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Abstract
The investigation of the Hamiltonian dynamical counterpart of phase transi-
tions, combined with the Riemannian geometrization of Hamiltonian dynamics,
has led to a preliminary formulation of a differential-topological theory of phase
transitions. In fact, in correspondence of a phase transition there are peculiar
geometrical changes of the mechanical manifolds that are found to stem from
changes of their topology. These findings, together with two theorems, have
suggested that a topological theory of phase transitions can be formulated to
go beyond the limits of the existing theories. Among other advantages, the new
theory applies to phase transitions in small N systems (that is, at nanoscopic
and mesoscopic scales), and in the absence of symmetry-breaking. However,
the preliminary version of the theory was incomplete and still falsifiable by
counterexamples. The present work provides a relevant leap forward leading
to an accomplished development of the topological theory of phase transitions
paving the way to further developments and applications of the theory that can
be no longer hampered.
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1. Introduction

Phase transitions phenomena are ubiquitous in nature at very different scales in space and
in energy. Therefore, from the theoretical viewpoint, understanding their origin, and the way
of classifying them, is of central interest. In spite of a huge literature on this topic, a gen-
eral theory is still lacking. In the framework of Landau’s phenomenological theory, phase
transitions are generally related to the mechanism of spontaneous symmetry breaking. How-
ever, Landau’s theory is not all-encompassing. Indeed, many systems do not fit in this theory
and undergo a phase transition lacking spontaneous symmetry breaking and lacking an order
parameter. Some notable examples are: Kosterlitz–Thouless transitions after Mermin–Wagner
theorem, systems with local gauge symmetries after Elitzur’s theorem, liquid–gas transitions,
transitions in supercooled glasses and liquids, transitions in amorphous and disordered sys-
tems, folding transitions in homopolymers and proteins. Furthermore, to account for the loss
of analyticity of thermodynamic observables, the mathematical description of phase transi-
tions requires the limit of an infinite number of particles (thermodynamic limit) as is the case
of the Yang–Lee theory [1] and of the Dobrushin–Lanford–Ruelle theory [2]. However, the
contemporary research on nanoscopic and mesoscopic systems, on the biophysics of polymers
[4, 5], on Bose–Einstein condensation, Dicke superradiance in microlaser, superconducting
transitions in small metallic objects, tackles transition phenomena in systems of finite—and
often very small—number of particles.

Within all the hitherto developed theoretical frameworks, also including the monumental
theory of renormalization group and critical phenomena, it is assumed that the primitive object
at the grounds of a theory is a given statistical measure; schematically: the gran-canonical
measure in the old Yang–Lee theory, the canonical measure in the Dobrushin–Lanford–Ruelle
theory, and the microcanonical measure in a still somewhat open and more recent approach
[3–5]. However, there are several general results suggesting that the possibility for a system to
undergo a phase transition depends on some measure-independent properties, as is its spatial
dimension, the dimensionality of its order parameter, the range of its interactions, the symmetry
group (discrete or continuous) of its Hamiltonian. This hints at the possibility that the same
information might be encoded already at a more fundamental level completely determined by
the internal interactions of a system, interactions described by their potential function.

Therefore, looking for generalisations of the existing theories is a well motivated and timely
purpose. The present paper puts forward a new starting point for a line of thought initiated
several years ago and based on a variety of results which hitherto did not appear to fit in a
coherent theoretical framework. The central idea of this line of thought is that the singular
energy dependence of the thermodynamic observables at a phase transition is the ‘shadow’ of
some adequate change of topology of the energy level sets in phase space (or of the potential
level sets in configuration space, as well).

1.1. Why topology

Recently, the study of equilibrium phase transitions in the microcanonical ensemble has
attracted increasing interest, being very important in presence of ensemble inequivalence, when
only the microcanonical ensemble gives the correct results. Two complementary approaches
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have been undertaken. One of these is of a statistical kind [3, 4], recently summarized in
a very interesting, powerful and rich classification of microcanonical phase transitions by
Bachmann in reference [5]. On another side, as the ergodic invariant measure of noninte-
grable Hamiltonian systems is the microcanonical measure, the other approach resorts to
the study of Hamiltonian dynamics of systems undergoing phase transitions. This dynamical
approach brings about interesting novelties with respect to the standard studies of phase tran-
sitions, eventually leading to the topological hypothesis (TH) through the following logical
chain. The dynamics of a generic system of N degrees of freedom described by a Hamilto-
nian H = 1

2

∑N
i=1 p2

i + V(q1, . . . , qN), or equivalently by the corresponding Lagrangian func-
tion L = 1

2

∑N
i=1q̇2

i − V(q1, . . . , qN), is chaotic. The degree of chaoticity of the dynamics is
measured by the largest Lyapunov exponent, a new observable that has been proven useful to
characterize phase transitions from a dynamical viewpoint [6]. Then, the explanation of the
origin of Hamiltonian chaos—encompassing the computation of the largest Lyapunov expo-
nent—proceeds by identifying a Hamiltonian flow with a geodesic flow of an appropriate
Riemannian differentiable manifold. This differential geometric framework is given by config-
uration space endowed with the non-Euclidean metric of components [7] gi j = 2[E − V(q)]δi j,
whence the infinitesimal arc element ds2 = 2[E − V(q)]2dqidqi; then Newton equations are
retrieved from the geodesic equations

d2qi

ds2
+ Γi

jk
dq j

ds
dqk

ds
= 0,

where Γi
jk are the Christoffel connection coefficients of the manifold. The degree of instability

of the dynamics is described by means of the Jacobi–Levi-Civita equation for the geodesic
spread

∇2J
ds2

+ R(J, γ̇)γ̇ = 0,

where the vector field J locally measures the distance between nearby geodesics, ∇
ds is the

covariant derivative along the configuration space geodesic γ̇, and R(·, ·) is the Riemann cur-
vature tensor. The largest Lyapunov exponent for high dimensional Hamiltonian flows is found
to depend on the curvature ‘landscape’ of the configuration space manifold [6]. Hence, a natu-
ral consequence has been to investigate whether the occurrence of phase transitions has some
peculiar counterpart in geometrical changes of the manifolds underlying the flows. And it has
been discovered that this is actually the case. Moreover, the peculiar geometrical changes
associated with phase transitions were discovered to be the effects of deeper topological
changes of the potential level sets ΣVN

v := {VN(q1, . . . , qN) = v ∈ R} in configurations space,
and, equivalently, of the balls {MVN

v = V−1
N ((−∞, v])}v∈R bounded by the ΣVN

v .
A topological approach to the study of phase transitions has been considered for a vari-

ety of systems, ranging from those undergoing entropy driven transitions [8, 9] (having also
applications to robotics), and hard spheres systems [10], to quantum phase transitions [11–13],
glasses and supercooled liquids [14, 15], classical models in statistical mechanics [16–18], dis-
crete spin models [19], DNA denaturation [20], peptide structure [21], to quote just a few of
them. In fact, in many contexts, well before an explicit formulation of the TH [22, 23], topo-
logical concepts were implicitly entering the study of phase transitions while talking of energy
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landscapes [24, 25] and of saddle points for disordered systems, glasses [14, 15], spin glasses:
saddle points being critical points in the language of Morse theory of differential topology.

On a completely different field, more recently, handling big data—outsourcing from com-
plex systems—through methods referred to as topological data analysis (TDA) it happens to
highlight the existence of phase transition-like phenomena in the absence of a statistical mea-
sure. Here the concept of phase transition is intended as the emergence of qualitatively new
properties when a control parameter crosses a critical value (the prototype can be dated back
to the Erdös–Renyi giant component appearance in random graphs). To quote a fascinating
example in this field, in reference [26] the discovery is reported of topological phase transitions
in functional brain networks by merging concepts from TDA, topology, geometry, physics, and
network theory.

The present paper is organized as follows: in section 2 the basic definitions and concepts
of extrinsic geometry of hypersurfaces is recalled for the sake of self-containedness, and the
definition of asymptotic diffeomorphicity is also therein introduced. In section 3 the main
theorem is formulated and proved; this theorem states that a topological change of the potential
level sets of a physical system is a necessary condition for the appearance of a phase transi-
tion. Finally, in section 4 the problem raised by the counterexample to a preceding formulation
of the main theorem is fixed. Section 5 addresses some past controversial points. Section 6 is
devoted to some concluding remarks. Two appendices contain computational details.

2. Topological origin of phase transitions

On the one side the study of the Hamiltonian dynamical counterpart of phase transitions, com-
bined with the geometrization of Hamiltonian dynamics, has led to find out the crucial role
of topology at the grounds of these transition phenomena, on the other side a mathematical
relationship exists between macroscopic thermodynamics and topological properties of the
manifolds MVN

v , as expressed by [6]

SN(v) = (kB/N) log

[∫
M

VN
v

dNq

]

=
kB

N
log

[
vol

[
MVN

v \
N (v)⋃
i=1

Γ(x(i)
c )

]
+

N∑
i=0

wi μi(MVN
v ) +R

]
, (1)

where SN is the configurational entropy, v is the potential energy, and the μi(MVN
v ) are the

Morse indexes (in one-to-one correspondence with topology) of the manifolds MVN
v ; in square

brackets: the first term is the result of the excision of certain neighborhoods of the critical
points of the interaction potential from MVN

v ; the second term is a weighed sum of the Morse
indexes, and the third term is a smooth function of N and v.

As a consequence, major topology changes with v of the submanifolds MVN
v —bringing

about sharp changes of the potential energy pattern of at least some of the μi(MVN
v )—can affect

the v-dependence of SN(v) and of its derivatives (figure 1).
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Figure 1. Low-dimensional pictorial representation of the transition between complex
topologies as a metaphor of the origin of a phase transition. From the ground level up
to the crossover level vc, the manifolds Mv have a genus which increases with v. Above
the crossover level vc, the manifolds Mv have also a nonvanishing linking number which
increases with v.

Hence, it has been surmised [6] that, at least for a broad class of physical systems, phase
transitions stem from a suitable change of the topology of the potential level sets ΣVN

v and,
equivalently, of the manifolds MVN

v , when v, playing the role of the control parameter, takes a
critical value vc. This hypothesis has turned into the start of a new theory by putting together
several studies on specific models [6, 27] and two theorems [28–30]. These theorems state
that an equilibrium phase transition—is necessarily due to appropriate topological transitions
in configuration space. However, a counterexample to these theorems has been found in ref-
erence [31] thus undermining this version of the topological theory of phase transitions. The
counterexample is provided by the second order phase transition of the 2D lattice φ4-model
that occurs at a critical value vc of the potential energy density which belongs to a broad inter-
val of v-values void of critical points of the potential function. The difficulty raised by this
counterexample has stimulated a deeper investigation of the transition of the φ4-model which
led to figure out a crucial point associated with the breaking of the Z2 symmetry (and possibly
with the breaking of discrete symmetries in general), that is, the possibility of a phase tran-
sition to stem from an asymptotic loss of diffeomorphicity of the relevant manifolds [32]. In
what follows this fact is formalized into a new and more consistent version of the theory. Other
alleged difficulties of the theory are briefly discussed in Section 5.

2.1. Basic definitions and concepts

Consider now an open set of v-values I ⊆ R such that the cylindrical subset of configuration
space ΓN

I =
⋃

v∈I Σ
VN
v contains only non-singular level sets, that is, ∇VN(q) �= 0 for any q ∈

ΓN
I , meaning that VN has no critical points for any v ∈ I.

For any v0, v1 ∈ I, the two level sets ΣVN
v0

⊂ ΓN
I and ΣVN

v1
⊂ ΓN

I are diffeomorphic under the
action of an explicitly known diffeomorphism given by the integral lines of the vector field
ξN = ∇VN/‖∇VN‖2, that is, any initial condition qα ∈ ΣVN

v0
is diffeomorphically mapped onto
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Figure 2. Pictorial representation of the action of the vector field ξ in equation (2) dif-
feomorphically mapping each point of the level set Σa onto each point of the level set
Σb. Pictorial representation of the action of the vector field ξ in equation (2) diffeo-
morphically mapping each point of the level set Σa onto each point of the level set
Σb.

a point qβ ∈ ΣVN
v1

by the equation [33] (figure 2)

dq
dv

=
∇VN

‖∇VN‖2
. (2)

2.2. Extrinsic geometry of hypersurfaces

In this section some basic definitions and concepts are given about the extrinsic geometry of
hypersurfaces of a Euclidean space. The basic tool consists in measuring the way of changing
from point to point on the surface of the normal direction in order to describe how the n-
surface Σ curves around in R

N . The rate of change of the normal vector N at a point x ∈ Σ
in a given direction u is described by the shape operator (also known as Weingarten’s map)
Lx(u) = −∇u N = −(u · ∇)N , where u is a tangent vector at x and ∇u is the directional
derivative; gradients and vectors are represented in R

N .
The constant-energy hypersurfaces in the phase space of Hamiltonian systems or of the

equipotential hypersurfaces in configuration space, are the level sets of regular functions and,
for the level sets defined via a regular real-valued function f as Σa := f −1(a), the normal
vector is N = ∇ f /‖∇ f ‖. Let {eμ}μ=1,...,N = {e1, . . . , en,N}, with eα · eβ = δα,β and denote
with Greek subscripts, α = 1, . . . , N, the components in the embedding space R

N , and with
Latin subscripts, i = 1, . . . , n, the components on a generic tangent space TxΣa at x ∈ Σa. We
consider the case of codimension one, that is, N = n + 1 (figure 3).

From ∂μNαNα = 0 = 2Nα∂μNα we see that for any u, we have N · Lx(u) =
−Nαuμ∂μNα = 0, which means that Lx(u) projects on the tangent space TxΣa.

Now the principal curvatures κ1, . . . ,κn of Σa at x are the eigenvalues of the shape operator
restricted to TxΣa. Considering the matrix Lx to be the restriction of Lx to TxΣa

Li j(x) = ei · Lx(e j) = −(ei)α(e j)β∂βNα,

then the mean curvature is defined as

H(x) =
1
n

Tr(n)Li j(x) =
1
n

n∑
i=1

κi. (3)

6



J. Phys. A: Math. Theor. 55 (2022) 375002 M Gori et al

Figure 3. Illustration of the items entering the construction of the shape operator of a
surface.

The computation of the analytic expression of the mean curvature H proceeds from

H(x) =
1
n

Tr(n)Li j(x) = −1
n

n∑
i=1

(ei)α(ei)β∂βNα. (4)

Defining Aμν = (eμ)ν , so that AAT = I, we have

n∑
i=1

(ei)α(ei)β = δαβ −NαNβ

and thus

H(x) = −1
n

(δαβ −NαNβ)∂βNα = −1
n
∂αNα = −1

n
∇ ·

(
∇ f

‖∇ f ‖

)
. (5)

2.3. Asymptotic diffeomorphicity

In reference [32] it has been numerically found that the phase transition undergone by the 2D
lattice φ4 model actually corresponds to a major topological change of the potential level sets
of the model, also in absence of critical points of the potential. This topological change corre-
sponds to an asymptotic breaking of the topological transitivity of the potential level sets, what
can be formalised as an asymptotic loss of diffeomorphicity of the same manifolds in the broken
symmetry phase. Hence a crucial hint to fix the problem stemming from the counterexample
given by the φ4 model that has been hitherto considered fatal.
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The first step to fix the problem thus consists in defining asymptotic diffeomorphicity, what
is easily done by observing that a vector valued function of several variables, f : Rn → R

n, is
of differentiability class C l if all the partial derivatives (∂ l f /∂xl1

i1
. . . ∂xlk

ik
) exist and are con-

tinuous, where each of i1, . . . , ik is an integer between 1 and n and each l1, . . . , lk is an integer
between 0 and l, and l1 + · · ·+ lk = l. Then, by taking advantage of the explicit analytic repre-
sentation of the vector field generating the diffeomorphism ξN : ΓN

I → TΓN
I previously given,

uniform convergence in N of the sequence {ξN}N∈N—and thus asymptotic diffeomorphicity
in some class C l—can be defined after the introduction of an appropriate norm containing all
the derivatives up to (∂ lξN/∂ql1

i1
. . . ∂qlk

ik
). At any fixed N ∈ N, in the absence of critical points

of a confining potential VN, the level sets ΣVN
v are non singular (N − 1)-dimensional hyper-

surfaces in R
N . Let us consider the already defined cylindrical subset of configuration space

ΓN
I =

⋃
v∈I Σ

VN
v containing only non-singular level sets.

The lack of asymptotic breaking of diffeomorphicity is defined by introducing a norm for
the ξN that allows to compare the diffeomorphisms at different dimensions

‖ξN‖Ck(ΓN
I0

) = sup
q0∈ΓN

I0

‖ξN‖ +
k∑

l=1

∑
{ik}

N∑
j=1

‖∇l
{ik}ξ j‖ΓN

I0
, (6)

where {ik} stands for a multi-index and ‖∇l
{ik}ξ j‖ΓN

I0
is the norm of the lth differential operator

with l1 + · · ·+ lk = l

‖∇l
{ik}ξ j‖ΓN

I0
= sup

q0∈ΓN
I0

∣∣∣∣∣ ∂ lξ j

∂ql1
i1
. . . ∂qlk

ik

∣∣∣∣∣. (7)

The sequence of families of manifolds
{
ΓN

I0

}
N∈N is said to asymptotically preserve the Ck-

diffeomorphicity among the hypersurfaces ΣVN
v —foliating each family—if there exists B ∈

R
+ such that

‖ξN‖Ck
(
ΓN

I0

) � B < +∞ ∀N ∈ N. (8)

As a consequence, from this condition we get ‖∇VN‖ = ‖ξN‖−1 � 1/B = C > 0 for each q0 ∈
ΓN

I0
and all N ∈ N, ruling out the existence of asymptotic critical points (i.e. ‖∇VN‖→ 0 for

N →∞).
The analytic condition (8) entails remarkable consequences on the extrinsic geometry of the

potential level sets. In fact, using
∑

i ‖Xi‖ � ‖
∑

i Xi‖, from equation (7) at the lowest order
with the aid of a normalised vector u tangent at q0 to a Σn

v ⊂ ΓN
I0

, that is, u ∈ Tq0Σ
n
v , we can

build the quadratic forms

N∑
i, j=1

‖(∂iξ j)uiu j‖�

∥∥∥∥∥∥
N∑

i, j=1

(
∂ i

∂ jVN

‖ ∇VN‖2

)
uiu j

∥∥∥∥∥∥, (9)

where ∂i = ∂/∂qi. With implicit summation on repeated indices the rhs of equation (9) is
rewritten as ∥∥∥∥

[
1

‖∇VN‖

(
∂ i

∂ jVN

‖∇VN‖

)
+

∂ jVN

‖∇VN‖
∂ i

(
1

‖∇VN‖

)]
uiu j

∥∥∥∥
=

∥∥∥∥ 1
‖∇VN‖

(
∂ i

∂ jVN

‖∇VN‖

)
uiu j

∥∥∥∥, (10)

8
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where the orthogonality, at any point q0, between the vectors u and N =
(∂1VN/‖∇VN‖, . . . , ∂NVN/‖∇VN‖) tangent and normal to ΣVN

v , respectively, has been
used. Through the shape operator (Weingarten map) of ΣVN

v [34] at q0

Lq0 (u) = −LuN = −(∇N1 · u, . . . ,∇NN · u) (11)

the quadratic form κ(u, q0) = 〈u, Lq0(u)〉 is found to coincide with the one given in
equation (10) (last term). The quantity κ(u, q0) is known as the normal curvature of the level set
ΣVN

v at q0. Let {κ1(q0), . . . ,κN(q0)} denote the principal curvatures of ΣVN
v at q0, with the cor-

responding orthogonal principal curvature directions {v1, . . . , vN}, then the normal curvature
in the direction u ∈ Tq0Σ

N
v is given by

κ(u, q0) =
N∑

i=1

κi(q0)〈u, vi〉 =
N∑

i=1

κi(q0)cos2 θi. (12)

By choosing ũ ∈ Tq0Σ
N
v such that ‖ũ‖ = 1 and all the angles θi between ũ and vi are equal to

some θ̃, we get

κ(ũ, q0) = (cos2 θ̃)
N∑

i=1

κi(q0) = (cos2 θ̃) N H(q0), (13)

where H(q0) is the mean curvature (the trace of the Weingarten map) at q0. Thus from
equations (8), (10) and (13)∥∥∥∥ 1

‖∇VN‖
(cos2 θ̃) N H(q)

∥∥∥∥ � B < +∞ ∀N ∈ N (14)

everywhere on ΣVN
v . Since ‖∇VN‖ ∼ O(N1/2) it follows that H(q) ∼ O(N−1/2) everywhere

on ΣVN
v and uniformly in N. Therefore, the first remarkable consequence of asymptotic

diffeomorphicity among the potential level sets is that their mean curvature

H(q) =
1
N

N∑
i=1

κi(q) (15)

is everywhere uniformly bounded in N. However, this does not ensure the boundedness of each
principal curvature (whose sign is not definite). A priori two or more principal curvatures of
the same value but of opposite sign could diverge and mutually compensate leaving H(q) finite.
In order to get this missing information about the asymptotic boundedness of all the principal
curvatures, let us consider the scalar curvature R of a level set V(q) = v, embedded in an
Euclidean space of arbitrary dimension, which reads [35]

R(q) =
1

N(N − 1)

1...N∑
i� j

κi(q)κ j(q)

=
1

N(N − 1)

{
−� log ‖∇VN(q)‖+∇ ·

[
�VN(q)

∇VN(q)
‖∇VN(q)‖2

]}
(16)

let us notice that R is singular at the critical points of the potential, where ∇VN(q) = 0, and
can be arbitrarily large in their neighborhoods; then, using ‖ξ‖ = ‖∇VN(q)‖−1, this can be

9
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Figure 4. Sequence of diffeomorphic manifolds (of the same dimension) with a limit
manifold which is not diffeomorphic to the members of the sequence. The infinitely tiny
bridge between the two spheres of S∞ has infinite mean curvature.

rewritten as

R =
1

N(N − 1)

{
−� log

1
‖ξ‖ +∇ · [�VN(q) ξ]

}
, (17)

then, trivial computations (sketched in appendix A) of the rhs of this equation under the
assumption of asymptotic diffeomorphicity (equations (6)–(8)) yield uniform boundedness
also of R(q) entailing uniform boundedness in N of each κi(q) everywhere on each potential
level set.

To help intuition to get a hold of the relationship between boundedness of mean and scalar
curvatures and asymptotic diffeomorphicity, we qualitatively illustrate in figure 4 the opposite
situation, known as Gromov–Hausdorff limit [36], where a sequence of diffeomorphic mani-
folds of fixed dimension have a limit manifold which is not diffeomorphic to the other members
of the sequence. The handles of these dumbbell shaped manifolds shrink to an asymptotic
infinitely tiny cylinder of vanishing radius and thus of diverging transversal principal curvature,
that is, of divergent mean curvature.

Remark 1. Summarizing, the assumption of asymptotic diffeomorphicity means that, for
any pair of densities v̄ and v̄′ in some assigned interval Iv̄ = [v̄0, v̄1] and N arbitrarily large,
the corresponding manifolds ΣVN

Nv̄ are diffeomorphic under the action of the diffeomorphism-
generating vector fields ξNk

Σ
VN1
N1v̄

ξN1−−→ Σ
VN1
N1v̄

′

Σ
VN2
N2v̄

ξN2−−→ Σ
VN2
N1v̄

′

... v̄, v̄′ ∈ [v̄0, v̄1], k ∈ N

Σ
VNk
Nk v̄

ξNk−−→ Σ
VNk
Nk v̄

′

... (18)

provided that the norm of the vector fields ξNk
is uniformly bounded according to equation (6).

Under this condition, all the principal curvatures κi(q) of every manifold in the above diagram
are uniformly bounded with N. Moreover, after the non-critical neck theorem [37] all the above

manifolds Σ
VNk
Nk v̄

for any v̄ ∈ [v̄0, v̄1] are free of critical points of the potential functions VN, that
is of points where ∇VN = 0.

10
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3. A necessity theorem

In its original formulation, given in references [28, 29], the theorem establishing the necessary
topological origin of a phase transition was lacking a fundamental hypothesis that has led to
the paradoxical situation of being falsified [31] through the example of a phase transition still
related with a change of topology in configuration space, though asymptotic in the number of
degrees of freedom [32], and in the absence of critical points of the potential.

The missing hypothesis suggested by the study of reference [32] is to require also asymptotic
diffeomorphicity of the potential level sets in order to correspondingly get uniform convergence
of the Helmholtz free energy in a differentiability class that rules out first and second order
phase transitions.

Remark 2. The notation N ∈ N
# means that N →∞ is included.

3.1. Main theorem

Theorem 1 (Absence of phase transitions under diffeomorphicity). Let VN(q1,
. . . , qN) : RN → R, be a smooth, nonsingular, finite-range potential. Denote by ΣVN

v :=V−1
N (v),

v ∈ R, its level sets, or equipotential hypersurfaces, in configuration space.
Then let v̄ = v/N be the potential energy per degree of freedom.
If for any pair of values v̄ and v̄′ belonging to a given interval Iv̄ = [v̄0, v̄1] and for any

N > N0 with N ∈ N
# we have

ΣVN
Nv̄ ≈ ΣVN

Nv̄′ ,

that is, ΣVN
Nv̄ is diffeomorphic to ΣVN

Nv̄′ , including asymptotically diffeomorphic, then the
sequence of the Helmholtz free energies {FN(β)}N∈N—where β = 1/T (T is the tempera-
ture) and β ∈ Iβ = (β(v̄0), β(v̄1))—is uniformly convergent at least in C 2(Iβ ⊂ R), so that
F∞ ∈ C 2(Iβ ⊂ R) and neither first- nor second-order phase transitions can occur in the
(inverse) temperature interval (β(v̄0), β(v̄1)).

Remark 3. The configurational entropy SN(v̄) is related to the configurational canonical free
energy, fN in (20), for any N ∈ N, v̄ ∈ R, and β ∈ R through the Legendre transform

− fN(β) = β · v̄N − SN(v̄N), (19)

where the inverse of the configurational temperature T(v) is given by βN(v̄) = ∂SN(v̄)/∂v̄.
By following reference [57], let us consider the function φ(v̄) = fN[β(v̄)], from φ′(v̄) =
−v̄ [dβN(v̄)/dv̄] it is evident that if βN(v̄) ∈ Ck(R) then also φ(v̄) ∈ Ck(R) and thus SN(v̄) ∈
Ck+1(R) while fN(β) ∈ Ck(R). First and second order phase transitions are associated with
a discontinuity in the first or second derivatives of f∞(β), that is with f∞(β) ∈ C0(R) or
f∞(β) ∈ C1(R), respectively. Hence a first order phase transition corresponds to a discontinuity
of the second derivative of the entropy S∞(v̄), and a second order phase transition corresponds
to a discontinuity of the third derivative of the entropy S∞(v̄).

Remark 4. The proof of the main theorem follows the same conceptual path given in ref-
erences [28, 29]: a topological change of the equipotential hypersurfaces ΣVN

v of configura-
tion space is a necessary condition for the occurrence of a thermodynamic phase transition
if we prove the equivalent proposition that if any two hypersurfaces ΣVN

v and Σv′
VN with

v(N), v′(N) ∈ (v0(N), v1(N)) are diffeomorphic for all N ∈ N
#, then no phase transition can

occur in the (inverse) temperature interval [limN→∞ β(v̄0(N)), limN→∞ β(v̄1(N))].

11
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Proof. For standard Hamiltonian systems (i.e. quadratic in the momenta) the relevant infor-
mation is carried by the configurational microcanonical ensemble, where the configurational
canonical free energy is

fN(β) ≡ fN(β; VN) =
1
N

log
∫

(Λd )×n
dq1 . . . dqN exp[−βVN(q1, . . . , qN)] (20)

with and the configurational microcanonical entropy (in units s.t. kB = 1) is

SN(v̄) ≡ SN(v̄; VN) =
1
N

log
∫

(Λd )×n
dq1 . . . dqN δ[VN(q1, . . . , qN) − v].

Then SN(v̄) is related to the configurational canonical free energy, fN, for any N ∈ N, v̄ ∈ R,
and β ∈ R through the Legendre transform in equation (19).

From lemma 1, proved after lemmas 2 to 9, we have that in the limit N →∞ and at constant
particle density, vol(Λd)×n/N = const, in the interval Iv̄ = [v̄0, v̄1] the sequence {SN}N∈N#

is uniformly convergent in C 3(Iv̄ ⊂ R) so that S∞ ∈ C 3(Iv̄ ⊂ R) that is, the thermodynamic
limit of the entropy is three times differentiable, with continuous third-order derivative, in
Iv̄ = [v̄0, v̄1]. Hence in the interval Iβ = [limN→∞ β(v̄0(N)), limN→∞ β(v̄1(N))] the sequence of
configurational free energies { fN(T)}N∈N# is uniformly convergent at least in C 2(Iβ ⊂ R), so
that we have

− f∞(β) = β(v̄) · v̄ − S∞(v̄)

that is { f∞(T)} ∈ C 2(Iβ ⊂ R).
Since a quadratic kinetic energy term of a standard Hamiltonian gives only a smooth con-

tribution to the total Helmholtz free energy FN(β), also the asymptotic function F∞(β) has
differentiability class C 2(Iβ ⊂ R) so that we conclude that the corresponding physical system
does not undergo neither first- nor second-order phase transitions in the inverse-temperature
interval β ∈ Iβ . �

3.2. Lemmas

Lemma 1 (Uniform upper bounds). Let VN be a standard, short-range, stable, and con-
fining potential function bounded below. Let

{
ΣVN

v

}
v∈R be the family of (N − 1)-dimensional

equipotential hypersurfaces ΣVN
v :=V−1

N (v), v ∈ R, of RN. If

∀N ∈ N
# and v̄, v̄′ ∈ Iv̄ = [v̄0, v̄1], we have ΣVN

Nv̄ ≈ ΣVN
Nv̄′ ,

then

sup
N,v̄∈Iv̄

|SN(v̄)| < ∞ and sup
N,v̄∈Iv̄

∣∣∣∣∂kSN

∂v̄k
(v̄)

∣∣∣∣ < ∞, k = 1, 2, 3, 4.

Proof. The proof of this lemma amounts to proving the main theorem and proceeds as fol-
lows. After remark 2, the derivatives of the entropy are expressed in terms of the derivatives
of the microcanonical configurational volume which, in turn, after lemma 2 can be expressed
as surface integrals of functions of ζN = div(ξN) and its Lie derivatives, where ξN is the vec-
tor field generating the diffeomorphisms among the specific potential energy level sets. Then
these integrals are replaced by averages along Monte Carlo Markov chains (MCMCs) that can
be defined to have as invariant measure the microcanonical configurational measure (lemma 3
and remark 3). After lemmas 4 and 5, ζN is proved to behave as a random Gaussian process

12
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along the mentioned MCMCs, hence, after remark 5 and lemmas 6 to 9 the uniform bounds
are derived of the derivatives of the entropy up to the fourth one. �

Lemma 2 (Derivation of integrals over regular level sets ([38, 39])). Let O ⊂ R
p

be a bounded open set. Let ψ ∈ C n+1(O) be constant on each connected component of the
boundary ∂O and f ∈ C n(O). Define Ot,t′ = {x ∈ O|t < ψ(x) < t′} and

F(v) =
∫
{ψ=v}

f dσp−1, (21)

where dσp−1 represents the Lebesgue measure of dimension p− 1. If C > 0 exists such that
for any x ∈ Ot,t′ , ‖∇ψ(x)‖ � C, then for any k such that 0 � k � n, for any v ∈ ]t, t′[, one has

dk F
dvk

(v) =
∫
{ψ=v}

Ak
ψ f dσp−1. (22)

with

Aψ f = ∇
(

∇ψ

‖∇ψ‖ f

)
1

‖∇ψ‖ . (23)

This lemma allows to compute higher order derivatives of the microcanonical volumeΩn(v̄),
and thus of the entropy, at any order by identifying ψ with the potential VN(q) = V(q)/N. Let
us introduce the following notations: ζN = div(ξN),

χN = ‖ξN‖ =
1

‖∇VN‖
, (24)

for the norm of ξN , and

dμN−1
v̄ = χN dσ

Σ
VN
v̄

(25)

for the microcanonical area (N − 1)-form of non critical energy level sets, and

Lξ(·) = (ξ · ∇)(·) =
N∑

i=1

∂ iV
‖∇V‖2

∂i(·) (26)

for the Lie derivative along the flow of ξN . Then, given the microcanonical configurational
volume

ΩN(v̄) =
∫
Σv̄

N

dμN−1
v̄ (27)

its derivatives are computed through the formula

dkΩN

dv̄k
(v̄) =

∫
Σv̄

N

1
χ̄

Ak
V (χ̄) dμN−1

v̄ , (28)

where Ak
V (χ) stands for a k-times repeated application of the operator

AV( f ) = f ζN + LξN
( f ). (29)

13
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Remark 5 (Derivatives of the entropy). The configurational microcanonical entropy
density is given by

SN(v) =
1
N

log ΩN(v) =
1
N

log
∫
Σv̄

VN

dμN−1
v (30)

and its derivatives are

dSN

dv
(v) =

1
N
Ω′

N(v)
ΩN(v)

d2SN

dv2
(v) =

1
N

[
Ω′′

N(v)
ΩN(v)

−
(
Ω′

N(v)
ΩN(v)

)2
]

d3SN

dv3
(v) =

1
N

[
Ω′′′

N (v)
ΩN(v)

− 3
Ω′′

N(v)
ΩN(v)

Ω′
N(v)

ΩN(v)
+ 2

(
Ω′

N(v)
ΩN(v)

)3
]

d4SN

dv4
(v) =

1
N

[
Ω(iv)

N (v)
ΩN(v)

− 4
Ω′′′

N (v)Ω′
N(v)

Ω2
N(v)

+ 12
Ω′2

N (v)Ω′′
N(v)

Ω3
N(v)

− 3

(
Ω′′

N(v)
ΩN(v)

)2

− 6

(
Ω′

N(v)
ΩN(v)

)4
]

, (31)

where, after lemma 2, the derivatives of configurational microcanonical volume ΩN(v̄) up to
the fourth order with respect to v̄ are found to be

dΩN

dv
(v̄) =

∫
Σv̄

VN

ζN dμN−1
v̄

d2ΩN

dv̄2
(v̄) =

∫
Σv̄

VN

[
ζ2

N + LξN
(ζN)

]
dμN−1

Nv̄

d3ΩN

dv̄3
(v̄) =

∫
Σv̄

VN

[
ζ3

N + 3ζNLξN

(
ζN

)
+ L(ii)

ξN
(ζN)

]
dμN−1

v̄

d4ΩN

dv4
(v) =

∫
Σv̄

VN

[
ζ4

N + 6ζ2
NLξN

(ζN) + 4ζNL(ii)
ξN

(ζN)

+ 3
(
LξN

(ζN)
)2

+ L(iii)
ξN

(ζN)

]
dμN−1

v̄ . (32)

On any (N − 1)-dimensional hypersurface ΣVN
Nv̄ = V−1

N (Nv̄) = {X ∈ R
N | VN(X) = Nv̄} of

R
N , we can define a homogeneous nonperiodic random Markov chain whose probability

measure is the configurational microcanonical measure [6], namely dσ/‖∇VN‖. We call this
Markov chain a microcanonical-MCMC. In so doing, all the integrals giving configurational
microcanonical averages are replaced by asymptotic averages along these MCMCs. Dropping
the suffix N of VN we have the following lemma:

Lemma 3 (MCMCs over regular level sets). On each finite-dimensional level set
ΣNv̄ = V−1(Nv̄) of a standard, smooth, confining, short-range potential V bounded below, and

14
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in the absence of critical points, there exists a random Markov chain of points {Xi ∈ R
N}i∈N+ ,

constrained by the condition V(Xi) = Nv̄, which has

dμ =
dσ

‖∇V‖

(∫
ΣNv̄

dσ
‖∇V‖

)−1

(33)

as its probability measure, so that for a smooth function F : RN → R we have(∫
ΣNv̄

dσ
‖∇V‖

)−1∫
ΣNv̄

dσ
‖∇V‖ F = lim

n→∞

1
n

n∑
i=1

F(Xi). (34)

Proof. The level sets {ΣNv̄}v̄∈R are compact hypersurfaces of RN , therefore a partition of
unity [34] can be defined on each hypersurface. Then, let {Ui}, 1 � i � m be an arbitrary finite
covering of ΣNv̄ by means of domains of coordinates (for example open balls), at any point of
ΣNv̄ an ensemble of smooth functions {ϕi} exists, such that 1 � ϕi � 0 and

∑
i ϕi = 1.

By means of the partition of unity {ϕi} on ΣNv̄ , associated to a collection {Ui} of one-to-
one local parametrizations of the compact and oriented hypersurfaces ΣNv̄ , the integral of a
given smooth (N − 1)-form ω is given by:

∫
ΣNv̄

ω(N−1) =

∫
ΣNv̄

(
m∑

i=1

ϕi(x)

)
ω(N−1)(x) =

m∑
i=1

∫
Ui

ϕiω
(N−1)(x).

The existence of a MCMC of assigned probability measure (33) on a given ΣNv̄ is construc-
tively proved as follows. Let us consider sequences of random values {xi : i ∈ Λ}, where
Λ is the finite set of indexes of the elements of the partition of unity on ΣNv̄ , and where
xi = (x1

i , . . . , xN−1
i ) are local coordinates with respect to Ui of an arbitrary representative point

of the set Ui itself. The weight π(i) of the ith element of the partition is then defined by

π(i) =

(
m∑

k=1

∫
Uk

ϕk
dσ

‖∇V‖

)−1∫
Ui

ϕi
dσ

‖∇V‖ (35)

and the transition matrix elements [40] are given by

pi j = min

[
1,

π( j)
π(i)

]
(36)

satisfying the detailed balance equation π(i)pi j = π( j)pji. A random Markov chain
{i0, i1, . . . , ik, . . .} of indexes induces a random Markov chain of corresponding elements
of the partition, that is of points {xi0 , xi1 , . . . , xik , . . . } on the hypersurface ΣNv̄ . Denote by
(x1

P, . . . , xN−1
P ) the local coordinates of a point P on ΣNv̄ and define a local reference frame as

{∂/∂x1
P, . . . , ∂/∂xN−1

P , n(P)}, with n(P) the outward unit normal vector at P; by means of the
matrix that operates a point-dependent change from this reference frame to the canonical basis
{e1, . . . , eN} of RN it is possible to associate to the Markov chain {xi0 , xi1 , . . . , xik , . . . } an
equivalent chain {Xi0 , Xi1 , . . . , Xik , . . . } of points specified through their coordinates in R

N but
still constrained to belong to the subset V(X) = v, that is, to ΣNv̄ . Consequently, the invariant
probability measure [40] of the Markov chain so constructed is the probability density (33).
Moreover, in the absence of critical points, for smooth functions F and smooth potentials V, the
variation on each set Ui of F/‖∇V‖ is limited. Therefore, by keeping it finite the partition of
unity can be refined as needed to make Lebesgue integration convergent; hence equation (34)
follows. �
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Remark 6. By introducing the following notation for the average of a generic measurable

function f : MN → R over the hypersurface ΣVN
v̄ endowed with the measure dμN−1

v̄

〈 f 〉v,μ =

∫
Σv̄

VN

f dμN−1
v∫

Σv̄
VN

dμN−1
v

=

∫
Σv̄

VN

f dμN−1
v

ΩN(v)
, (37)

the quantities

Varv,μ( f ) = Cuml(2)
v,μ( f ) =

〈
f 2

〉
v,μ

− 〈 f 〉2
v,μ

Covv,μ( f ; g) = 〈 f g〉v,μ − 〈 f 〉v,μ〈g〉v,μ

Cuml(3)
v,μ( f ) =

〈
f 3

〉
v,μ

− 3〈 f 〉v,μ

〈
f 2

〉
v,μ

+ 2〈 f 〉3
v,μ

Cuml(4)
v,μ( f ) =

〈
f 4

〉
v,μ

− 4
〈

f 3
〉
v,μ
〈 f 〉v,μ + 12

〈
f 2

〉
v,μ
〈 f 〉2

v,μ − 3
〈

f 2
〉2

v,μ

− 6〈 f 〉4
v,μ

(38)

represent the variance, the correlation function, and the 3rd and 4th order cumulants on the

hypersurface ΣVN
v̄ with measure dμN−1

v̄ , respectively.
With this notation, and substituting equation (32) in equation (31), the derivatives of the

microcanonical entropy at a non critical value v̄, and at fixed N are worked out as averages of
functions of ζN = div(ξN), where the vector field ξN generates the diffeomorphisms among
the equipotential level sets, as follows

dSN

dv
(v) =

1
N

〈
ζN

〉
v,μ

d2SN

dv2
(v) =

1
N

[
Varv,μ(ζN) +

〈
LξN

(ζN)
〉

Nv̄,μ

]

d3SN

dv3
(v̄) =

1
N

[
Cuml(3)

v,μ(ζN) + 3Covv,μ

(
ζN;LξN

(ζN)
)
+

〈
L(ii)
ξN

(
ζN

)〉
v,μ

]

d4SN

dv4
(v̄) =

1
N

[
Cuml(4)

v,μ(ζN) + 6Covv,μ

(
ζ2

N;LξN
(ζN)

)

+ 3Varv,μ

(
LξN

(ζN)
)
+ 4Covv,μ

(
ζN ;L(ii)

ξN
(ζN)

)

− 12
〈
ζN

〉
v,μ

CovNv,μ

(
ζN;LξN

(ζN)
)
+

〈
L(iii)
ξN

(
ζN

)〉
v,μ

]

=
1
N

[
Cuml(4)

v,μ(ζN) + 4Covv,μ

(
ζN;L(ii)

ξN
(ζN)

)
+ 3Varv,μ

(
LξN

(ζN)
)

+ 6
〈
ζN

〉
v,μ

(
Covv,μ

(
ΔζN ;LξN

(ζN)
))

+
〈
L(iii)
ξN

(
ζN

)〉
v,μ

]
,

(39)

where for sake of simplicity we have introduced the quantity

ΔζN =
ζ2

N〈
ζN

〉
v,μ

− 2ζN . (40)
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Now the crucial step is to show that, under the hypothesis of diffeomorphicity that now
includes asymptotic diffeomorphicity, the function ζN —considered along a MCMC spanning
any given ΣVN

v —is a Gaussian random process. This is achieved through an intermediate step
to show that the mean curvature H—also considered along the same MCMC—is a Gaussian
random process. For the sake of notation in what follows we shall omit the suffix N of VN.

Lemma 4 (Mean curvature along a MCMC on a level set). The pointwise mean cur-
vature of an N-dimensional manifold ΣV

Nv̄

H(q) =
1
N

N∑
i=1

κi(q) = − 1
N

[
ΔV

‖∇V‖ −
∂ iV∂2

i jV∂
jV

‖∇V‖3

]
(41)

computed along a MCMC {qk}k∈N ∈ ΣV
Nv̄ such that the stationary invariant density of the

MCMC is the microcanonical configurational measure, where ΣV
Nv̄ is free of critical points of

V, is a Gaussian random process.

Proof. Along a MCMC, the principal curvatures κi(q) behave as independent random vari-
ables with probability densities ui(κi) which we do not need to know explicitly. Statistical
independence means that 〈κi(q)κ j(q)〉μc

N,v = 〈κi(q)〉μc
N,v〈κ j(q)〉μc

N,v and this can be understood as
follows. Let (Mn, g) be an n-dimensional Riemannian manifold and m-codimensional subman-
ifold of a Riemannian manifold (Mm+n, g), let R and R denote the Riemann curvature tensors of
Mn and Mm+n, respectively, and denote by h(·, ·) the second fundamental form, then the Gauss
equation reads

g(R(X, Y)Z, W)) = g(R(X, Y)Z, W)) + g(h(X, Z), h(Y, W))

− g(h(X, W), h(Y, Z)) (42)

which, for sectional curvatures, obviously reads as

g(R(X, Y)X, Y)) = g(R(X, Y)X, Y))+ g(h(X, X), h(Y, Y))

− g(h(X, Y), h(Y, X)). (43)

Now, for any point p ∈ M and basis {e1, . . . , en} of TpM, it is possible to choose coordi-
nates (y1, . . . , yn+1) in M such that the tangent vectors Y1, . . . , Yn coincide with {e1, . . . , en}
and n = Yn+1 ∈ NpM is orthogonal to TpM. Then M is locally given as a graph manifold:
y1 = x1, . . . , yn = xn, yn+1 = f (x) so that the second fundamental form has the components
[34, 41]

h(ei, e j) =
∂2 f

∂xi∂x j
n, (44)

where ei = ∂/∂xi. Considering the potential level sets ΣV
Nv̄ as hypersurfaces of RN+1, identi-

fying f (x1, . . . , xN) with V(q1, . . . , qN), taking n = ∇V/‖∇V‖, from equations (42)–(44) we
obtain

K(ei, e j) = κiκ j = −
(
∂2V
∂q2

i

)(
∂2V
∂q2

j

)
〈n, n〉+

(
∂2V

∂qi∂q j

)2

〈n, n〉 (45)

hence

〈κi(q)κ j(q)〉μc
N,v =

〈
1

‖∇V‖

[(
∂2V

∂qi∂q j

)2

−
(
∂2V
∂q2

i

)(
∂2V
∂q2

j

)]〉μc

N,v

. (46)
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For short-range interactions with coordination number n0, meaning that—with a suitable
labelling of the variables—qi and q j do not interact if |i − j| > n0, the entries of the Hessian
of V vanish if |i − j| > n0. Thus, locally, for n > n0, we have

〈κi(q)κ j=i+n(q)〉μc
N,v =

〈
−

[
1

‖∇V‖1/2

(
∂2V
∂q2

i

)][
1

‖∇V‖1/2

(
∂2V
∂q2

j

)]〉μc

N,v

(47)

with evident notation, we can write

〈κi(q)κ j=i+n(q)〉μc
N,v

=
〈[

〈κi(q)〉μc
N,v + δκi(q)

][
〈κ j=i+n(q)〉μc

N,v + δκ j=i+n(q)
]〉μc

N,v
. (48)

As we shall see in the following, 1/‖∇V‖1/2 tends to a constant value at increasing N, and along
a MCMC sampling a potential level set with its configurational microcanonical measure, the
fluctuations of ∂2V/∂q2

i and ∂2V/∂q2
j are independent and average to zero. In conclusion,

under the condition |i − j| > n0 we have

〈κi(q)κ j(q)〉μc
N,v = 〈κi(q)〉μc

N,v〈κ j(q)〉μc
N,v.

Having shown that the principal curvatures κi(q) are everywhere uniformly bounded on any
ΣV

Nv̄ belonging to any cylindrical subset of the family
{
ΓN

I0

}
N∈N, the consequence is that the

momenta of the distributions ui(κi) are finite and uniformly bounded too. Hence, the basic con-
ditions are fulfilled to apply the central limit theorem (CLT) formulated by Khinchin [42] for
sum functions of independent random variables, arbitrarily distributed, with bounded momenta
up to the fifth order. Hence, along the MCMC {qk}k∈N ∈ ΣV

Nv̄ the invariant measure of which
is the configurational microcanonical one, the values of the mean curvature H(qk) behave
as Gaussian-distributed random variables. Notice that a finite range dependence is a weak
dependence that does not prevent the CLT to apply [43].

Lemma 5 (ζN(q) along the MCMC on regular level sets). The quantity

ζN(q) =
ΔV

‖∇V‖2
− 2

∂ iV∂2
i jV∂

jV

‖∇V‖4
(49)

as well as ζN(q), computed along a MCMC {qk}k∈N ∈ ΣV
Nv̄ the invariant measure of which is

the configurational microcanonical one, is a Gaussian random process.

Proof. After the preceding lemma it follows that the two quantities ΔV/‖∇V‖ and
∂ iV∂2

i jV∂
jV/‖∇V‖3—computed along MCMC {qk}k∈N ∈ ΣV

Nv̄ the invariant measure of
which is the configurational microcanonical one—are Gaussian random processes because
their sum is a Gaussian random process and the sum of Gaussian random processes is Gaus-
sian. Now, if the quantity ΔV

‖∇V‖ =
∑

i∂
2
iiV/‖∇V‖ is asymptotically Gaussian, then the terms

∂2
iiV/‖∇V‖ have to be i.i.d. random variables as well the terms ∂2

iiV because all of them are
divided by the same number ‖∇V‖ at each point of the MCMC, by the same token ∂2

iiV/‖∇V‖2

have to be i.i.d. random variables because now all the terms ∂2
iiV are divided by the same num-

ber ‖∇V‖2 at each point of the MCMC. The same argument applies to ∂ iV∂2
i jV∂

jV/‖∇V‖3

so that in the end both ΔV/‖∇V‖2 and ∂ iV∂2
i jV∂

jV/‖∇V‖4 are Gaussian distributed, and,
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consequently, ζN(q) in equation (49) is a Gaussian random variable along a MCMC the
invariant measure of which is the configurational microcanonical one.

Remark 7. Let us emphasize that the quantity ζN(q) is a random variable along all the

MCMC {qk}k∈N ∈ Σ
VNk
Nk v̄

, with vanishing deviations from a Gaussian distribution at increas-
ing N, under the hypothesis of asymptotic diffeomorphicity because the principal curvatures
κi(q) are uniformly bounded with N from above on any manifold, a crucial condition for the
validity of lemma 2.

Remark 8. In the hypotheses of the main theorem, V contains only short-range interactions
and its functional form does not change with N. In other words, we are tackling physically
homogeneous systems, which, at any N, can be considered as the union of smaller and identical
subsystems. If a system is partitioned into a number k of sufficiently large subsystems, the larger
N the more accurate the factorization of its configuration space. Therefore, the averages of
functions of interacting variables belonging to a given block depend neither on the subsystems
where they are computed (the potential functions are the same on each block after suitable
relabelling of the variables) nor on the total number N of degrees of freedom.

(a) Since the potential V is assumed smooth and bounded below, one has

〈|ΔV|〉μc
N,v =

〈∣∣∣∣∣
N∑

i=1

∂2
iiV

∣∣∣∣∣
〉μc

N,v

�
N∑

i=1

〈|∂2
iiV|〉

μc
N,v � N max

i=1,...,N

〈(
|∂2

iiV|
)〉μc

N,v.

At large N (when the fluctuations of the averages are vanishingly small)
maxi=1,...,N〈|∂2

iiV|〉
μc
N,v does not depend on N, and the same holds for

〈
|∂ iV∂2

i jV∂
jV|

〉μc

N,v

and maxi, j=1,...,N
〈
|∂ iV∂2

i jV∂
jV|

〉μc

N,v
.

Hence we set

m1 = max
i=1,...,N

〈|∂2
iiV|〉

μc
N,v

m2 = max
i, j=1,...,N

〈
|∂ iV∂2

i jV∂
jV|

〉μc

N,v
. (50)

(b) Moreover, the absence of critical points of V, implied by the hypothesis of diffeomor-
phicity of the equipotential hypersurfaces, means that ‖∇V‖2 � C > 0. Hence the terms
〈‖∇V‖2n〉μc

N,v for n = 1, . . . , 8 we have

〈‖∇V‖2〉μc
N,v =

〈
N∑

i=1

(∂iV)2

〉μc

N,v

=

N∑
i=1

〈
(∂iV)2

〉μc

N,v
� N min

i=1,...,N

〈
(∂iV)2〉μc

N,v
,

〈‖∇V‖4〉μc
N,v =

〈[
N∑

i=1

(∂iV)2

]2〉μc

N,v

=

N∑
i, j=1

〈
(∂iV)2(∂ jV)2

〉μc

N,v

� N2 min
i, j=1,..,N

〈
(∂iV)2(∂ jV

)2
〉μc

N,v
,

which can be iterated up to 〈‖∇V‖16〉μc
N,v . By setting
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c1 = min
i=1,...,N

〈
(∂iV)2

〉μc

N,v

c2 = min
i, j=1,..,N

〈
(∂iV)2

(
∂ jV

)2
〉μc

N,v

. . . . . . . . . . . . . . . . . . . . . . . .

c8 = min
i1,...,i8=1,..,N

〈(
∂i1V

)2
. . .

(
∂i8 V

)2
〉μc

N,v
. (51)

(c) By the same token put forward at the beginning of this remark, we can define the following
quantities independent of N

m3 = max
i, j,k,l=1,N

〈
(∂iV∂

2
i jV∂ jV)(∂kV∂2

klV∂lV)
〉μc

N,v
,

m4 = max
i, j,k=1,N

〈
∂iV∂

2
i jV∂

2
jkV∂kV

〉μc

N,v
,

m5 = max
i, j,k=1,N

〈
(∂iV∂

2
i jV∂ jV)(∂2

kkV)
〉μc

N,v
,

m6 = max
i, j=1,N

〈
∂iV∂

3
i j jV

〉μc

N,v
,

m7 = max
i, j,k=1,N

〈
(∂iV∂ jV∂kV)∂3

i jkV
〉μc

N,v
,

m8 = max
i, j=1,...,N

〈
|∂2

i jV∂
jV|

〉μc

N,v
.

(52)

Lemma 6 (Upper bound of the first derivative of the entropy). After lemmas 2 to
5 and remarks 2 to 5 it is

sup
N,v̄∈Iv̄

∣∣∣∣∂SN

∂v̄
(v̄)

∣∣∣∣ < ∞

Proof. This first derivative of the entropy is equal to the inverse of the configurational tem-
perature, thus it is necessarily uniformly bounded with N. In fact, the property of ζN(q)—and
of ζN(q)—of being a Gaussian distributed random variable along any MCMC defined above
entails the following uniform bound

lim
N→+∞

〈ζN〉Nv̄,μ = lim
N→+∞

N−1
〈
ζN

〉
Nv̄,μ

∈ R. (53)

�

Lemma 7 (Upper bound of the second derivative of the entropy). After lemmas 2
to 5 and remarks 2 to 5 it is

sup
N,v̄∈Iv̄

∣∣∣∣∂2SN

∂v̄2
(v̄)

∣∣∣∣ < ∞. (54)

Proof. Since ζN(q) is a Gaussian random process, the quantity Varv,μ(ζN)/N is uniformly

bounded with N. Then the N-dependence of the average
〈
LξN

(ζN)
〉

Nv̄,μ
follows from the

explicit expression of the quantity LξN
(ζN) given by equation (74) in appendix B (by adapting

it to quantities marked with an overline). Considering that the number of non-vanishing entries
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of the Hessian of the potential is O(npN), where np is the number of nearest-neighbors in con-
densed matter systems and the average number of neighbors of a particle in a fluid system,
using the above defined N-independent quantities in equations (50)–(52) a simple estimation
term by term gives

〈
LξN

(ζN)
〉

Nv̄,μ
�

〈∣∣∣∣∇V · ∇(ΔV)
‖∇V‖4

∣∣∣∣
〉

Nv̄,μ

+

〈∣∣∣∣8(∇V · HessV∇V)2

‖∇V‖8

∣∣∣∣
〉

Nv̄,μ

+

〈∣∣∣∣2(∇V · Hess(V)∇V)ΔV + 2‖HessV∇V‖2 + D3V(∇V,∇V,∇V)
‖∇V‖6

∣∣∣∣
〉

Nv̄,μ

� N
m6

c2
+ 8

m2
2n2

p

c4
+ 2N

m5np + 2m2
8n2

p + m7np

c3
(55)

that is, the upper bound of
〈
LξN

(ζN)
〉

Nv̄,μ
/N of this quantity remains uniformly bounded in

the N →∞ limit. �

Lemma 8 (Upper bound of the third derivative of the entropy). After lemmas 2 to
5 and remarks 2 to 5 it is

sup
N,v̄∈Iv̄

∣∣∣∣∂3SN

∂v̄3
(v̄)

∣∣∣∣ < ∞

Proof. Since ζN(q) is a Gaussian random process, we have the following uniform bound

lim
N→+∞

N2Cumul(3)
Nv̄,μζN = lim

N→+∞
N−1Cumul(3)

Nv̄,μζN = 0,

and by considering the explicit expression of L(ii)
ξN

(ζN) given by equation (75) in appendix B, a

tedious but trivial counting of the N-dependence term by term of L(ii)
ξN

(ζN)—as in the previous

case—shows that
〈
L(ii)
ξN

(ζN)
〉

Nv̄,μ
turns out of order O(n3

pN) and thus divided by N remains

uniformly bounded in the N →∞ limit. Then, according to the definition (38) we have

Covv,μ(ζ̄N ;Lξ̄N
(ζ̄N)) = 〈ζ̄N Lξ̄N

(ζ̄N)〉v,μ − 〈ζ̄N〉v,μ〈Lξ̄N
(ζ̄N)〉v,μ,

where the quantities ζN andLξN
(ζN) are randomly varying along the MCMC whose probability

measure is the configurational microcanonical measure, and the random variations of ζN and of
its directional (Lie) derivative in a random direction ξN can be considered bona fide statistically
uncorrelated, thus their covariance vanishes. �

Lemma 9 (Upper bound of the fourth derivative of the entropy). After lemmas 2
to 5 and remarks 2 to 5 it is

sup
N,v̄∈Iv̄

∣∣∣∣∂4SN

∂v̄4
(v̄)

∣∣∣∣ < ∞.

Proof. Since ζN(q) is a Gaussian random process, we have the following uniform bound

lim
N→+∞

N3Cumul(4)
Nv̄,μζN = lim

N→+∞
N−1Cumul(4)

Nv̄,μζN = 0.

Then, by considering the expression of L(iii)
ξN

(ζN) given by equation (76) in appendix B, a very

tedious but trivial counting of the N-dependence term by term of L(iii)
ξN

(ζN)—as in the previous
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case—shows that
〈
L(iii)
ξN

(ζN)
〉

Nv̄,μ
turns out of order O(n4

pN) and thus divided by N remains

uniformly bounded in the N →∞ limit.

Now, the term N−1 Varv,μ

(
LξN

(ζN)
)

is also uniformly bounded, in fact along the MCMC

spanning a given equipotential surface the terms ξi∂iζ are random uncorrelated variables each
bringing a factor N because ζ ∼ O(N), thus

Varv,μ

(
LξN

(ζN)
)
= Varv,μ

(
N∑

i=1

ξi∂iζ

)

= Varv,μ

(
1
N

N∑
i=1

Nξi∂iζ

)

=
1

N2

N∑
i=1

Varv,μ
(
Nξi∂iζ

)

� 1
N2

Nσ2
mN2 = Nσ2

m, (56)

where σ2
m is the largest value of all the standard deviations of the terms ξi∂iζ along the MCMC.

For what concerns the two remaining terms in the fourth derivative of the entropy in
equation (39) we have

Covv,μ

(
ζN ;L(ii)

ξN
(ζN)

)
=

〈
ζN L(ii)

ξN
(ζN)

〉
v,μ

−
〈
ζN

〉
v,μ

〈
L(ii)
ξN

(ζN)
〉
v,μ

(57)

that vanishes when computed as microcanonical averages through ‘time’ averages along a
MCMC, in fact, we take advantage of the resulting complete decorrelation between the random
values taken by ζN and the random values of its second order Lie derivative taken in a random
direction ξN.

Covv,μ

(
ΔζN ;LξN

(ζN)
)
=

〈
ΔζN LξN

(ζN)
〉
−

〈
ΔζN

〉〈
LξN

(ζN)
〉

(58)

the same argument applies to the quantities ΔζN and LξN
(ζN) that are uncorrelated random

variables along a MCMC, thus their covariance vanishes. �

4. Fixing the problem raised by the lattice φ4 model

A few years ago, an argument was raised [31] against the topological theory of phase transitions
on the basis of the observation that the second order phase transition of the 2D lattice φ4-model
occurs at a critical value vc of the potential energy density which belongs to a broad interval
of v-values void of critical points of the potential function. In other words, for any finite N
the {ΣVN

v<vc}v∈R are diffeomorphic to the {ΣVN
v>vc}v∈R so that no topological change seems to

correspond to the phase transition. This is a counterexample to the theorem in references [28,
29]. A first reply was given in [32] where, in spite of the absence of critical points of the
potential in correspondence of the transition energy, a strong evidence has been given to relate
the phase transition of this model with a change of topology of both the energy and potential
level sets. But in this case the topology changes are asymptotic (N →∞).
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Figure 5. Quantities entering equation (39) for lattices with different N. In particular,
N = 100 (red full circles), N = 400 (blue squares), N = 900 (black diamonds),
N = 1600 (green triangles), N = 2500 (purple reversed triangles).

Let us see how the main theorem proved in the present work definitely fixes the problem,
so that the 2D lattice φ4-model is no longer a counterexample to the topological necessity
theorem.

The model of interest, considered in reference [44], is defined by the Hamiltonian

HN(p, q) =
∑

i

p2
i

2
+ VN(q), (59)

where the potential function V(q) is

V(q) =
∑
i∈ZD

(
−m2

2
q2

i +
λ

4!
q4

i

)
+

∑
〈ik〉∈ZD

1
2

J(qi − qk)2, (60)

with 〈ik〉 standing for nearest-neighbor sites on a D dimensional lattice. This system has a dis-
crete Z2-symmetry and short-range interactions; therefore, according to the Mermin–Wagner
theorem, in D = 1 there is no phase transition whereas in D = 2 there is a second order
symmetry-breaking transition, with nonzero critical temperature, of the same universality class
of the 2D Ising model.

In this section we present the results of Monte Carlo numerical simulations on equipoten-
tial level set of this model on a 2D-lattice with periodic boundary conditions and the following
parameters: J = 1, m2 = 2, and λ = 0.6. For these values of the parameters, the 2D system
undergoes the symmetry-breaking phase transition at the critical potential energy density value
is vc = 〈V〉c/N � 2.2. This study has been performed in order to identify which terms com-
posing the derivatives of the specific configurational microcanonical entropy with respect to
the specific potential energy is not uniformly bounded in N, as is expected after the present
main theorem.

The simulations have been performed for systems with different number of degrees of free-
dom: N = 10 × 10 = 100, N = 20 × 20 = 400, N = 30 × 30 = 900, N = 40 × 40 = 1600,
N = 50 × 50 = 2500 and N = 70 × 70 = 4900. The computations were performed with van-
ishing magnetization as initial condition, for 2 × 107 steps, a number sufficient to guarantee
the convergence of the reported quantities.
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Figure 6. Quantities entering equation (39) for lattices with different N. In particular,
N = 100 (red full circles), N = 400 (blue squares), N = 900 (black diamonds),
N = 1600 (green triangles), N = 2500 (purple reversed triangles).

Figure 7. Quantities entering equation (39) for lattices with different N. In particular,
N = 100 (red full circles), N = 400 (blue squares), N = 900 (black diamonds),
N = 1600 (green triangles), N = 2500 (purple reversed triangles).
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Figure 8. Quantities entering equation (39) for lattices with different N. Left panel: third
cumulant of ζN for N = 100 (red full circles), N = 400 (blue squares), N = 900 (black
diamonds), N = 1600 (green triangles), N = 2500 (purple reversed triangles). Right
panel: fourth cumulant of ζN computed at the transition energy density vc = 2.2, here a
systematic deviation from the Gaussian scaling with N is well evident.

The results of numerical simulations are reported for each single term entering equation (39)
(figures 5–8). When properly rescaled with N, under the hypothesis of diffeomorphism (at any
N and also asymptotically) of the equipotential hypersurfaces, all these terms are expected to
be uniformly bounded with N. Very interestingly, it is found that across the vertical dashed line
denoting the phase transition point at the potential energy density v̄c � 2.2 all these terms do
not show any tendency to change with N, except for the case N = 10 × 10 (for which 36% of
the total number of sites belong to the boundary, making the finite size effects more relevant).
There is only one very significative exception, the fourth cumulant of ζN which, computed
around the transition value, is found to systematically grow with N. This has been computed
by means of the relation

Cuml(4)
Nv̄,μζ =

d
dv

[Cuml(3)
Nv̄,μζ̄N] − 3〈ζ̄N〉v,μ(Corrv̄,μ(Δζ̄N ;Lξ̄N

(ζ̄N))), (61)

where the derivative of the third cumulant is evaluated numerically.
This means that ζN is not a Gaussian random process along a MCMC the invariant measure

of which is the microcanonical measure. As ζN is proved to be a Gaussian random process under
the constraining hypothesis of asymptotic diffeomorphicity of the level sets {ΣVN

Nv̄}v̄∈[v̄0,v̄1], the
growth with N of N−1Cuml(4)

Nv̄,μζ entails the loss of asymptotic diffeomorphicity among the

{ΣVN
Nv̄}v̄<v̄c and the {ΣVN

Nv̄}v̄>v̄c for some v̄c. This means that the 2D lattice φ4 model does not
fulfil a basic requirement of the main theorem formulated in the present work. Therefore, the
2D lattice φ4 model is not a counterexample to the present version of the topological necessity
theorem.

As it has been pointed out in remark 3, a second order phase transition in the microcanonical
ensemble is associated with an asymptotic discontinuity of the third derivative of the entropy
and hence an asymptotic divergence of the fourth derivative of the entropy.
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5. Historical overview and challenges of the topological theory of phase
transitions

After the investigation of specific, exactly solvable models [17, 45–48] corroborating the TH,
during the last decade and a half other systems have been studied, shedding doubts on the
general validity of the new theory. Even if all these studies are important to better define the
validity limits of the TH, some authors have too quickly drawn fatal verdicts against it.

In fact, for the sake of clarity, let us begin by remarking that the proposed theory applies a
priori to systems described by smooth, finite-range potentials such that the level sets ΣVN

v and
their associated balls MVN

v qualify as good differentiable and compact manifolds. Moreover,
as we have preliminarily discussed in reference [32], and as it is thoroughly tackled through-
out the present paper, topology changes—as loss of diffeomorphicity among differentiable
manifolds—can take place also in the absence of critical points of the potential function.

Thus, coming to specific examples, in [49] the author tackled a system modelling in
one-dimension a localization–delocalization transition of interfaces. This so-called Burkhardt
model was also considered in [50] where the pinning potential was considered in a modified
version. The absence of coincidence between topological and thermodynamical transitions was
reported in both references [49, 50].

However, the Burkhardt model has two bad properties with respect to the conditions of the
TH, formalized by the theorems in references [6, 28–30] and by the theorem proved in the
present paper. In fact, the pinning potentials considered in references [49, 50] are singular as
they need infinitely steep potential barriers to constrain the coordinates of the system on a
semi-infinite positive line, and the configuration-space submanifolds are noncompact.

In [20], and also in [50], another one dimensional model was considered, the so-called
Peyrard–Bishop model describing DNA denaturation. In reference [50] the authors consid-
ered also a modified version of the Peyrard–Bishop model, and for both versions of the
model the topological transition is found at a critical value of the potential energy which does
not correspond to critical energy value of the thermodynamic transition. The configuration
space submanifolds corresponding to these models are noncompact, and the critical mani-
folds—containing only one critical point of infinite coordinates—are infinitely large. Again,
these models are outside the domain of validity of the theorems in references [6, 28–30] and
in the present paper.

Another model, allegedly disproving the topological theory, is the mean-field Berlin–Kac
spherical model. In reference [51] the two cases of zero and non-zero external field were con-
sidered. In the former case there is a continuous phase transition and in the latter case there is
no phase transition. The two cases did not display much difference when considered from the
topological viewpoint. However, for this model there is a strong statistical ensemble inequiv-
alence, in fact the continuous phase transition for zero external field is only predicted in the
framework of canonical ensemble, whereas it is absent in the framework of microcanonical
ensemble [52, 53] which is the reference framework where the topological theory is formu-
lated. Thus there is no contradiction. Moreover, considering that the ergodic invariant measure
of Hamiltonian flows is the microcanonical measure, and considering that the objective reality
of any physical system is dynamics, the microcanonical ensemble has to be considered the
fundamental statistical ensemble.

By the way, this is not the only case of this kind of ensemble inequivalence, for example,
though working in the opposite way, the clustering phase transition in a self-gravitating N-body
system found in the microcanonical ensemble framework is completely absent in the canonical
ensemble [54].
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In [16] the authors tackle a modified version of the Berlin–Kac model which is constrained
with the introduction of a long-range correlation among the degrees of freedom. In spite of the
claim that this model is the first case of short-range, confining potential where the phase tran-
sition is not entailed by a topology change in phase space or configuration space, the spherical
constraint, by limiting the freedom of mutual independent variation of all the degrees of free-
dom, makes this model a long-range interaction one. And even though the spherical constraint
is, so to speak, a weak constraint, it plays a crucial role because without it the model is trivial.

Another system apparently going against the topological theory is the mean-field φ4 model.
The phase transition point of this model does not correspond to the presence of critical points
of the potential, that is, it has no topological counterpart [18, 55, 56]. Some correspondence
between the topological and thermodynamic transitions was recovered for this model in refer-
ence [55] by introducing a suitable weakening of the TH. However, the mean-field φ4 model
undergoes a Z2-symmetry-breaking phase transition, as in the case of the short range φ4 model
[32]. As a consequence, the reason why this system is not a counterexample of the topological
theory is twofold: on the one side it violates the condition of asymptotic diffeomorphicity of the
level sets ΣVN

v put forward in the present work, and, on the other side, in the broken symmetry
phase even in the absence of critical points of the potential in the N →∞ limit the splitting of
the configuration space into two disjoint submanifolds is actually a major change of topology
in correspondence with the phase transition point.

All the attempts at falsifying the TH are useful to better outline the domain of validity
of the theory, which, on the other hand, is not intended to apply to all the possible phase
transitions. The theory can leave outside its validity domain models with unbound and long-
range potentials without being invalidated by this kind of systems.

Summarizing, the TH is coherent and now free of counterexamples, nevertheless the
above mentioned alleged counterexamples have the merit of showing that some—perhaps
much—work remains to be done, mainly in the case of long-range interactions. In fact, for
example, for the exactly solvable model in references [46, 47], which is a mean-field XY model,
thus with long-range interactions, a sharp topological transition in configuration space is clearly
at the origin of the phase transition. At variance with the mean-field φ4 model described by
polynomial potentials, the mean-field XY model is described by a potential bounded from
above. Whether and why this fact could explain the different conformity of these models to the
topological description of their transitional behaviour is still a wide open question.

6. Concluding remarks

The present work is a substantial leap forward of the topological theory of phase transitions
which was seriously undermined by the counterexample mentioned in the previous sections.
The theory is rooted in the study of thermodynamical phase transitions from the viewpoint of
microscopic Hamiltonian dynamics. As Hamiltonian flows can be identified with geodesics
flows of suitable differentiable manifolds, it turned out that across a phase transition point
these manifolds undergo major geometrical changes of topological origin. This is to remark
that topology is, so to speak, naturally implied by the fundamental/dynamical approach and it
is not just conjectured to play a role. The first important consequence of this approach is that
the occurrence of a phase transition is not the consequence of a loss of analyticity of statis-
tical measures but it is already encoded in the potential function describing the interactions
among the degrees of freedom of a system. This makes the thermodynamic limit dogma no
longer necessary neither from the conceptual side nor from the mathematical description side.
And, of course, this is interesting when tackling phase transition phenomena in mesoscopic
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and nanoscopic systems. Moreover, phase transitions phenomena in the absence of symmetry-
breaking—and thus in the absence of an order parameter—have been successfully tackled in
the topological framework, at present, at least in the case of a model with a gauge symme-
try [57], for a 2D-model with an O(2) symmetry undergoing a Kosterlitz–Thouless transition
[58], and for the protein folding transition [59]. It is worth mentioning that in a recent paper
[60]—partly based on some results given in [61]—a purely geometric theory of phase transi-
tions has been put forward. In this work it is proposed that Bachmann’s classification of phase
transitions [4, 5] for finite-size systems can be reformulated in terms of geometric properties
of the energy level sets associated to a given Hamiltonian function; here the energy-derivatives
of the entropy are associated to specific combinations of geometric curvature properties of the
energy level sets. There is no contradiction between the geometric theory and the topological
theory of phase transitions, mainly because sharp changes of the geometry of the leaves (energy
level sets) of a foliation of phase space can be generically attributed to deeper changes of topo-
logical kind. However, the precise relationship between geometry and topology is given by
theorems in differential topology and, unfortunately, there is only a few number of these theo-
rems that can be constructively used (essentially the Gauss–Bonnet–Hopf, the Chern–Lashof,
and Pinkall theorems [6]). Therefore the geometric approach has some practical advantage
with the respect to the topological one in what curvature properties of the energy level sets can
be always explicitly computed.

It is noteworthy that, in principle, the topological approach to classical phase transi-
tions—addressed in the present work, as well as the geometric approach in reference [60]—can
be extended to the treatment of quantum transitions by means of Wick’s analytic prolonga-
tion to imaginary times of the path-integral generating functional of quantum field theory, this
allows to map a quantum system onto a formally classical one described by a classical partition
function written with the euclidean Lagrangian action, on lattice to have a countable number
of degrees of freedom [6].

Finally, recent developments of powerful computational methods in algebraic topology, like
those of persistent homology [62, 63], provide the topological description of phase transi-
tions with new useful constructive tools in addition to the existing concepts and methods of
differential topology.
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Appendix A. Uniform boundedness of R

Let us now show how asymptotic diffeomorphicity entails uniform boundedness with N of the
Ricci scalar curvature defined in equation (17), and using ‖ξ‖ = ‖∇V(q)‖−1,

R =
1

N(N − 1)

{
−� log ‖ξ‖−1 +∇ · [�V(q) ξ]

}
, (62)

where the second term in the rhs is

∇ · [�V(q) ξ] = [∇� V(q)] · ξ + [�V(q)]∇ · ξ (63)

= �V(q) ∂ i

(
∂iV(q)

‖∇V(q)‖2

)
+

∂ jV(q)
‖∇V(q)‖2

∂ j∂k∂kV(q) (64)

and using

�V(q) = ∇ · [∇V(q)] = ∇ · [‖∇V(q)‖2ξ] = ∂ i

(
ξi

‖ξ‖2

)
(65)

=
1

‖ξ‖2
(∂ iξi) −

4
‖ξ‖2

ξi

‖ξ‖
ξ j

‖ξ‖ (∂ iξ j) (66)

after equations (6)–(8) all these terms are uniformly bounded in N, and so does ∇ · ξ, more-
over, the denominator ‖ξ‖−4 ∼ N2 is compensated by the pre-factor 1/N(N − 1). Therefore
the second term in the rhs of equation (63) is also uniformly bounded in N. Then the first
term of equation (63) is obtained by applying the operator ξ · ∇ to equation (66), and, after
trivial algebra of the same kind of that leading to equation (66), one obtains a lengthy expres-
sion—containing mixed second order derivatives of the components of ξ—which are uni-
formly bounded under the assumption of asymptotic diffeomorphicity. On the other hand, for
smooth and regularized potentials, if n is the coordination number of the potential, and is the
maximum value of ∂ i∂iV, then �V(q) is bounded by . By the same token,
if is the maximum value of ∂ j∂

i∂iV then ξ · ∇ � V(q) is uniformly bounded by ,
where B is the constant of equation (8).

Now, coming to the first term in the rhs of equation (62), that is ∂ i
(
∂i log ‖∇V(q)‖

)
, we

have

∂ i
(
∂i log ‖ξ‖−1

)
= ∂ i(‖ξ‖∂i‖ξ‖−1) = ∂ i‖ξ‖∂i‖ξ‖−1 + ‖ξ‖ ∂ i∂i‖ξ‖−1 (67)

= − 1
‖ξ‖2

(∂i‖ξ‖)2 +

[
− 1
‖ξ‖ (∂ i∂i‖ξ‖) +

2
‖ξ‖2

(∂i‖ξ‖)2

]

(68)

= − 1
‖ξ‖ (∂ i∂i‖ξ‖) +

1
‖ξ‖2

(∂i‖ξ‖)2 (69)

and

1
‖ξ‖2

(∂i‖ξ‖)2 =
1

‖ξ‖2
(∂i

√
ξ jξ j)2 =

ξ jξ
j

‖ξ‖4
(∂iξ j)2 (70)
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which is uniformly bounded after equations (6)–(8) and the pre-factor 1/N(N − 1). Then for
the first term in equation (69) we get

1
‖ξ‖ (∂ i∂i‖ξ‖) =

1
‖ξ‖∂

i

(
ξ j

‖ξ‖ ∂iξ j

)

=
1

‖ξ‖

[
ξ j

‖ξ‖ ∂ i∂iξ j +
(∂iξ j)2

‖ξ‖ − ξ jξ
j (∂iξ j)2

‖ξ‖3

]
(71)

which, under the same conditions mentioned above, is also uniformly bounded in N. The rel-
evant consequence is that under the assumption of asymptotic diffeomorphicity of potential
energy level sets, the scalar Ricci curvature R in equation (62) is uniformly bounded in N and
so do all the principal curvatures of the manifolds transformed under the action of the vector
field ξ.

Appendix B. Lie derivatives of the vector field ξ

In the following we derive explicit expressions of the Lie derivatives of the one-parameter
diffeomorphism-generating vector field ξ for a potential V in ‘critical points-free’ regions of
configuration space (X , gRN ) endowed with a Riemannian metric. Let (q1, . . . , qN) be a set
of coordinates in configuration space. In what follows we shall refer to ∂i = ∂/∂qi so that
(∇V)i = ∂iV and the Hessian (HessV)i j = ∂2

i jV .
With these choices the divergence of the vector field ζ = divRNξ reads:

divRN ξ =
ΔV

‖∇V‖2
− 2

∇V · (HessV∇V)
‖∇V‖4

, (72)

where Δ(·) =
∑N

i ∂
i∂i(·) is the Laplacian operator in the Euclidean configuration space and

‖X‖2 = gRN (X, X) is the Euclidean norm. As the Lie derivative operator along the flow
generated by the vector field ξ is

Lξ(·) = (ξ · ∇)(·) =
N∑

i=1

∂ iV
‖∇V‖2

∂i(·) (73)

the first derivative reads

Lξ(ζ) =
∇V · ∇(ΔV)

‖∇V‖4
− 2

(∇V · Hess(V)∇V)ΔV + 2 ‖HessV∇V‖2 + D3V(∇V ,∇V ,∇V)
‖∇V‖6

+ 8
(∇V · HessV∇V)2

‖∇V‖8
, (74)

where D3V(∇V ,∇V ,∇V) = ∂3
i jkV∂iV∂ jV∂kV .

The second order derivative (with the aid of symbolic manipulation with Mathematica) reads
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L(ii)
ξ (ζ) =

∇(ΔV) · (HessV∇V) +∇V · (Hess(ΔV)∇V)
‖∇V‖6

+

− 2

[
ΔVD3V(∇V,∇V,∇V) + 2ΔV‖HessV∇V‖2 + 4(HessV∇V) · (HessVHessV∇V)

‖∇V‖8

+
7D3V(HessV∇V,∇V,∇V) + D4V(∇V,∇V,∇V,∇V) + 3(∇V · HessV∇V)(∇V · ∇(ΔV))

‖∇V‖8

]

+
28(∇VHessV∇V)

[
2‖HessV∇V‖2 + D3V(∇V,∇V,∇V)

]
+ 12(∇VHessV∇V)2ΔV

‖∇V‖10
+

− 64
(∇VHessV∇V)3

‖∇V‖12
(75)

and the third order derivative (with the aid of symbolic manipulation with Mathematica) reads

L(iii)
ξ (ζ) =

3∇V · Hess(ΔV)HessV∇V + D3ΔV(∇V ,∇V ,∇V) + D3V(∇V ,∇V ,∇(ΔV))
‖∇V‖8

+
∇(ΔV) · HessVHessV∇V

‖∇V‖8
− 2

[
4D3V(∇V ,∇V ,∇V)(∇V · ∇(ΔV))

‖∇V‖10

+
7D4V(∇V ,∇V ,∇V , HessV∇V)

‖∇V‖10

+
15D3V(∇V ,∇V , HessVHessV∇V) + 7‖D3V(∇V ,∇V)‖2 + 18D3V(HessV∇V , HessV∇V ,∇V)

‖∇V‖10

+
4DV(∇V ,∇V ,∇V , HessV∇V) + D5V(∇V ,∇V ,∇V ,∇V ,∇V) + 8(∇V · ∇(ΔV))‖HessV∇V‖2

‖∇V‖10

+
8‖HessVHessV∇V‖2 + 7D3V(∇V ,∇V , HessV∇V)ΔV

‖∇V‖10

+
ΔVD4V(∇V ,∇V ,∇V ,∇V) + 4ΔV(HessV∇V) · HessVHessV∇V

‖∇V‖10

+
6(HessV · HessV∇V)(∇V · Hess(ΔV)∇V) + 6(HessV · HessV∇V)(∇(ΔV) · HessV∇V)

‖∇V‖10

]

+ 4

[
7
(
D3V(∇V ,∇V ,∇V)

)2
+ 28D3V(∇V ,∇V ,∇V)‖HessV∇V‖2

‖∇V‖12

+
10ΔVD3V(∇V ,∇V ,∇V)(∇V · HessV∇V)

‖∇V‖12

+
28‖HessV∇V‖4 + 20ΔV‖HessV∇V‖2(∇V · HessV∇V)

‖∇V‖12

+
(∇V · HessV∇V)[77D3V(∇V ,∇V , HessV∇V)

‖∇V‖12

+
11D4V(∇V ,∇V ,∇V ,∇V) + 44(HessV∇V) · (HessVHessV∇V)

‖∇V‖12

+
15(HessV · HessV∇V)(∇V · ∇(ΔV))]

‖∇V‖12

]
+−8

[
59D3V(∇V ,∇V ,∇V)(∇V · HessV∇V)2

‖∇V‖14

+
(∇V · HessV∇V)2[118‖HessV∇V‖2 + 15ΔV(∇V · HessV∇V)]

‖∇V‖14

]
+ 768

(∇V · HessV∇V)4

‖∇V‖16
.

(76)
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