Communication publiée sur un site web (Colloques, congrès, conférences scientifiques et actes)
MOFL/D: A Federated Multi-objective Learning Framework with Decomposition
HARTMANN, Lena Maria; DANOY, Grégoire; ALSWAITTI, Mohammed et al.
2023International Workshop on Federated Learning in the Age of Foundation Models in Conjunction with NeurIPS 2023 (FL@FM-NeurIPS’23)
Peer reviewed
 

Documents


Texte intégral
FL_NeurIPS__MOFL_D-revision1.pdf
Postprint Auteur (793.58 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Federated Learning; Multi-objective Learning; Multiobjective Learning; Federated Multi-objective Learning; Federated Multiobjective Learning; Multi-objective Federated Learning; multiobjective Federated Learning
Résumé :
[en] Multi-objective learning problems occur in all aspects of life and have been studied for decades, including in the field of machine learning. Many such problems also exist in distributed settings, where data cannot easily be shared. In recent years, joint machine learning has been made possible in such settings through the development of the Federated Learning (FL) paradigm. However, there is as of now very little research on the general problem of extending the FL concept to multi- objective learning, limiting such problems to non-cooperative individual learning. We address this gap by presenting a general framework for multi-objective FL, based on decomposition (MOFL/D). Our framework addresses the a posteriori type of multi-objective problem, where user preferences are not known during the optimisation process, allowing multiple participants to jointly find a set of solutions, each optimised for some distribution of preferences. We present an instantiation of the framework and validate it through experiments on a set of multi-objective benchmarking problems that are extended from well-known single- objective benchmarks.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > PCOG - Parallel Computing & Optimization Group
Disciplines :
Sciences informatiques
Auteur, co-auteur :
HARTMANN, Lena Maria  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > PCOG
DANOY, Grégoire  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
ALSWAITTI, Mohammed  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > PCOG
BOUVRY, Pascal ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
MOFL/D: A Federated Multi-objective Learning Framework with Decomposition
Date de publication/diffusion :
décembre 2023
Nom de la manifestation :
International Workshop on Federated Learning in the Age of Foundation Models in Conjunction with NeurIPS 2023 (FL@FM-NeurIPS’23)
Lieu de la manifestation :
New Orleans, Etats-Unis - Louisiane
Date de la manifestation :
December 16, 2023
Manifestation à portée :
International
Peer reviewed :
Peer reviewed
Source :
Focus Area :
Security, Reliability and Trust
Intitulé du projet de recherche :
U-AGR-8025 - ILNAS PC2 (01/01/2021 - 31/12/2024) - BOUVRY Pascal
Disponible sur ORBilu :
depuis le 12 janvier 2024

Statistiques


Nombre de vues
317 (dont 45 Unilu)
Nombre de téléchargements
133 (dont 8 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu