microcanonical ensemble; phase transitions; topological methods; Statistical and Nonlinear Physics; Statistics and Probability; Modeling and Simulation; Mathematical Physics; Physics and Astronomy (all); General Physics and Astronomy
Abstract :
[en] The investigation of the Hamiltonian dynamical counterpart of phase transitions, combined with the Riemannian geometrization of Hamiltonian dynamics, has led to a preliminary formulation of a differential-topological theory of phase transitions. In fact, in correspondence of a phase transition there are peculiar geometrical changes of the mechanical manifolds that are found to stem from changes of their topology. These findings, together with two theorems, have suggested that a topological theory of phase transitions can be formulated to go beyond the limits of the existing theories. Among other advantages, the new theory applies to phase transitions in small N systems (that is, at nanoscopic and mesoscopic scales), and in the absence of symmetry-breaking. However, the preliminary version of the theory was incomplete and still falsifiable by counterexamples. The present work provides a relevant leap forward leading to an accomplished development of the topological theory of phase transitions paving the way to further developments and applications of the theory that can be no longer hampered.
Disciplines :
Physics
Author, co-author :
GORI, Matteo ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS) ; Quantum Biology Lab, Howard University, Washington, United States
Franzosi, Roberto; DSFTA, University of Siena, Siena, Italy ; INFN Sezione di Perugia, Perugia, Italy ; QSTAR, CNR—Istituto Nazionale di Ottica, Firenze, Italy
Pettini, Giulio; Dipartimento di Fisica, Università di Firenze, I.N.F.N., Sezione di Firenze, Sesto Fiorentino, Italy ; Sezione di Firenze, INFN, Sesto Fiorentino, Italy
Pettini, Marco ; Aix-Marseille Univ, Université de Toulon, CNRS, Marseille, France ; CNRS, Centre de Physique Théorique, UMR7332, Marseille, France
External co-authors :
yes
Language :
English
Title :
Topological theory of phase transitions
Publication date :
16 September 2022
Journal title :
Journal of Physics. A, Mathematical and Theoretical
DARPA Aix-Marseille University Howard University Horizon 2020 Research and Innovation Programme
Funding text :
This work has been done within the framework of the project MOLINT which has received funding from the Excellence Initiative of Aix-Marseille University—AMidex, a French ‘Investissements d’Avenir’ programme. This work was also partially supported by the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 964203 (FET-Open LINkS project). Roberto Franzosi acknowledges support by the QuantERA ERA-NET Co-fund 731473 (Project Q-CLOCKS) and the support by the National Group of Mathematical Physics (GNFM-INdAM). Matteo Gori thanks the financial support of DARPA (USA) for his long term visit at Howard University at Washington D.C. during which part of this work was done. *
Yang C N Lee T D 1952 Statistical theory of equations of state and phase transitions: I. Theory of condensation Phys. Rev. 87 404 409 404-9 10.1103/physrev.87.404
Lee T D Yang C N 1952 Statistical theory of equations of state and phase transitions: II. Lattice gas and Ising model Phys. Rev. 87 410 419 410-9 10.1103/physrev.87.410
Georgii H O 2011 A comprehensive account of the Dobrushin-Lanford-Ruelle theory and of its developments can be found Gibbs Measures and Phase Transitions 2nd edn Berlin de Gruyter and Co
Gross D H E 2001 Microcanonical Thermodynamics: Phase Transitions in ‘Small’ Systems Singapore World Scientific
Bachmann M 2014 Thermodynamics and Statistical Mechanics of Macromolecular Systems Cambridge Cambridge University Press
Qi K Bachmann M 2018 Classification of phase transitions by microcanonical inflection-point analysis Phys. Rev. Lett. 120 180601 10.1103/physrevlett.120.180601
Pettini M 2007 Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics IAM Series vol 33 Berlin Springer
Pettini M 1993 Geometrical hints for a nonperturbative approach to Hamiltonian dynamics Phys. Rev. E 47 828 10.1103/physreve.47.828
Carlsson G Gorham J Kahle M Mason J 2012 Computational topology for configuration spaces of hard disks Phys. Rev. E 85 011303 10.1103/physreve.85.019905
Baryshnikov Y Bubenik P Kahle M 2013 Min-type Morse theory for configuration spaces of hard spheres Int. Math. Res. Not. 2014 2577 2592 2577-92 10.1093/imrn/rnt012
Eriçok O B Ganesan K Mason J K 2021 Configuration spaces of hard spheres (arXiv: 2106. 10315v3 [cond-mat.stat-mech])
Brody D C Hook D W Hughston L P 2007 Quantum phase transitions without thermodynamic limits Proc. R. Soc. A. 463 2021 10.1098/rspa.2007.1865
Buonsante P Franzosi R Smerzi A 2015 Phase transitions at high energy vindicate negative microcanonical temperature (arXiv: 1506.01933)
Volovik G E 2007 Quantum phase transitions from topology in momentum space Quantum Analogues: From Phase Transitions to Black Holes and Cosmology Berlin Springer 31 73 pp 31-73
Angelani L Di Leonardo R Parisi G Ruocco G 2001 Topological description of the aging dynamics in simple glasses Phys. Rev. Lett. 87 055502 10.1103/physrevlett.87.055502
Debenedetti P G Stillinger F H 2001 Supercooled liquids and the glass transition Nature 410 259 10.1038/35065704
Risau-Gusman S Ribeiro-Teixeira A C Stariolo D A 2005 Topology, phase transitions, and the spherical model Phys. Rev. Lett. 95 145702 10.1103/physrevlett.95.145702
Santos F A N da Silva L C B Coutinho-Filho M D 2017 Topological approach to microcanonical thermodynamics and phase transition of interacting classical spins J. Stat. Mech. 013202 10.1088/1742-5468/2017/1/013202
Garanin D A Schilling R Scala A 2004 Saddle index properties, singular topology, and its relation to thermodynamic singularities for a ϕ 4 mean-field model Phys. Rev. E 70 036125 10.1103/physreve.70.036125
Cimasoni D Delabays R 2019 The topological hypothesis for discrete spin models J. Stat. Mech. 033216 10.1088/1742-5468/ab0c14
Grinza P Mossa A 2004 Topological origin of the phase transition in a model of DNA denaturation Phys. Rev. Lett. 92 158102 10.1103/physrevlett.92.158102
Becker O M Karplus M 1997 The topology of multidimensional potential energy surfaces: theory and application to peptide structure and kinetics J. Chem. Phys. 106 1495 10.1063/1.473299
Caiani L Casetti L Clementi C Pettini M 1997 Geometry of dynamics, Lyapunov exponents, and phase transitions Phys. Rev. Lett. 79 4361 10.1103/physrevlett.79.4361
Caiani L Casetti L Clementi C Pettini G Pettini M Gatto R 1998 Geometry of dynamics and phase transitions in classical lattice ϕ 4 theories Phys. Rev. E 57 3886 10.1103/physreve.57.3886
Brooks C L Onuchic J N Wales D J 2001 Taking a walk on a landscape Science 293 612 613 612-3 10.1126/science.1062559
Wales D J 2001 A microscopic basis for the global appearance of energy landscapes Science 293 2067 2070 2067-70 10.1126/science.1062565
Santos F A N Raposo E P Coutinho-Filho M D Copelli M Stam C J Douw L 2019 Topological phase transitions in functional brain networks Phys. Rev. E 100 032414 10.1103/PhysRevE.100.032414
Casetti L Pettini M Cohen E G D 2000 Geometric approach to Hamiltonian dynamics and statistical mechanics Phys. Rep. 337 237 341 237-341 10.1016/s0370-1573(00)00069-7
Franzosi R Pettini M 2004 Theorem on the origin of phase transitions Phys. Rev. Lett. 92 060601 10.1103/physrevlett.92.060601
Franzosi R Pettini M Spinelli L 2007 Topology and phase transitions: I Preliminary results Nucl. Phys. B 782 189 10.1016/j.nuclphysb.2007.04.025
Franzosi R Pettini M 2007 Topology and phase transitions: II. Theorem on a necessary relation Nucl. Phys. B 782 219 10.1016/j.nuclphysb.2007.04.035
Kastner M Mehta D 2011 Phase transitions detached from stationary points of the energy landscape Phys. Rev. Lett. 107 160602 10.1103/physrevlett.107.160602
Gori M Franzosi R Pettini M 2018 Topological origin of phase transitions in the absence of critical points of the energy landscape J. Stat. Mech. 093204 10.1088/1742-5468/aad6b6
Hirsch M W 1976 Differential Topology Berlin Springer
Thorpe J A 1979 Elementary Topics in Differential Geometry Berlin Springer p 55
Zhou Y 2013 A simple formula for scalar curvature of level sets in euclidean spaces (arXiv: 1301. 2202[math.DG])
Sormani C 2012 How Riemannian manifolds converge Metric and Differential Geometry Progress in Mathematics vol 297 Dai X Rong X Basel Birkhäuser
Palais R S Terng C 1988 Critical Point Theory and Submanifold Geometry Berlin Springer
Federer H 1969 Geometric Measure Theory Berlin Springer
Laurence P 1989 On the convexity of geometric functional of level for solutions of certain elliptic partial differential equations Z. Angew. Math. Phys. 40 258 10.1007/bf00945002
Brémaud P 2001 Markov Chains Berlin Springer ch 7
See lemma 3.1 Alvarez-Vizoso J Kirby M Peterson C 2018 Integral invariants from covariance analysis of embedded Riemannian manifolds (arXiv: 1804.10425v1)
Khinchin A I 1949 Mathematical Foundations of Statistical Mechanics New York Dover
Consider a family of random variables {X k }, if X i and X j satisfy finite-range dependence, i.e. there is a positive integer n 0 such that if |i − j| > n 0 then X i and X j are independent. A law of large numbers for X i can then be easily proved.
Caiani L Casetti L Pettini M 1998 Hamiltonian dynamics of the two-dimensional lattice model J. Phys. A: Math. Gen. 31 3357 10.1088/0305-4470/31/15/004
Casetti L Cohen E G D Pettini M 1999 Topological origin of the phase transition in a mean-field model Phys. Rev. Lett. 82 4160 10.1103/physrevlett.82.4160
Casetti L Cohen E G D Pettini M 2002 Exact result on topology and phase transitions at any finite N Phys. Rev. E 65 036112 10.1103/physreve.65.036112
Casetti L Pettini M Cohen E G D 2003 Phase transitions and topology changes in configuration space J. Stat. Phys. 111 1091 10.1023/a:1023044014341
Angelani L Casetti L Pettini M Ruocco G Zamponi F 2005 Topology and phase transitions: from an exactly solvable model to a relation between topology and thermodynamics Phys. Rev. E 71 036152 10.1103/physreve.71.036152
Kastner M 2004 Unattainability of a purely topological criterion for the existence of a phase transition for nonconfining potentials Phys. Rev. Lett. 93 150601 10.1103/physrevlett.93.150601
Angelani L Ruocco G Zamponi F 2005 Relationship between phase transitions and topological changes in one-dimensional models Phys. Rev. E 72 016122 10.1103/physreve.72.016122
Ribeiro Teixeira A C Stariolo D A 2004 Topological hypothesis on phase transitions: the simplest case Phys. Rev. E 70 016113 10.1103/physreve.70.016113
Kastner M Schnetz O 2006 On the mean-field spherical model J. Stat. Phys. 122 1195 10.1007/s10955-005-8031-9
Kastner M 2006 Topological approach to phase transitions and inequivalence of statistical ensembles Physica A 359 447 10.1016/j.physa.2005.06.063
Cerruti-Sola M Cipriani P Pettini M 2001 On the clustering phase transition in self-gravitating N-body systems Mon. Not. R. Astron. Soc. 328 339 10.1046/j.1365-8711.2001.04896.x
Andronico A Angelani L Ruocco G Zamponi F 2004 Topological properties of the mean-field ϕ 4 model Phys. Rev. E 70 041101 10.1103/physreve.70.041101
Baroni F 2002 Phase transitions and topological changes in configuration space for mean-field models Laurea Thesis in Physics University of Florence
Pettini G Gori M Franzosi R Clementi C Pettini M 2018 On the origin of phase transitions in the absence of symmetry-breaking Physica A 516 376 10.1016/j.physa.2018.10.001
Bel-Hadj-Aissa G Gori M Franzosi R Pettini M 2021 Geometrical and topological study of the Kosterlitz-Thouless phase transition in the XY model in two dimensions J. Stat. Mech. 023206 10.1088/1742-5468/abda27
Di Cairano L Capelli R Bel-Hadj-Aissa G Pettini M 2022 Topological origin of protein folding transition https://hal.archives-ouvertes.fr/hal-03504864 (Accessed 26 June 2022)
Di Cairano L 2022 The geometric theory of phase transitions J. Phys. A: Math. Theor. 55 27LT01 10.1088/1751-8121/ac717d
Gori M 2022 Configurational microcanonical statistical mechanics from Riemannian geometry of equipotential level sets (arXiv: 2205.14536)
Carlsson G Zomorodian A 2005 Persistent homology—a survey Discrete Comput. Geom. 33 249 10.1007/s00454-004-1146-y
Carlsson G 2009 Topology and data Bull. Am. Math. Soc. 2 255 10.1090/s0273-0979-09-01249-x
Donato I Gori M Pettini M Petri G De Nigris S Franzosi R Vaccarino F 2016 Persistent homology analysis of phase transitions Phys. Rev. E 93 052138 and references therein for persistent homology 10.1103/physreve.93.052138