[en] Freezing of gait (FOG), is associated with impairment of different cognitive functions. Previous studies hypothesized that FOG may be due to a loss of automaticity. Research question: To explore whether FOG is associated with impairment in cognitive functions, focusing on retrograde procedural memory, the memory responsible for the automatic, implicit stored procedures that have been acquired in earlier life stages. Methods: In this cross-sectional, case–control study, 288 people with typical Parkinson’s disease (PD) from the Luxembourg Parkinson’s Study were assigned to Freezers (FOG+) and non-Freezers (FOG−) based on the MDS-UPDRS 2.13 (self-reported FOG episodes) and 3.11 (FOG evaluated by clinicians during gait assessment). Both groups were matched on age, sex and disease duration. Global cognition (MoCA), retrograde procedural memory and visuo-constructive abilities (CUPRO), psychomotor speed and mental flexibility (TMT) were assessed. Furthermore, we repeated our analyses by additionally controlling for depression (BDI-I). Results: Besides lower global cognition (MoCA; p = 0.007) and mental flexibility (TMT-B and Delta-TMT; p < 0.001), FOG+ showed a lower performance in retrograde procedural memory (CUPRO-IS1; p < 0.001) compared to FOG−. After controlling additionally for depression, our main outcome variable CUPRO-IS1 remained significantly lower in FOG+ (p = 0.010). Conclusion: Our findings demonstrated that besides lower global cognition and mental flexibility scores, FOG+ showed lower performance in retrograde procedural memory compared to matched FOG-control patients, even when accounting for factors such as age, sex, disease duration or depression. Significance: In the context of limited treatment options, especially for non-invasive therapeutic approaches, these insights on procedural memory and FOG may lead to new hypotheses on FOG etiology and consequently the development of new treatment options.
Disciplines :
Public health, health care sciences & services Neurosciences & behavior Theoretical & cognitive psychology
LEIST, Anja ; University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > Department of Social Sciences (DSOC) > Socio-Economic Inequality
KRÜGER, Rejko ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Translational Neuroscience ; LIH - Luxembourg Institute of Health
External co-authors :
no
Language :
English
Title :
Retrograde procedural memory is impaired in people with Parkinson’s disease with freezing of gait
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Agostino R. (1996). Motor skill learning in Parkinson’s disease. J. Neurol. Sci. 139, 218–226. doi: 10.1016/0022-510X(96)00060-3
Allain H. Lieury A. Thomas V. Reymann J. M. Gandon J. M. Belliard S. (1995). Explicit and procedural memory in Parkinson’s disease. Biomed. Pharmacother. 49, 179–186. doi: 10.1016/0753-3322(96)82618-7, PMID: 7669937
Amboni M. Cozzolino A. Longo K. Picillo M. Barone P. (2007) Freezing of gait and executive functions in patients with Parkinson’s disease.
Aracil-Bolaños I. Sampedro F. Pujol J. Soriano-Mas C. Gónzalez-de-Echávarri J. M. Kulisevsky J. et al. (2021). The impact of dopaminergic treatment over cognitive networks in Parkinson’s disease: stemming the tide? Hum. Brain Mapp. 42, 5736–5746. doi: 10.1002/hbm.25650, PMID: 34510640
Beauchamp M. H. Dagher A. Panisset M. Doyon J. (2008). Neural substrates of cognitive skill learning in Parkinson’s disease. Brain Cogn. 68, 134–143. doi: 10.1016/j.bandc.2008.03.008, PMID: 18456379
Beck A. T. Ward C. H. Mendelson M. Mock J. Erbaugh J. (1961). An inventory for measuring depression. Arch. Gen. Psychiatry 4, 561–571. doi: 10.1001/archpsyc.1961.01710120031004
Cohen R. G. Klein K. A. Nomura M. Fleming M. Mancini M. Giladi N. et al. (2014). Inhibition, executive function, and freezing of gait. J. Parkinsons Dis. 4, 111–122. doi: 10.3233/JPD-130221, PMID: 24496099
Cohen H. Pourcher E. (2007). Intact encoding, impaired consolidation in procedural learning in Parkinson’s disease. Exp. Brain Res. 179, 703–708. doi: 10.1007/s00221-006-0827-6, PMID: 17279386
Crystal H. A. Grober E. Masur D. (1989). Preservation of musical memory in Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 52, 1415–1416. doi: 10.1136/jnnp.52.12.1415, PMID: 2614438
Doyon J. Bellec P. Amsel R. Penhune V. Monchi O. Carrier J. et al. (2009). Contributions of the basal ganglia and functionally related brain structures to motor learning. Behav. Brain Res. 199, 61–75. doi: 10.1016/j.bbr.2008.11.012
Dubois B. Burn D. Goetz C. Aarsland D. Brown R. G. Broe G. A. et al. (2007). Diagnostic procedures for Parkinson’s disease dementia: recommendations from the Movement Disorder Society task force. Mov. Disord. 22, 2314–2324. doi: 10.1002/mds.21844, PMID: 18098298
Ferraro F. R. Balota D. A. Connor L. T. (1993). Implicit memory and the formation of new associations in nondemented parkinson′s disease individuals and individuals with senile dementia of the alzheimer type: a serial reaction time (SRT) investigation. Brain Cogn. 21, 163–180. doi: 10.1006/brcg.1993.1013, PMID: 8442933
Frith C. D. Bloxham C. A. Carpenter K. N. (1986). Impairments in the learning and performance of a new manual skill in patients with Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 49, 661–668. doi: 10.1136/jnnp.49.6.661, PMID: 3734823
Gan Y. Xie H. Qin G. Wu D. Shan M. Hu T. et al. (2023). Association between cognitive impairment and freezing of gait in patients with Parkinson’s disease. J Clin Med 12. doi: 10.3390/jcm12082799, PMID: 37109137
Giladi N. (2008). Medical treatment of freezing of gait. Mov. Disord. 23, S482–S488. doi: 10.1002/mds.21914
Godefroy O. (2008). Fonctions exécutives et pathologies neurologiques et psychiatriques. France: De Boeck Supérieur SA.
Goetz C. G. Fahn S. Martinez-Martin P. Poewe W. Sampaio C. Stebbins G. T. et al. (2007). Movement disorder society-sponsored revision of the unified Parkinson’s disease rating scale (MDS-UPDRS): process, format, and clinimetric testing plan. Mov. Disord. 22, 41–47. doi: 10.1002/mds.21198, PMID: 17115387
Goetz C. G. Poewe W. Rascol O. Sampaio C. Stebbins G. T. Counsell C. et al. (2004). Movement Disorder Society task force report on the Hoehn and Yahr staging scale: status and recommendations. Mov. Disord. 19, 1020–1028. doi: 10.1002/mds.20213, PMID: 15372591
Hallett M. (2008). The intrinsic and extrinsic aspects of freezing of gait. Mov. Disord. 23, S439–S443. doi: 10.1002/mds.21836
Harrington D. L. Haaland K. Y. Yeo R. A. Marder E. (1990). Procedural memory in Parkinson’s disease: impaired motor but not visuoperceptual learning. J. Clin. Exp. Neuropsychol. 12, 323–339. doi: 10.1080/01688639008400978
Heindel W. C. Salmon D. P. Shults C. W. Walicke P. A. Butters N. (1989). Neuropsychological evidence for multiple implicit memory systems: a comparison of Alzheimer’s, Huntington’s, and Parkinson’s disease patients. J. Neurosci. 9, 582–587. doi: 10.1523/JNEUROSCI.09-02-00582.1989, PMID: 2521896
Heremans E. Nackaerts E. Vervoort G. Broeder S. Swinnen S. P. Nieuwboer A. (2016). Impaired retention of motor learning of writing skills in patients with Parkinson’s disease with freezing of gait. PLoS One 11:e0148933. doi: 10.1371/journal.pone.0148933, PMID: 26862915
Heremans E. Nieuwboer A. Vercruysse S. (2013). Freezing of gait in Parkinson’s disease: where are we now? vol. 13.
Hipp G. Vaillant M. Diederich N. J. Roomp K. Satagopam V. P. Banda P. et al. (2018). The Luxembourg Parkinson’s study: a comprehensive approach for stratification and early diagnosis. Front. Aging Neurosci. 10:326. doi: 10.3389/fnagi.2018.00326, PMID: 30420802
Hughes A. J. Daniel S. E. Kilford L. Lees A. J. (1992). Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatry 55, 181–184. doi: 10.1136/jnnp.55.3.181, PMID: 1564476
Jackson G. M. Jackson S. R. Harrison J. Henderson L. Kennard C. (1995). Serial reaction time learning and Parkinson’s disease: evidence for a procedural learning deficit. Neuropsychologia 33, 577–593. doi: 10.1016/0028-3932(95)00010-Z
Jenkinson C. Fitzpatrick R. Peto V. Greenhall R. Hyman N. (1997) The Parkinson’s disease questionnaire (PDQ-39): Development and validation of a Parkinson’s disease summary index score.
Jha M. Jhunjhunwala K. Sankara B. B. Saini J. Kumar J. K. Yadav R. et al. (2015). Neuropsychological and imaging profile of patients with Parkinson’s disease and freezing of gait. Parkinsonism Relat. Disord. 21, 1184–1190. doi: 10.1016/j.parkreldis.2015.08.009, PMID: 26305999
Jorm A. F. (1994). A short form of the informant questionnaire on cognitive decline in the elderly (IQCODE): development and cross-validation. Psychol. Med. 24, 145–153. doi: 10.1017/S003329170002691X, PMID: 8208879
Krebs H. I. Hogan N. Hening W. Adamovich S. V. Poizner H. (2001). Procedural motor learning in Parkinson’s disease. Exp. Brain Res. 141, 425–437. doi: 10.1007/s002210100871
Lehéricy S. Benali H. Van De Moortele P.-F. Pélégrini-Issac M. Waechter T. Ugurbil K. et al. (2005) Distinct basal ganglia territories are engaged in early and advanced motor sequence learning.
Lövdén M. Fratiglioni L. Glymour M. M. Lindenberger U. Tucker-Drob E. M. (2020). Education and cognitive functioning across the life span. Psychol. Sci. Public Interest 21, 6–41. doi: 10.1177/1529100620920576, PMID: 32772803
Macht M. Kaussner Y. Möller J. C. Stiasny-Kolster K. Eggert K. M. Krüger H. P. et al. (2007). Predictors of freezing in Parkinson’s disease: a survey of 6,620 patients. Mov. Disord. 22, 953–956. doi: 10.1002/mds.21458, PMID: 17377927
Mishkin M. Appenzeller T. (1987). The anatomy of memory. Sci. Am. 256, 80–89. doi: 10.1038/scientificamerican0687-80
Mochizuki-Kawai H. Kawamura M. Hasegawa Y. Mochizuki S. Oeda R. Yamanaka K. et al. (2004). Deficits in long-term retention of learned motor skills in patients with cortical or subcortical degeneration. Neuropsychologia 42, 1858–1863. doi: 10.1016/j.neuropsychologia.2004.03.012
Monaghan A. S. Gordon E. Graham L. Hughes E. Peterson D. S. Morris R. (2023). Cognition and freezing of gait in Parkinson’s disease: a systematic review and meta-analysis. Neurosci. Biobehav. Rev. 147:105068. doi: 10.1016/j.neubiorev.2023.105068, PMID: 36738813
Morris R. Smulders K. Peterson D. S. Mancini M. Carlson-Kuhta P. Nutt J. G. et al. (2020). Article cognitive function in people with and without freezing of gait in Parkinson’s disease.
Muslimović D. Post B. Speelman J. D. Schmand B. (2007). Motor procedural learning in Parkinson’s disease. Brain 130, 2887–2897. doi: 10.1093/brain/awm211
Nasreddine Z. S. Phillips N. A. Bedirian V. Charbonneau S. Whitehead V. Collin I. et al. (2005). The Montreal cognitive assessment, MoCA: A Brief Screening. J. Am. Geriatr. Soc. 53, 695–699. doi: 10.1111/j.1532-5415.2005.53221.x
Nutt J. G. Bloem B. R. Giladi N. Hallett M. Horak F. B. Nieuwboer A. (2011). Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurol. 10, 734–744. doi: 10.1016/S1474-4422(11)70143-0, PMID: 21777828
Pachchek S. Landoulsi Z. Pavelka L. Schulte C. Buena-Atienza E. Gross C. et al. (2023). Accurate long-read sequencing identified GBA1 as major risk factor in the Luxembourgish Parkinson’s study. npj Parkinsons Dis. 9:156. doi: 10.1038/s41531-023-00595-w
Panouillères M. T. N. Tofaris G. K. Brown P. Jenkinson N. (2016). Intact acquisition and short-term retention of non-motor procedural learning in Parkinson’s disease. PLoS One 11:e0149224. doi: 10.1371/journal.pone.0149224, PMID: 26906905
Pascual-Leone A. Grafman J. Clark K. Stewart M. Massaquoi S. Lou J.-S. et al. (1993). Procedural learning in Parkinson’s disease and cerebellar degeneration. Ann. Neurol. 34, 594–602. doi: 10.1002/ana.410340414, PMID: 8215247
Pauly L. Pauly C. Hansen M. Schröder V. E. Rauschenberger A. Leist A. K. et al. (2022). Retrograde procedural memory in Parkinson’s disease: a cross-sectional, case-control study. J. Parkinsons Dis. 12, 1013–1022. doi: 10.3233/JPD-213081, PMID: 35147550
Pendt L. K. Reuter I. Müller H. (2011). Motor skill learning, retention, and control deficits in Parkinson’s disease. PLoS One 6:e21669. doi: 10.1371/journal.pone.0021669, PMID: 21760898
Perez-Lloret S. Negre-Pages L. Damier P. Delval A. Derkinderen P. Destée A. et al. (2014). Prevalence, determinants, and effect on quality of life of freezing of gait in Parkinson disease. JAMA Neurol. 71, 884–890. doi: 10.1001/jamaneurol.2014.753, PMID: 24839938
Peterson D. S. King L. A. Cohen R. G. Horak F. B. (2016) Cognitive contributions to freezing of gait in Parkinson disease: Implications for physical rehabilitation.
Peto V. Jenkinson C. Fitzpatrick R. Greenhail R. (1995) The development and validation of a short measure of functioning and well being for individuals with Parkinson’s disease.
Pfeffer R. I. Kurosaki T. T. Harrah C. H. Chance J. M. Filos S. (1982). Measurement of functional activities in older adults in the community. J. Gerontol. 37, 323–329. doi: 10.1093/geronj/37.3.323
Roncacci S. Troisi E. Carlesimo G. A. Nocentini U. Caltagirone C. (1996). Implicit memory in parkinsonian patients: evidence for deficient skill learning. Eur. Neurol. 36, 154–159. doi: 10.1159/000117234
Saint-Cyr J. A. Taylor A. E. Lang A. E. (1988) Procedural learning and neostriatal dysfunction in man.
Sarazin M. Deweer B. Merkl A. Von Poser N. Pillon B. Dubois B. (2002). Procedural learning and striatofrontal dysfunction in Parkinson’s disease. Mov. Disord. 17, 265–273. doi: 10.1002/mds.10018, PMID: 11921111
Seidler R. D. Tuite P. Ashe J. (2007). Selective impairments in implicit learning in Parkinson’s disease. Brain Res. 1137, 104–110. doi: 10.1016/j.brainres.2006.12.057, PMID: 17239828
Shine J. M. Matar E. Ward P. B. Frank M. J. Moustafa A. A. Pearson M. et al. (2013). Freezing of gait in Parkinson’s disease is associated with functional decoupling between the cognitive control network and the basal ganglia. Brain 136, 3671–3681. doi: 10.1093/brain/awt272, PMID: 24142148
Sommer M. Grafman J. Clark K. Hallett M. (1999). Learning in Parkinson’s disease: Eyeblink conditioning, declarative learning, and procedural learning. Neurol. Neurosurg. Psychiatry 67, 27–34. doi: 10.1136/jnnp.67.1.27
Starkstein S. E. Mayberg H. S. Preziosi T. J. Andrezejewski P. Leiguarda R. Robinson R. G. et al. (1992). Reliability, validity, and clinical correlates of apathy in Parkinson’s disease. J. Neuropsychiatry Clin. Neurosci. 4, 134–139. doi: 10.1176/jnp.4.2.134, PMID: 1627973
Taximaimaiti R. Wang X. P. (2021). Comparing the clinical and neuropsychological characteristics of Parkinson’s disease with and without freezing of gait. Front. Neurosci. 15:660340. doi: 10.3389/fnins.2021.660340, PMID: 33986641
Thomas-Antérion C. Laurent B. Foyatier-Michel N. Michel D. Laporte S. (1996). Procedural memory: computer learning in control subjects and in Parkinson’s disease patients. Behav. Neurol. 9, 127–134. doi: 10.1155/1996/659269, PMID: 24487512
Tomlinson C. L. Stowe R. Patel S. Rick C. Gray R. Clarke C. E. (2010). Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov. Disord. 25, 2649–2653. doi: 10.1002/mds.23429, PMID: 21069833
Vakil E. Schwizer Ashkenazi S. Nevet-Perez M. Hassin-Baer S. (2021). Implicit sequence learning in individuals with Parkinson’s disease: the added value of using an ocular version of the serial reaction time (O-SRT) task. Brain Cogn. 147:105654. doi: 10.1016/j.bandc.2020.105654, PMID: 33246230
Van der Linden M. Seron X. (2014). Traité de neuropsychologie clinique de l’adulte: Tome 1 - Évaluation. Chapter 13 “L’évaluation de la mémoire procédurale” Thierry Meulemans (p.193) (FR).
Vandenbossche J. Deroost N. Soetens E. Coomans D. Spildooren J. Vercruysse S. et al. (2013a). Impaired implicit sequence learning in parkinson’s disease patients with freezing of gait. Neuropsychology 27, 28–36. doi: 10.1037/a0031278, PMID: 23356594
Vandenbossche J. Deroost N. Soetens E. Coomans D. Spildooren J. Vercruysse S. et al. (2013b). Freezing of gait in Parkinson’s disease: disturbances in automaticity and control. Front. Hum. Neurosci. 6, 1–19. doi: 10.3389/fnhum.2012.00356
Walton C. C. Mowszowski L. Gilat M. Hall J. M. O’Callaghan C. Muller A. J. et al. (2018). Cognitive training for freezing of gait in Parkinson’s disease: a randomized controlled trial. NPJ Parkinsons Dis 4:4. doi: 10.1038/s41531-018-0052-6
Walton C. C. Shine J. M. Hall J. M. O’callaghan C. Mowszowski L. Gilat M. et al. (2015) The major impact of freezing of gait on quality of life in Parkinson’s disease.
Wang C. Cai Y. Gu Z. Ma J. Zheng Z. Tang B. S. et al. (2014). Clinical profiles of Parkinson’s disease associated with common leucine-rich repeat kinase 2 and glucocerebrosidase genetic variants in Chinese individuals. Neurobiol. Aging 35, 725.e1–725.e6. doi: 10.1016/j.neurobiolaging.2013.08.012, PMID: 24095219
Westwater H. McDowall J. Siegert R. Mossman S. Abernethy D. (1998). Implicit learning in Parkinson’s disease: evidence from a verbal version of the serial reaction time task. J. Clin. Exp. Neuropsychol. 20, 413–418. doi: 10.1076/jcen.20.3.413.826, PMID: 9845167
Wu T. Liu J. Zhang H. Hallett M. Zheng Z. Chan P. (2015). Attention to automatic movements in Parkinson’s disease: modified automatic mode in the striatum. Cereb. Cortex 25, 3330–3342. doi: 10.1093/cercor/bhu135, PMID: 24925772
Zhang W. S. Gao C. Tan Y. Y. Di C. S. (2021). Prevalence of freezing of gait in Parkinson’s disease: a systematic review and meta-analysis. J. Neurol. 268, 4138–4150. doi: 10.1007/s00415-021-10685-5, PMID: 34236501
Similar publications
Sorry the service is unavailable at the moment. Please try again later.