Physics - Mesoscopic Systems and Quantum Hall Effect
Résumé :
[en] The topological nature of topological insulators are related to the
symmetries present in the material, for example, quantum spin Hall effect can
be observed in topological insulators with time reversal symmetry, while broken
time reversal symmetry may give rise to the presence of anomalous quantum Hall
effect (AHE). Here we consider the effects of broken rotational symmetry on the
Dirac cone of an AHE material by adding trigonal warping terms to the Dirac
Hamiltonian. We calculate the linear optical conductivity semi-analytically to
show how by breaking the rotational symmetry we can obtain a topologically
distinct phase. The addition of trigonal warping terms causes the emergence of
additional Dirac cones, which when combined has a total Chern number of $\mp 1$
instead of $\pm 1/2$. This results in drastic changes in the anomalous Hall and
longitudinal conductivity. The trigonal warping terms also activates the higher
order Hall responses which does not exist in a $\mathcal{R}$ symmetric
conventional Dirac material. We found the presence of a non-zero second order
Hall current even in the absence of Berry curvature dipole. This shift current
is also unaffected by the chirality of the Dirac cone, which should lead to a
non-zero Hall current in time reversal symmetric systems.
R. B. Laughlin, Quantized Hall conductivity in two dimensions, Phys. Rev. B 23, 5632 (1981) 0163-1829 10.1103/PhysRevB.23.5632.
F. D. M. Haldane, Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the "Parity Anomaly", Phys. Rev. Lett. 61, 2015 (1988) 0031-9007 10.1103/PhysRevLett.61.2015.
X.-L. Qi and S.-C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83, 1057 (2011) 0034-6861 10.1103/RevModPhys.83.1057.
D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall Conductance in a Two-Dimensional Periodic Potential, Phys. Rev. Lett. 49, 405 (1982) 0031-9007 10.1103/PhysRevLett.49.405.
X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Topological field theory of time-reversal invariant insulators, Phys. Rev. B 78, 195424 (2008) 1098-0121 10.1103/PhysRevB.78.195424.
D. Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys. 82, 1959 (2010) 0034-6861 10.1103/RevModPhys.82.1959.
B. Bernevig and T. Hughes, Topological Insulators and Topological Semiconductors, 1st ed. (Princeton University Press, Princeton, NJ, 2013).
S. Yang, Z.-C. Gu, K. Sun, and S. Das Sarma, Topological flat band models with arbitrary Chern numbers, Phys. Rev. B 86, 241112 (R) (2012) 1098-0121 10.1103/PhysRevB.86.241112.
Y.-F. Zhao, R. Zhang, R. Mei, L.-J. Zhou, H. Yi, Y.-Q. Zhang, J. Yu, R. Xiao, K. Wang, N. Samarth, M. H. W. Chan, C.-X. Liu, and C.-Z. Chang, Tuning the Chern number in quantum anomalous Hall insulators, Nature (London) 588, 419 (2020) 0028-0836 10.1038/s41586-020-3020-3.
E. H. Hasdeo, A. J. Frenzel, and J. C. W. Song, Cyclotron motion without magnetic field, New J. Phys. 21, 083026 (2019) 1367-2630 10.1088/1367-2630/ab351c.
Y. Tokura, K. Yasuda, and A. Tsukazaki, Magnetic topological insulators, Nat. Rev. Phys. 1, 126 (2019) 2522-5820 10.1038/s42254-018-0011-5.
I. Sodemann and L. Fu, Quantum Nonlinear Hall Effect Induced by Berry Curvature Dipole in Time-Reversal Invariant Materials, Phys. Rev. Lett. 115, 216806 (2015) 0031-9007 10.1103/PhysRevLett.115.216806.
S. Nandy and I. Sodemann, Symmetry and quantum kinetics of the nonlinear Hall effect, Phys. Rev. B 100, 195117 (2019) 2469-9950 10.1103/PhysRevB.100.195117.
A. Taghizadeh and T. G. Pedersen, Nonlinear excitonic spin Hall effect in monolayer transition metal dichalcogenides, 2D Mater. 7, 015003 (2019) 2053-1583 10.1088/2053-1583/ab4171.
R. Battilomo, N. Scopigno, and C. Ortix, Berry Curvature Dipole in Strained Graphene: A Fermi Surface Warping Effect, Phys. Rev. Lett. 123, 196403 (2019) 0031-9007 10.1103/PhysRevLett.123.196403.
O. Matsyshyn and I. Sodemann, Nonlinear Hall Acceleration and the Quantum Rectification Sum Rule, Phys. Rev. Lett. 123, 246602 (2019) 0031-9007 10.1103/PhysRevLett.123.246602.
P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, SciPy 1.0: Fundamental algorithms for scientific computing in Python, Nat. Methods 17, 261 (2020) 1548-7091 10.1038/s41592-019-0686-2.
D. Sticlet and F. Piéchon, Distant-neighbor hopping in graphene and Haldane models, Phys. Rev. B 87, 115402 (2013) 1098-0121 10.1103/PhysRevB.87.115402.
L. Li, X. Kong, X. Chen, J. Li, B. Sanyal, and F. M. Peeters, Monolayer 1T-(Equation presented): Dirac spin-gapless semiconductor of (Equation presented)-state and Chern insulator with a high Chern number, Appl. Phys. Lett. 117, 143101 (2020) 0003-6951 10.1063/5.0023531.
F. Hipolito, T. G. Pedersen, and V. M. Pereira, Nonlinear photocurrents in two-dimensional systems based on graphene and boron nitride, Phys. Rev. B 94, 045434 (2016) 2469-9950 10.1103/PhysRevB.94.045434.
F. R. Pratama, M. S. Ukhtary, and R. Saito, Circular dichroism and Faraday and Kerr rotation in two-dimensional materials with intrinsic Hall conductivities, Phys. Rev. B 101, 045426 (2020) 2469-9950 10.1103/PhysRevB.101.045426.
H. Rostami and M. Polini, Nonlinear anomalous photocurrents in Weyl semimetals, Phys. Rev. B 97, 195151 (2018) 2469-9950 10.1103/PhysRevB.97.195151.
J. E. Sipe and A. I. Shkrebtii, Second-order optical response in semiconductors, Phys. Rev. B 61, 5337 (2000) 0163-1829 10.1103/PhysRevB.61.5337.
N. A. Sinitsyn, Q. Niu, and A. H. MacDonald, Coordinate shift in the semiclassical Boltzmann equation and the anomalous Hall effect, Phys. Rev. B 73, 075318 (2006) 1098-0121 10.1103/PhysRevB.73.075318.
J. Ahn, G.-Y. Guo, and N. Nagaosa, Low-Frequency Divergence and Quantum Geometry of the Bulk Photovoltaic Effect in Topological Semimetals, Phys. Rev. X 10, 041041 (2020) 2160-3308 10.1103/PhysRevX.10.041041.
L.-K. Shi, D. Zhang, K. Chang, and J. C. W. Song, Geometric Photon-Drag Effect and Nonlinear Shift Current in Centrosymmetric Crystals, Phys. Rev. Lett. 126, 197402 (2021) 0031-9007 10.1103/PhysRevLett.126.197402.
H. Watanabe and Y. Yanase, Chiral Photocurrent in Parity-Violating Magnet and Enhanced Response in Topological Antiferromagnet, Phys. Rev. X 11, 011001 (2021) 2160-3308 10.1103/PhysRevX.11.011001.
A. Kormányos, V. Zólyomi, N. D. Drummond, P. Rakyta, G. Burkard, and V. I. Fal'ko, Monolayer (Equation presented): Trigonal warping, the (Equation presented) valley, and spin-orbit coupling effects, Phys. Rev. B 88, 045416 (2013) 1098-0121 10.1103/PhysRevB.88.045416.
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, Quantum Espresso: A modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter 21, 395502 (2009) 0953-8984 10.1088/0953-8984/21/39/395502.
A. M. Schankler, L. Gao, and A. M. Rappe, Large bulk piezophotovoltaic effect of monolayer (Equation presented), J. Phys. Chem. Lett. 12, 1244 (2021) 1948-7185 10.1021/acs.jpclett.0c03503.
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996) 0031-9007 10.1103/PhysRevLett.77.3865.
D. R. Hamann, Optimized norm-conserving Vanderbilt pseudopotentials, Phys. Rev. B 88, 085117 (2013) 1098-0121 10.1103/PhysRevB.88.085117.
N. Marzari and D. Vanderbilt, Maximally localized generalized Wannier functions for composite energy bands, Phys. Rev. B 56, 12847 (1997) 0163-1829 10.1103/PhysRevB.56.12847.
I. Souza, N. Marzari, and D. Vanderbilt, Maximally localized Wannier functions for entangled energy bands, Phys. Rev. B 65, 035109 (2001) 0163-1829 10.1103/PhysRevB.65.035109.
A. A. Mostofi, J. R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, Wannier90: A tool for obtaining maximally-localised Wannier functions, Comput. Phys. Commun. 178, 685 (2008) 0010-4655 10.1016/j.cpc.2007.11.016.
J. Ibañez-Azpiroz, S. S. Tsirkin, and I. Souza, Ab initio calculation of the shift photocurrent by Wannier interpolation, Phys. Rev. B 97, 245143 (2018) 2469-9950 10.1103/PhysRevB.97.245143.