), we have that

∫ 4L

−4L
|r E (u1, 0)|du1 = 1

2π
√
E

(

O(1) + 2
∫ 8π

√
EL

1
|J0(v)|dv

)

≤ 1

2π
√
E

(

O(1) + 2
∫ 8π

√
EL

1

1√
v
dv

)

= O(E−1/4).

From this, we deduce that the integral in (3.24) is O(E · E−1/2E−1/2E−1/4) = O(E−1/4),
which suffices.

��
We now conclude the proofs of Theorems 2.3 and 2.4.

Proof of Theorem 2.3 Assume that C1, C2 ∈ C are given by C1 = (C1, ...Cr1) and C2 =
(T1, ...Tr2) for segments S1, . . . , Sr1 , T1, . . . , Tr2 . Then, in view of the covariance structure
for line segments proved in Proposition 3.1, it follows that, as E →∞,

Cov[φE (C1), φE (C2)] =
r1∑

j=1

r2∑

k=1

Cov
[
φE (S j ), φE (Tk)

]

=
r1∑

j=1

r2∑

k=1

λ(S j , Tk)

16π2
√
E
+ o

(
1√
E

)

= λ(C1, C2)
16π2

√
E
+ o

(
1√
E

)
,

where we used the definition of λ(·, ·). The variance estimate follows after setting C1 = C2
above. ��
Proof of Theorem 2.4 Thanks to the estimate in (2.8) and [30, Theorem 6.2.3], it suffices
to prove the statement for d = 1. Write C = (S1, ..., Sr ) for line segments S1, . . . , Sr .
The definition of φE and the fact that the random vector (φ̃E (S1), . . . , φ̃E (Sr )) converges in
distribution to a Gaussian vector with covariancematrix�(i, j) = λ(Si , S j ), i, j = 1, . . . , r
(in view of Proposition 3.3) imply that φ̃E (C) converges in distribution to a Gaussian random
variable with variance λ(C, C). ��

3.2 Proof of Corollary 2.8

In view of the variance estimate in Theorem 2.3, and taking into account the normalization in
the definition of XE (see (1.7)), we deduce that the finite-dimensional distributions of XE [2]
converge to zero. We are thus left to show that the laws of {XE [2] : E > 0} are tight, which
is the content of the following proposition.

Proposition 3.4 The laws of the random functions {XE [2] : E > 0} are tight in D2.

The proof of Proposition 3.4 is based on the following criterion by Davydov and Zitikis
[15, Theorem 1] for proving weak convergence of processes on [0, 1]d .
Theorem 3.5 (see [15]) Let Yn =

{
Yn(t) : t ∈ [0, 1]d} , n ≥ 1 be a collection of real-valued

stochastic processes on [0, 1]d such that its paths belong P-almost surely to C([0, 1]d ,R).
Assume furthermore that
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1. The finite-dimensional distributions of Yn converge to those of some stochastic process
Y ,

2. There exist α ≥ β > d, c > 0 and a numerical sequence {αn : n ≥ 1} such that αn → 0
as n →∞, E [|Yn(0)|α] ≤ c for every n ≥ 1 and

E
[|Yn(t) − Yn(s)|α

] ≤ c‖t − s‖β, ∀t, s ∈ [0, 1]d : ‖t − s‖ ≥ αn, (3.26)

3. For the sequence {αn : n ≥ 1} at point (b), we have as n →∞,

ωYn (αn) := sup
‖t−s‖≤αn

|Yn(t) − Yn(s)|sps0. (3.27)

Then, as n →∞, Yn converges weakly to Y and Y has continuous paths P-almost surely.

In order to prove that the process XE [2] verifies the assumptions (3.26) and (3.27), our
arguments make use of the following moment estimates for suprema of stationary Gaussian
random fields. Here, for a function f : Rd → R, a domain D ⊂ R

d and an integer j ≥ 0,
we denote by

‖ f ‖C j (D) := sup
x∈D

sup
|α|≤ j

|∂α f (x)|

where ∂α f (x) := ∂
α1
x1 . . . ∂

αd
xd f (x), for α := (α1, . . . , αd) with |α| := ∑d

k=1 αk . The proof
of Proposition 3.6 is postponed to Appendix C.

Proposition 3.6 Let G be a stationary Gaussian random field on R
d . Assume that for every

m ≥ 0, there exists a constant σ̃ 2(m) < ∞ such that

E
[
(∂αG(x))2

] ≤ σ̃ 2(m), ∀α ∈ N
d , |α| ≤ m. (3.28)

Then, for any p ≥ 1,

E

[
‖G‖p

C j (D)

]
≤ C {log(vol(D))}p/2

where C > 0 is an absolute constant depending on p and j , and vol(D) is the volume of D.

The following auxiliary results are needed to complete the proof Proposition 3.4.

Lemma 3.7 For t = (t1, t2) ∈ [0, 1]2, we write Dt := [0, t1] × [0, t2]. Then, for every
continuous function f : [0, 1]2 → R and every t, s ∈ [0, 1]2, we have

∣∣∣∣

∫

Dt

f (x)dx −
∫

Ds

f (x)dx

∣∣∣∣ ≤ C sup
x∈[0,1]2

| f (x)|‖t − s‖,

for some absolute constant C > 0.

Proof This follows directly from the fact that area(Dt\Ds) ≤ C‖t − s‖, for some constant
C > 0 which is independent of t and s. ��
Lemma 3.8 For every p ≥ 1 and E > 0, we have

E

[

sup
x∈[0,1]2

|BE (x)|p
]

+ E

[

sup
x∈[0,1]2

‖∇̃BE (x)‖p
]

≤ C(log E)p/2,

where C > 0 is some absolute constant depending only on p.
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Proof We use the fact that BE
d= B1(2π

√
E ·) as random fields, so that

E

[

sup
x∈[0,1]2

BE (x)p
]

= E

[

sup
y∈[0,2π√E]2

B1(y)
p

]

.

It is easy to see that the assumption (3.28) of Proposition 3.6 is satisfied by B1. Applying the
estimate in Proposition 3.6 with D = [0, 2π√E]2 ⊂ R

2 yields the desired conclusion. The
second supremum involving the normalized gradient is dealt with in the same way. ��

We are now in the position to prove Proposition 3.4.

Proof of Proposition 3.4 In view of Theorem 3.5 and the fact that the finite-dimensional dis-
tributions of XE [2] converge to those of the zero-process, it is sufficient to prove that there
exists a numerical sequence {aE : E > 0} such that aE → 0 as E → ∞ and (i) there exist
absolute constants α ≥ β > 2, c > 0 such that

E
[|XE [2](t) − XE [2](s)|α

] ≤ c‖t − s‖β, ∀t, s : ‖t − s‖ ≥ aE (3.29)

and (ii)

ω(E) := sup
‖t−s‖≤aE

|XE [2](t) − XE [2](s)| sps0, (3.30)

as E → ∞. We claim that choosing aE := (
√
E log E)−1 verifies the above conditions

(i) and (ii). Let us prove that (i) holds. The variance estimate in Theorem 2.3 implies that
there exists an absolute constant K > 0 such that for every E > 0 and every t ∈ [0, 1]2,
Var[XE [2](t)] ≤ K (

√
E log E)−1. Therefore, choosing α = 2 in (3.29), we infer that for

every t, s such that ‖t − s‖ ≥ (
√
E log E)−1,

E
[
(XE [2](t)− XE [2](s))2

] ≤ 2Var[XE [2](t)]+ 2Var[XE [2](s)] ≤ 2K√
E log E

≤ c‖t − s‖.

Since for every t ∈ [0, 1]2, XE [2](t) is an element of the second Wiener chaos associated
with BE , we exploit the hypercontractivity property for multiple Wiener integrals (see [30,
Theorem 2.7.2]) to obtain (for some absolute constant C > 0)

E
[
(XE [2](t) − XE [2](s))p

] ≤ CE
[
(XE [2](t) − XE [2](s))2

]p/2 ≤ C‖t − s‖p/2

for every p > 4, which gives the desired estimate in (3.29) since p/2 > 2. Let us now argue
that (ii) holds. By [31, Eq. (4.58)], we can write

XE [2](t) =
√
512π

log E
LE [2](Dt) =

√
512π

log E

π

8

√
2E

[
−2
∫

Dt

BE (x)2dx +
∫

Dt

‖∇̃BE (x)‖2dx
]

= 4π3/2

√
E

log E

[
−2
∫

Dt

BE (x)2dx +
∫

Dt

‖∇̃BE (x)‖2dx
]

.

Combining this expression with Lemma 3.7 applied to f = BE (·)2 and f = ‖∇̃BE (·)‖2,
yields for every choice of t, s such that ‖t − s‖ ≤ aE (denoting by C an absolute constant
whose value varies from line to line)
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|XE [2](t) − XE [2](s)| ≤ C

√
E

log E

{ ∣∣∣∣

∫

Dt

BE (x)2dx −
∫

Ds

BE (x)2dx

∣∣∣∣

+
∣∣∣∣

∫

Dt

‖∇̃BE (x)‖2dx −
∫

Ds

‖∇̃BE (x)‖2
∣∣∣∣

}

≤ C

√
E

log E

{

sup
x∈[0,1]2

|BE (x)|2 + sup
x∈[0,1]2

‖∇̃BE (x)‖2
}

‖t − s‖

≤ C

(log E)3/2

{

sup
x∈[0,1]2

|BE (x)|2 + sup
x∈[0,1]2

‖∇̃BE (x)‖2
}

,

where we used the definition of aE . This implies that

E [ω(E)] = E

[

sup
‖t−s‖≤aE

|XE [2](t) − XE [2](s)|
]

≤ C

(log E)3/2

{

E

[

sup
x∈[0,1]2

|BE (x)|2
]

+ E

[

sup
x∈[0,1]2

‖∇̃BE (x)‖2dx
]}

≤ C

(log E)3/2
· log E = C√

log E

where we used Lemma 3.8 with p = 2. Therefore, by the Markov inequality we have for
every η > 0,

P {ω(E) > η} ≤ η−1
E [ω(E)] ≤ C

η
√
log E

,

which proves the validity of (ii). ��

3.3 Proof of Theorem 2.10 and Corollary 2.11

Our proof of Theorem 2.10 is based on a planar chaining argument, similar to the one
presented in [13] and [28] in dimension one for a study related to empirical processes.

We start with a preliminary lemma, yielding a L2 bound for increments of RE =∑
q≥3 XE [2q] along rectangles of the form [s1, t1] × [s2, t2] ⊂ [0, 1]2.

Lemma 3.9 For every 0 ≤ si ≤ ti ∈ [0, 1], i = 1, 2, and E > 0, we have that

E
[
(RE (t1, t2) − RE (s1, t2) − RE (t1, s2) + RE (s1, s2))

2] ≤ C

log E
[(t1 − s1)(t2 − s2)] ,

where C > 0 is some absolute constant (independent of t1, t2, s1, s2 and E).

Proof Let D(t, s) := [s1, t1] × [s2, t2]. By definition of RE and the additivity of the nodal
length, we have

RE (t1, t2) − RE (s1, t2) − RE (t1, s2) + RE (s1, s2) =
√
512π

log E

∑

q≥3
LE [2q](D(t, s)).

(3.31)
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By inspection of the arguments used in the proofs of [31, Lemmas 7.6, 7.8, 7.9], one verifies
that there is an absolute constant C1 > 0 (independent of t, s and E) such that

Var

⎡

⎣
∑

q≥3
LE [2q](D(t, s))

⎤

⎦ ≤ C1area(D(t, s)).

Taking the square of L2(P)-norm in (3.31), and exploiting the above upper bound, we obtain

E
[
(RE (t1, t2) − RE (s1, t2) − RE (t1, s2) + RE (s1, s2))

2]

= 512π

log E
Var

⎡

⎣
∑

q≥3
LE [2q](D(t, s))

⎤

⎦

≤ C1
512π

log E
area(D(t, s))

= C

log E
(t1 − s1)(t2 − s2),

which gives the desired conclusion. ��
We are now in the position to prove Proposition 2.10.

Proof of Theorem 2.10 We start by introducing refining partitions of the unit square.
Refining partitions of the unit square Let us fix a large integer K (whose exact value will
be chosen later as a function of E). For every integers k, k′ = 0, . . . , K , and every vector

i = (i1, i2) ∈
{
0, . . . , 2k

}×
{
0, . . . , 2k

′}
, we define the partition points

pi (k, k′) :=
(
pi1(k), pi2(k

′)
) =

(
i1
2k

,
i2
2k′

)
∈ [0, 1]2.

Moreover, for every t = (t1, t2) ∈ [0, 1]2 and k, k′ = 0, . . . , K , we define the vector
ik,k′(t) =

(
i1,k(t1), i2,k′(t2)

)
to be such that

pi1,k (t1)(k) ≤ t1 ≤ pi1,k (t1)+1(k), pi2,k′ (t2)(k
′) ≤ t2 ≤ pi2,k′ (t2)+1(k

′),

that is, for every t ∈ [0, 1]2, the vector ik,k′(t) is such that pik,k′ (t)(k, k′) is the closest partition
point to t on the left.

We introduce the following operators.

Definition 3.10 Given a function f : [0, 1]2 → R a point t = (t1, t2) ∈ [0, 1]2, and
k, k′ ∈ {0, . . . , K − 1}, we define the difference operator
�k,k′ f (t) := f

(
pi1,k+1(t1)(k + 1), pi2,k′+1(t2)(k

′ + 1)
)
− f

(
pi1,k+1(t1)(k + 1), pi2,k′ (t2)(k

′)
)

− f
(
pi1,k (t1)(k), pi2,k′+1(t2)(k

′ + 1)
)
+ f

(
pi1,k (t1)(k), pi2,k′ (t2)(k

′)
)

.

Also, for k, k′ ∈ {0, . . . , K − 1}, we set
�K ,k′ f (t) := f

(
t1, pi2,k′+1(t2)(k

′ + 1))− f (t1, pi2,k′ (t2)(k
′)
)

− f
(
pi1,K (t1)(K ), pi2,k′+1(t2)(k

′ + 1)
)
+ f

(
pi1,K (t1)(K ), pi2,k′ (t2)(k

′)
)

,
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�k,K f (t) := f
(
pi1,k+1(t1)(k + 1), t2

)− f
(
pi1,k+1(t1)(k + 1), pi2,K (t2)(K )

)

− f
(
pi1,k (t1)(k), t2

)+ f
(
pi1,k (t1)(k), pi2,K (t2)(K )

)

and finally

�K ,K f (t) := f (t1, t2) − f
(
t1, pi2,K (t2)(K )

)

− f
(
pi1,K (t1)(K ), t2

)+ f
(
pi1,K (t1)(K ), pi2,K (t2)(K )

)
.

Also, we use the notations �+
k,k′ ,�

+
K ,k′ and �+

k,K to indicate the operators obtained from the
relations above by replacing t1 and t2 with pi1,k (t1)+1(k) and pi2,k′ (t2)+1(k′), respectively.

We remark that, by construction of the refining partitions, we have either pi1,k (k) =
pi1,k+1(t1)(k + 1) or pi1,k+1(t1)(k + 1) − pi1,k (t1)(k) = 2−(k+1) (and similarly for partition
coordinates involving the index i2) which yields in particular
∣∣�k,k′ f (t1, t2)

∣∣

≤
∣∣∣∣ f
(
pi1,k (t1)(k) +

1

2k+1 , pi2,k′ (t2)(k
′) + 1

2k′+1

)
− f

(
pi1,k (t1)(k) +

1

2k+1 , pi2,k′ (t2)(k
′)
)

− f

(
pi1,k (t1)(k), pi2,k′ (t2)(k

′) + 1

2k′+1

)
+ f

(
pi1,k (t1)(k), pi2,k′ (t2)(k

′)
)∣∣∣∣. (3.32)

In view of the above defined difference operators, the following bivariate telescopic formula
holds

f (t1, t2) =
K∑

k,k′=0

�k,k′ f (t1, t2) (3.33)

for every f : [0, 1]2 → R.
Let us now write RK

E for the discretized version of RE associated with the above partition.
Applying (3.33) to RK

E , we can write for every t ∈ [0, 1]2,
∣∣∣RK

E (t)
∣∣∣ =

∣∣∣∣∣∣

K∑

k,k′=0

�k,k′ R
K
E (t)

∣∣∣∣∣∣

≤
∑

(k,k′)∈B(K )c

∣∣∣�k,k′ R
K
E (t)

∣∣∣+
∣∣∣∣∣∣

∑

(k,k′)∈B(K )

�k,k′ R
K
E (t)

∣∣∣∣∣∣
, (3.34)

where we set B(K ) := {(k, k′) ∈ {0, . . . , K }2 : max(k, k′) = K
}
. Note that the second term

in the R.H.S of (3.34) vanishes by definition of the operators �K ,k′ ,�k,K and �K ,K , and
the fact that we consider the discretized remainder RK

E : indeed, for every (k, k′) ∈ B(K ),
we have that �k,k′ RK

E (t) = 0. From this, we conclude that, for every ε > 0,

P

{

sup
t∈[0,1]2

∣∣∣RK
E (t)

∣∣∣ > ε

}

≤ P

⎧
⎨

⎩
sup

t∈[0,1]2
∑

(k,k′)∈B(K )c

∣∣∣�k,k′ R
K
E (t)

∣∣∣ > ε

⎫
⎬

⎭
. (3.35)

We remark that the R.H.S involves the increments on closest partition points associated with
t.

Now, using the fact that
∑

k,k′≥0

ε

(k + 3)2(k′ + 3)2
≤ ε
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and the Chebychev inequality, we can bound the probability in (3.35) by

∑

(k,k′)∈B(K )c

P

{

sup
t∈[0,1]2

∣∣∣�k,k′ R
K
E (t)

∣∣∣ >
ε

(k + 3)2(k′ + 3)2

}

≤
∑

(k,k′)∈B(K )c

2k∑

i1=0

2k
′

∑

i2=0

P

{ ∣∣∣�k,k′ R
K
E (p(i1,i2)(k + 1, k + 1))

∣∣∣

>
ε

(k + 3)2(k′ + 3)2

}

≤
∑

(k,k′)∈B(K )c

(k + 3)4(k′ + 3)4

ε2

2k∑

i1=0

2k
′

∑

i2=0

C

log E

1

2k+1

1

2k′+1
≤ C ′

log E
K 10,

where we used Lemma 3.9. Therefore, this probability converges to zero once we chose
K = K (E) in such a way that K (E) → ∞ and K (E) = o((log E)1/10) as E → ∞. This
concludes the proof. ��
Proof of Corollary 2.11 Let us choose K = K (E) as in the statement. By the Wiener chaos
expansion of XK

E , we can write

XK
E = XE [4] +

(
XK
E [4] − XE [4]

)
+ XE [2] +

(
XK
E [2] − XE [2]

)
+ RK

E .

We use the same strategy used to prove Lemma 1.4. The process XE [4] converges weakly to
a standard Wiener sheet in the space D2, in view of [37, Theorem 3.4]. The residue process
RK
E converges to zero uniformly in probability, in view of Theorem 2.10. The second chaotic

projections converge weakly to zero in view of Corollary 2.8. For the term XK
E [4] − XE [4]

we argue that, for every ε > 0,

P

{

sup
t∈[0,1]2

∣∣∣XK
E [4](t) − XE [4](t)

∣∣∣ > ε

}

→ 0

as E →∞. By definition of XK
E [4], we can rewrite

P

{

sup
t∈[0,1]2

∣∣∣XK
E [4](t) − XE [4](t)

∣∣∣ > ε

}

= P

{

sup
t∈[0,1]2

∣∣XE [4](piK ,K (t)(K , K )) − XE [4](t)
∣∣ > ε

}

.

Since both XE [4] andW belong to the spaceC2, P-almost surely, we can apply the Skorohod
RepresentationTheorem [14, Theorem11.7.2]. Thus, on some probability space (�′,F ′,P′),
there exist

{
Y ′
E : E > 0

}
, Z ′ ∈ C2 such that Y ′

E
d= XE [4], Z ′ d= W and

sup
t∈[0,1]2

|Y ′
E (t) − Z ′(t)| → 0,

P
′-almost surely as E → ∞. Therefore, denoting by � ∈ PE a cell of a partition PE of

[0, 1]2 with mesh |PE | → 0 as E →∞, we can write

P

{

sup
t∈[0,1]2

∣∣XE [4](piK ,K (t)(K , K ))− XE [4](t)
∣∣ > ε

}

≤ P
′
{

sup
�∈PE

sup
t,s∈�

|X ′
E (t) − X ′

E (s)| > ε

}
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≤ P
′
{

sup
�∈PE

sup
t,s∈�

(|X ′
E (t) − Z ′(t)| + |Z ′(s) − X ′

E (s)|) >
ε

2

}

+P
′
{

sup
�∈PE

sup
t,s∈�

|Z ′(t) − Z ′(s)| >
ε

2

}

where we used the triangle inequality. For the first probability, we use the fact that X ′
E

converges to Z ′ uniformly on [0, 1]2, P′-almost surely, implying that

sup
�∈PE

sup
t,s∈�

(|X ′
E (t) − Z ′(t)| + |Z ′(s) − X ′

E (s)|) ≤ 2 sup
t∈[0,1]2

|X ′
E (t) − Z ′(t)| → 0,

P
′-almost surely. For the second term, we notice that Z ′ is uniformly continuous on [0, 1]2

(being continuous on [0, 1]2), so that supt,s∈� |Z ′(t) − Z ′(s)| → 0, P′-almost surely. ��

3.4 Proof of Proposition 2.16

By Lemma 3.9, we deduce that for every t ∈ [0, 1]2,

Var[RE (t)] = O

(
1

log E

)
,

where the constants involved in the ‘big-O’ notation are independent of t and E . This implies
that the finite-dimensional distributions of the process RE (•, N ) converge to zero for every
fixed N ≥ 4. Therefore, in order to obtain the desired conclusion, it is sufficient to prove that
the laws of the random mappings {RE (•; N ) : E > 0} (for N = N (E) as in the statement)
verify a Kolmogorov type estimate of the form

E
[
(RE (t; N ) − RE (s; N ))α

] ≤ c‖t − s‖2+β, ∀t, s ∈ [0, 1]2 (3.36)

for some constants α, β > 0 and c > 0 that are independent of E . Denoting by Dt :=
[0, t1] × [0, t2] and Dt,s := Dt \Ds, we have that for every integer N (to be chosen later as
a function of E) and every p > 2,

E
[
(RE (t; N ) − RE (s; N ))p

]1/p = 512π

log E
E

⎡

⎣

⎛

⎝
N∑

q=3

LE [2q](Dt,s)

⎞

⎠

p⎤

⎦

1/p

.

Since
∑N

q=3 LE [2q](Dt,s) is a random variable living in the orthogonal sum of Wiener
chaoses up to order 2N , we use the hypercontractivity property [30, Theorem 2.7.2] together
with Lemma 3.9, to deduce that

E
[
(RE (t; N ) − RE (s; N ))p

]1/p ≤ 512π

log E
(p − 1)NVar

⎡

⎣
N∑

q=3

LE [2q](Dt,s)

⎤

⎦

1/2

≤ cp
log E

(p − 1)N‖t − s‖1/2,

where cp is some absolute constant only depending on p. In particular, for p = 6 we obtain
the estimate

E
[
(RE (t; N ) − RE (s; N ))6

] ≤
{

c6
log E

5N‖t − s‖1/2
}6

= c
56N

(log E)6
‖t − s‖3,
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for some absolute constant c > 0. Thus in order to prove (3.36), it is sufficient to choose
N = N (E) such that

56N (E)

(log E)6
� 1,

yielding that N (E) = �6−1 log5((log E)6)� = �log5(log E)�. This proves the claim.

Acknowledgements We thank Maurizia Rossi for several fruitful discussions.

Funding Giovanni Peccati is partially supported by the FNRGrant HDSA (O21/16236290/HDSA) at Luxem-
bourg University. Anna Vidotto is supported by the co-financing of the European Union—FSE-REACT-EU,
PON Research and Innovation 2014-2020, DM 1062/2021.

Data Availability Data sharing not applicable to this article as no datasets were generated or analysed during
the current study.

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to disclose.

Appendix A: Proof of Proposition 1.3

According to Proposition 1.2, the random field XE converges in the sense of finite-
dimensional distributions to W, and moreover one has that

sup
E>0, t∈[0,1]2

E
[
XE (t)2

]
< ∞, and E

[
XE (t)2

]→ E
[
W(t)2

]
,

where the first relation follows from the computations contained in [31, Sections 6 and 7],
and the second one takes place as E → ∞, for all t ∈ [0, 1]2. As a consequence of these
relations, we can apply [20, Theorem 4] and conclude that, if ψ ∈ C∞c (R), then

∫

R
XE (t)ψ(t)dt

d−→
∫

R
W(t)ψ(t)dt. (A.1)

We now fix ϕ ∈ C∞c (R) and apply (A.1) to ψ(t) = ∂
∂t1

∂
∂t2

ϕ(t) ∈ C∞c (R), where t = (t1, t2),
in such a way that ϕ(t) = ∫

(t1,1)×(t2,1)
ψ(z)dz. Applying a standard Fubini theorem on the

left-hand side of (A.1) and a stochastic Fubini theorem (see [36, Theorem 5.13.1]) on the
right-hand side yields that

∫

R
XE (t)ψ(t)dt = 〈L̃E , ϕ〉, and

∫

R
W(t)ψ(t)dt =

∫

R
ϕ(z)W(dz),

where the last expression denotes a stochastic Wiener-Itô integral with respect to W. The
conclusion now follows from [16, Theorem III.6.5].

Appendix B: Proof of Lemma 1.4

SinceUn and Vn converge weakly to X and zero in D2, respectively, we use for instance [44,
Theorem 2], to deduce that, for every ε > 0,

lim
δ→0

lim sup
n→∞

P {ωδ(Un) > ε} = 0, lim
δ→0

lim sup
n→∞

P {ωδ(Vn) > ε} = 0 (B.1)
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where ωδ( f ) := sup {| f (t) − f (s)| : ‖t − s‖ < δ}. To obtain the desired conclusion, by
virtue of the discussion contained in [29, p.1291], it is sufficient to show that

lim
δ→0

lim sup
n→∞

P {ωδ(Xn) > ε} = 0.

By the triangle inequality, we can write for every δ > 0,

ωδ(Xn) = ωδ(Un + Vn +Wn) ≤ ωδ(Un) + ωδ(Vn) + ωδ(Wn),

in such a way that

P {ωδ(Xn) > ε} ≤ P {ωδ(Un) > ε/3} + P {ωδ(Vn) > ε/3} + P {ωδ(Wn) > ε/3} .
Using the estimate ωδ(Wn) ≤ 2 supt∈[0,1]2 |Wn(t)| and letting n → ∞ and δ → 0 then
implies the desired conclusion from (B.1) and assumption (iii) in the statement.

Appendix C: Moment Estimates for Suprema of Gaussian Fields

Inwhat followsweconsider a centred smooth stationaryGaussianfieldG = {G(x) : x ∈ R
d
}

onRd with covariance functionE [G(x)G(y)] = κ(x−y). For an integer j ≥ 0 andD ⊂ R
d ,

we write

σ 2(D; j) := sup
x∈D

sup
|α|≤ j

E
[
(∂αG(x))2

]
,

where ∂αG(x) := ∂
α1
x1 . . . ∂

αd
xd G(x), for α := (α1, . . . , αd) with |α| :=∑d

k=1 αk . Moreover,
forD ⊂ R

d and ε > 0, wewriteD(ε) for the ε-enlargement ofD. Finally, we use the notation

‖ f ‖C j (D) := sup
x∈D

sup
|α|≤ j

|∂α f (x)|

for f : Rd → R. The goal of this section is to prove Proposition 3.6, whose statement we
recall for convenience.

Proposition C.1 Let the above setting prevail. Assume that for every m ≥ 0, there exists
σ̃ 2(m) < ∞ such that

E
[
(∂αG(x))2

] ≤ σ̃ 2(m), ∀α ∈ N
d , |α| ≤ m. (C.1)

Then, for every p ≥ 1 and j ≥ 0

E

[
‖G‖p

C j (D)

]
≤ C {log(vol(D))}p/2

where C > 0 is an absolute constant depending on p and j , and vol(D) is the d-dimensional
volume of D.

We remark that assumption (C.1) in particular implies that σ 2(D; j) ≤ σ̃ 2( j) for every
j ≥ 0.

C.1: Proof of Proposition C.1

The proof of Proposition C.1 is based on several classical concentration inequalities for
suprema of Gaussian fields, that we state here below. The first statement is an estimate for
the first moment of ‖G‖C j (D) (see [32, Appendix A.9]).
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Proposition C.2 Let the above setting prevail.

E
[‖G‖C j (D)

] ≤ c1(D)σ (D(1); j + 1), (C.2)

where c1(D) is a constant depending on D.

The following inequality is the so-called Borell-TIS inequality applied to the Gaussian
field ∂αG, see for instance [42, Theorem 2.1.1].

Proposition C.3 For every α ∈ N
d and u > 0, we have

P

{
sup
x∈D

∂αG(x) > E

[
sup
x∈D

∂αG(x)

]
+ u

}
≤ e

− u2

2σ2(D;|α|) . (C.3)

Combining the contents of Propositions C.2 and C.3, we deduce that for every α ∈ N
d

with |α| ≤ j and u > 0

P

{
sup
x∈D

∂αG(x) > c1(D)σ̃ ( j + 1) + u

}
≤ e

− u2

2σ̃2( j+1)

which implies (by symmetry)

P

{
sup
x∈D

|∂αG(x)| > c1(D)σ̃ ( j + 1) + u

}
≤ 2e

− u2

2σ̃2( j+1) .

Therefore summing over all possible α with |α| ≤ j ,

P
{‖G‖C j (D) > c1(D)σ̃ ( j + 1) + u

} ≤ k( j, d)e
− u2

2σ2( j+1) (C.4)

where k( j, d) := 2card
{
α ∈ N

d : |α| = j
}
.

We can now prove Proposition C.1.

Proof of Proposition C.1 By stationarity of G it follows that, if D′ is a translation of D, then
necessarily c1(D) = c1(D′), where c1(D) is the constant appearing in (C.2). In particular,
applying (C.2) in the case where D is a ball B with unit radius and exploiting the moment
assumption (C.1) on G, we deduce that

E
[‖G‖C j (B)

] ≤ c1σ̃ ( j + 1),

where c1 is a universal constant. Therefore, applying (C.4) with D = B yields

P
{‖G‖C j (B) > c1σ̃ ( j + 1)+ u

} ≤ k( j, d)e
− u2

2σ̃2( j+1) , u > 0.

Now, using the above inequality with u = t − c1σ̃ ( j + 1), we can write for every b > 0
(setting k := k( j, d), σ̃ := σ̃ ( j + 1)),

E

[
eb‖G‖C j (B)

]
= 1+ b

∫ ∞

0
etbP

{‖G‖C j (B) > c1σ̃ + (t − c1σ̃ )
}
dt

= ebc1σ̃ + b
∫ ∞

c1σ̃
etbP

{‖G‖C j (B) > c1σ̃ + (t − c1σ̃ )
}
dt

≤ ebc1σ̃ + bk
∫ ∞

c1σ̃
etbe−

(t−c1 σ̃ )2

2σ̃2 dt ≤ ebc1σ̃ + bk
∫

R

etbe−
(t−c1 σ̃ )2

2σ̃2 dt

= ebc1σ̃ + bk
√
2πσ̃E

[
ebZ
]
, Z ∼ N (c1σ̃ , σ̃ 2)
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= ebc1σ̃ + bk
√
2πσ̃

(
ebc1σ̃+b2σ̃ 2/2

)
= ebc1σ̃ (1+ bk

√
2πσ̃eb

2σ̃ 2/2)

≤ ebc1σ̃+b2σ̃ 2/2(1+ bk
√
2πσ̃ ) ≤ ebc1σ̃+b2σ̃ 2/2+bk

√
2πσ̃

= ebσ̃ (c1+k
√
2π)+b2σ̃ 2/2, (C.5)

where we used that 1+ x ≤ ex . Now for D ⊂ R
d we denote by ND the minimal number of

unit balls needed to cover D and by BD := {B1, . . . ,BND
}
the collection of all unit balls

covering D in such a way that card(BD) = ND . Then, we have that, for every b > 0

E
[‖G‖C j (D)

] = E
[
log exp(b−1b‖G‖C j (D))

] = b−1
E

[
log eb‖G‖C j (D)

]

≤ b−1 logE
[
eb‖G‖C j (D)

]
≤ b−1 log

ND∑

l=1

E

[
e
b‖G‖C j (Bl )

]

≤ b−1 log
(
NDE

[
e
b‖G‖C j (B1)

])

≤ b−1 log
(
NDebσ̃ (c1+k

√
2π)+b2σ̃ 2/2

)
using(C .5)

= b−1 log(ND) + σ̃ (c1 + k
√
2π) + b

σ̃ 2

2
=: h(b).

Differentiating h with respect to b, we find that h(b) ≤ h(b0) for b0 =
√
2
√
log(ND)/σ̃ and

thus

E
[‖G‖C j (D)

] ≤ h(b0) =
√
2σ̃
√
log(ND) + σ̃ (c1 + k

√
2π) =: μ. (C.6)

Now let p ≥ 1. Then, using the inequality

P
{‖G‖C j (D) > μ + u

} ≤ ke−
u2

2σ̃2 , u > 0

together with (C.6), yields

E

[
‖G‖p

C j (D)

]
= p

∫ ∞

0
t p−1

P
{‖G‖C j (D) > μ+ (t − μ)

}
dt

≤ μp + pk
∫ ∞

μ

t p−1e−
(t−μ)2

2σ̃2 dt ≤ μp + pk
∫

R

|t |p−1e−
(t−μ)2

2σ̃2 dt

= μp + pk
√
2πσ̃E

[|Z |p−1] , Z ∼ N (μ, σ̃ 2).

Now for Z ∼ N (μ, σ̃ 2) and Z ′ := (Z − μ)/σ̃ ∼ N (0, 1),

E
[|Z |p−1] = σ̃ p−1

E
[|Z ′ + μ/σ̃ |p−1]

≤ 2p−2σ̃ p−1 (
E
[|Z ′|p−1]+ (μ/σ̃ )p−1)

=: Cp(σ̃
p−1 + μp−1),

where Cp := 2p−2
E
[|Z ′|p−1

]
depends only on p, so that

E

[
‖G‖p

C j (D)

]
≤ μp + pk

√
2πσ̃Cp(σ̃

p−1 + μp−1).

The conclusion follows from the definition of μ in (C.6) and the fact that there are constants
C1,C2 > 0 such that C1vol(D) ≤ ND ≤ C2vol(D). ��

123



97 Page 40 of 41 M. Notarnicola et al.

References

1. Abert, M., Bergeron, N., Le Masson, E.: Eigenfunctions and random waves in the Benjamini–Schramm
limit. Preprint at arXiv:1810.05601 (2021)

2. Ancona, M., Letendre, T.: Roots of Kostlan polynomials: moments, strong law of large numbers and
central limit theorem. Ann. Henri Lebesgue 4, 1659–1703 (2021)

3. Ancona, M., Letendre, T.: Zeros of smooth stationary Gaussian processes. Electron. J. Probab. (2021).
https://doi.org/10.1214/21-EJP637

4. Adler, R.J., Taylor, J.E.: Random Fields and Geometry. Springer Monographs in Mathematics. Springer-
Verlag, New York (2007)

5. Beliaev, D., Cammarota, V., Wigman, I.: Two point function for critical points of a random plane wave.
Int. Math. Res. Notices 2019(9), 2661–2689 (2019)

6. Berry, M.V.: Regular and irregular semiclassical wavefunctions. J. Phys. A 10(12), 2083–2092 (1977)
7. Berry, M.V.: Statistics of nodal lines and points in chaotic quantum billiards: perimeter corrections,

fluctuations, curvature. J. Phys. A 35(13), 3025–3038 (2002)
8. Buckley, J., Sodin, M.: Fluctuations of the increment of the argument for the Gaussian entire function. J.

Stat. Phys. 168(2), 300–330 (2017)
9. Canzani, Y., Hanin, B.: Local universality for zeros and critical points of monochromatic random waves.

Commun. Math. Phys. 378, 1677–1712 (2020)
10. Diaconis, P., Evans, S.N.: Linear functionals of eigenvalues of random matrices. Trans. Am. Math. Soc.

353(7), 2615–2633 (2001)
11. Dalmao, F., Nourdin, I., Peccati, G., Rossi, M.: Phase singularities in complex arithmetic random waves.

Electron. J. Probab. 24, 45 (2019)
12. Dierickx, G., Nourdin, I., Peccati, G., Rossi, M.: Small scale CLTs for the nodal length of monochromatic

waves. Commun. Math. Phys. (2022). https://doi.org/10.1007/s00220-022-04422-w
13. Dehling, H., Taqqu, M.S.: The empirical process of some long-range dependent sequences with an appli-

cation to U -statistics. Ann. Stat. 17(4), 1767–1783 (1989)
14. Dudley, R.M.: Real Analysis and Probability. Cambridge Studies in Advanced Mathematics. Cambridge

University Press, Cambridge (2002)
15. Davydov, Y., Zitikis, R.: On weak convergence of random fields. Ann. Inst. Stat. Math. 60(2), 345–365

(2008)
16. Fernique, X.: Processus linéaires, processus généralisés. Ann. Inst. Fourier 17(1), 1–92 (1967)
17. Ghosh, S., Lebowitz, J.L.: Fluctuations, large deviations and rigidity in hyperuniform systems: a brief

survey. Indian J. Pure Appl. Math. 48(4), 609–631 (2017)
18. Hughes, C.P., Nikeghbali, A., Yor, M.: An arithmetic model for the total disorder process. Probab. Theory

Relat. Fields 141(1), 47–59 (2008)
19. Ingremeau, M.: Local weak limits of Laplace eigenfunctions. Tunis. J. Math. 3(3), 481–515 (2021)
20. Ivanov, A.A.: Convergence of distributions of functionals of measurable random fields. Ukr. Math. J.

32(1), 19–25 (1980)
21. Krishnapur, M., Kurlberg, P., Wigman, I.: Non-universality of nodal length distribution for arithmetic

random waves. Ann. Math. 177(2), 699–737 (2013)
22. Krasikov, I.: Approximations for theBessel andAiry functionswith an explicit error term.LMSJ.Comput.

Math. 17(1), 209–225 (2014)
23. Kurlberg, P., Wigman, I.: Non-universality of the Nazarov–Sodin constant for random plane waves and

arithmetic random waves. Adv. Math. 330, 516–552 (2018)
24. Lebowitz, J.L.: Charge fluctuations in Coulomb systems. Phys. Rev. A 27(3), 1491–1494 (1983)
25. Marinucci, D., Peccati, G.: Random fields on the sphere: representation. In: Limit Theorems and Cosmo-

logical Applications. London Mathematical Society Lecture Note Series. Cambridge University Press,
Cambridge (2011)

26. Marinucci, D., Peccati, G., Rossi, M., Wigman, I.: Non-universality of nodal length distribution for
arithmetic random waves. GAFA 3, 926–960 (2016)

27. Muirhead, S., Rivera, A., Vanneauville, H., Köhler-Schindler, L.: The phase transition for planar Gaussian
percolation models without FKG. Preprint at arXiv:2010.11770 (2020)

28. Marinucci, D., Wigman, I.: On the area of excursion sets of spherical Gaussian eigenfunctions. J. Math.
Phys. 52(9), 093301 (2011)

29. Neuhaus, G.: On weak convergence of stochastic processes with multidimensional time parameter. Ann.
Math. Stat. 42(4), 1285–1295 (1971)

30. Nourdin, I., Peccati, G.: Normal Approximation with Malliavin Calculus: From Stein’s Method to Uni-
versality. Cambridge University Press, Cambridge (2012)

123

http://arxiv.org/abs/1810.05601
https://doi.org/10.1214/21-EJP637
https://doi.org/10.1007/s00220-022-04422-w
http://arxiv.org/abs/2010.11770


Functional Convergence of Berry’s Nodal... Page 41 of 41 97

31. Nourdin, I., Peccati, G., Rossi,M.: Nodal statistics of planar randomwaves. Commun.Math. Phys. 369(1),
99–151 (2019)

32. Nazarov, F., Sodin, M.: Asymptotic laws for the spatial distribution and the number of connected com-
ponents of zero sets of Gaussian random functions. J. Math. Phys. Anal. Geom. 12(3), 205–278 (2016)

33. Nualart, D.: The Malliavin Calculus and Related Topics. Probability and Its Applications, 2nd edn.
Springer, Berlin (2006)

34. Paranjape, S.R., Park, C.: Distribution of the supremum of the two-parameter Yeh-Wiener process on the
boundary. J. Appl. Probab. 10(4), 875–880 (1973)

35. Priya, L.: Overcrowding estimates for zero count and nodal length of stationary Gaussian processes.
Preprint at arXiv:2012.10857 (2020)

36. Peccati, G., Taqqu, M.S.: Wiener Chaos: Moments, Cumulants and Diagrams. Springer-Verlag, Berlin
(2010)

37. Peccati, G., Vidotto, A.: Gaussian randommeasures generated by Berry’s nodal sets. J. Stat. Phys. 178(4),
996–1027 (2020)

38. Selberg, A.: Contributions to the Theory of the Riemann Zeta-Function. Archiv for mathematik og naturv-
idenskab. Cammermeyer, Oslo (1946)

39. Selberg, A.: Old and new conjectures and results about a class of Dirichlet series. In: Proceedings of
the Amalfi Conference on Analytic Number Theory (Maiori, 1989), pp. 367–385. University of Salerno,
Salerno (1992)

40. Sodin, M., Tsirelson, B.: Random complex zeroes. I. Asymptotic normality. Isr. J. Math. 144, 125–149
(2005)

41. Szego, G.: Orthogonal Polynomials. American Mathematical Society, Providence (1975)
42. Taylor, J.E., Adler, R.J.: Gaussian processes, kinematic formulae and Poincaré’s limit. Ann. Probab. 37(4),

1459–1482 (2009)
43. Torquato, S.: Hyperuniform states of matter. Phys. Rep. 745, 1–95 (2018)
44. Wichura, M.J.: Inequalities with applications to the weak convergence of random processes with multi-

dimensional time parameters. Ann. Math. Stat. 40(2), 681–687 (1969)
45. Wieand, K.: Eigenvalue distributions of random unitary matrices. Probab. Theory Relat. Fields 123(2),

202–224 (2002)
46. Wigman, I.: Fluctuations of the nodal length of random spherical harmonics. Commun. Math. Phys.

298(3), 787–831 (2010)
47. Wigman, I.: On the nodal structures of random fields—a decade of results. Preprint at arXiv:2206.10020

(2022)
48. Zelditch, S.: Real and complex zeros of Riemannian random waves. In: Spectral Analysis in Geometry

and Number Theory, Volume 484 of Contemporary Mathematics (2009)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

http://arxiv.org/abs/2012.10857
http://arxiv.org/abs/2206.10020

	Functional Convergence of Berry's Nodal Lengths: Approximate Tightness and Total Disorder
	Abstract
	1 Introduction
	1.1 The Model
	1.2 Fluctuations of Nodal Sets
	1.3 The Main Question

	2 Main Results
	2.1 Second Chaos and Total Disorder
	2.1.1 Some Random Fields Indexed by Curves
	2.1.2 Second Order Results
	2.1.3 Applications to Functional Convergence

	2.2 Approximate Tightness
	2.2.1 Discretized Nodal Length Process
	2.2.2 Truncated Nodal Length Process


	3 Proof of the Main Results
	3.1 Proofs of Theorems 2.3 and 2.4
	3.1.1 Study of Line Segments

	3.2 Proof of Corollary 2.8
	3.3 Proof of Theorem 2.10 and Corollary 2.11 
	3.4 Proof of Proposition 2.16

	Acknowledgements
	Appendix A: Proof of Proposition 1.3
	Appendix B: Proof of Lemma 1.4
	Appendix C: Moment Estimates for Suprema of Gaussian Fields
	C.1: Proof of Proposition C.1

	References




