MAREHALLI SRINIVAS, Shesha Gopal ; University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Physics and Materials Science
POLETTINI, Matteo ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
ESPOSITO, Massimiliano ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
AVANZINI, Francesco ; University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Physics and Materials Science > Team Massimiliano ESPOSITO
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Deficiency, kinetic invertibility, and catalysis in stochastic chemical reaction networks
X. Yang, M. Heinemann, J. Howard, G. Huber, S. Iyer-Biswas, G. L. Treut, M. Lynch, K. L. Montooth, D. J. Needleman, S. Pigolotti, J. Rodenfels, P. Ronceray, S. Shankar, I. Tavassoly, S. Thutupalli, D. V. Titov, J. Wang, and P. J. Foster, "Physical bioenergetics: Energy fluxes, budgets, and constraints in cells," Proc. Natl. Acad. Sci. U. S. A. 118, e2026786118 (2021). 10.1073/pnas.2026786118
G. Ashkenasy, T. M. Hermans, S. Otto, and A. F. Taylor, "Systems chemistry," Chem. Soc. Rev. 46, 2543-2554 (2017). 10.1039/c7cs00117g
B. N. Kholodenko, "Cell-signalling dynamics in time and space," Nat. Rev. Mol. Cell Biol. 7, 165-176 (2006). 10.1038/nrm1838
B. Novák and J. J. Tyson, "Design principles of biochemical oscillators," Nat. Rev. Mol. Cell Biol. 9, 981-991 (2008). 10.1038/nrm2530
D. Segré, D. Ben-Eli, D. W. Deamer, and D. Lancet, "The lipid world," Origins Life Evol. Biospheres 31, 119-145 (2001). 10.1023/a:1006746807104
A. J. Bissette and S. P. Fletcher, "Mechanisms of autocatalysis," Angew. Chem., Int. Ed. 52, 12800-12826 (2013). 10.1002/anie.201303822
D. Lancet, R. Zidovetzki, and O. Markovitch, "Systems protobiology: Origin of life in lipid catalytic networks," J. R. Soc., Interface 15, 20180159 (2018). 10.1098/rsif.2018.0159
S. A. P. van Rossum, M. Tena-Solsona, J. H. van Esch, R. Eelkema, and J. Boekhoven, "Dissipative out-of-equilibrium assembly of man-made supramolecular materials," Chem. Soc. Rev. 46, 5519-5535 (2017). 10.1039/c7cs00246g
G. Ragazzon and L. J. Prins, "Energy consumption in chemical fuel-driven self-assembly," Nat. Nanotechnol. 13, 882-889 (2018). 10.1038/s41565-018-0250-8
E. R. Kay, D. A. Leigh, and F. Zerbetto, "Synthetic molecular motors and mechanical machines," Angew. Chem., Int. Ed. 46, 72-191 (2007). 10.1002/anie.200504313
S. Erbas-Cakmak, D. A. Leigh, C. T. McTernan, and A. L. Nussbaumer, "Artificial molecular machines," Chem. Rev. 115, 10081-10206 (2015). 10.1021/acs.chemrev.5b00146
M. Esposito, "Open questions on nonequilibrium thermodynamics of chemical reaction networks," Commun. Chem. 3, 107 (2020). 10.1038/s42004-020-00344-7
P. Gaspard, "Fluctuation theorem for nonequilibrium reactions," J. Chem. Phys. 120, 8898-8905 (2004). 10.1063/1.1688758
T. Schmiedl and U. Seifert, "Stochastic thermodynamics of chemical reaction networks," J. Chem. Phys. 126, 044101 (2007). 10.1063/1.2428297
R. Rao and M. Esposito, "Conservation laws and work fluctuation relations in chemical reaction networks," J. Chem. Phys. 149, 245101 (2018). 10.1063/1.5042253
H. Qian and D. A. Beard, "Thermodynamics of stoichiometric biochemical networks in living systems far from equilibrium," Biophys. Chem. 114, 213-220 (2005). 10.1016/j.bpc.2004.12.001
R. Rao and M. Esposito, "Nonequilibrium thermodynamics of chemical reaction networks: Wisdom from stochastic thermodynamics," Phys. Rev. X 6, 041064 (2016). 10.1103/physrevx.6.041064
F. Avanzini, E. Penocchio, G. Falasco, and M. Esposito, "Nonequilibrium thermodynamics of non-ideal chemical reaction networks," J. Chem. Phys. 154, 094114 (2021). 10.1063/5.0041225
F. Avanzini and M. Esposito, "Thermodynamics of concentration vs flux control in chemical reaction networks," J. Chem. Phys. 156, 014116 (2022). 10.1063/5.0076134
L. Oberreiter, U. Seifert, and A. C. Barato, "Universal minimal cost of coherent biochemical oscillations," Phys. Rev. E 106, 014106 (2022). 10.1103/PhysRevE.106.014106
E. Penocchio, R. Rao, and M. Esposito, "Thermodynamic efficiency in dissipative chemistry," Nat. Commun. 10, 3865 (2019). 10.1038/s41467-019-11676-x
A. Wachtel, R. Rao, and M. Esposito, "Free-energy transduction in chemical reaction networks: From enzymes to metabolism," J. Chem. Phys. 157, 024109 (2022). 10.1063/5.0091035
E. Penocchio, F. Avanzini, and M. Esposito, "Information thermodynamics for deterministic chemical reaction networks," J. Chem. Phys. 157, 034110 (2022). 10.1063/5.0094849
K. Yoshimura and S. Ito, "Information geometric inequalities of chemical thermodynamics," Phys. Rev. Res. 3, 013175 (2021). 10.1103/physrevresearch.3.013175
K. Yoshimura and S. Ito, "Thermodynamic uncertainty relation and thermodynamic speed limit in deterministic chemical reaction networks," Phys. Rev. Lett. 127, 160601 (2021). 10.1103/physrevlett.127.160601
B. Altaner, A. Wachtel, and J. Vollmer, "Fluctuating currents in stochastic thermodynamics. II. Energy conversion and nonequilibrium response in kinesin models," Phys. Rev. E 92, 042133 (2015). 10.1103/PhysRevE.92.042133
G. Falasco, T. Cossetto, E. Penocchio, and M. Esposito, "Negative differential response in chemical reactions," New J. Phys. 21, 073005 (2019). 10.1088/1367-2630/ab28be
M. Samoilov, A. Arkin, and J. Ross, "Signal processing by simple chemical systems," J. Phys. Chem. A 106, 10205-10221 (2002). 10.1021/jp025846z
D. Forastiere, G. Falasco, and M. Esposito, "Strong current response to slow modulation: A metabolic case-study," J. Chem. Phys. 152, 134101 (2020). 10.1063/1.5143197
J. H. Fritz, B. Nguyen, and U. Seifert, "Stochastic thermodynamics of chemical reactions coupled to finite reservoirs: A case study for the Brusselator," J. Chem. Phys. 152, 235101 (2020). 10.1063/5.0006115
P. Gaspard, "Stochastic approach to entropy production in chemical chaos," Chaos 30, 113103 (2020). 10.1063/5.0025350
J. G. Kemeny, J. L. Snell, and A. W. Knapp, Denumerable Markov Chains, 2nd ed. (Springer, New York, 1976).
J. R. Norris, Markov Chains (Cambridge University Press, 1997).
G. E. Crooks, "Path-ensemble averages in systems driven far from equilibrium," Phys. Rev. E 61, 2361-2366 (2000). 10.1103/physreve.61.2361
V. Y. Chernyak, M. Chertkov, and C. Jarzynski, "Path-integral analysis of fluctuation theorems for general Langevin processes," J. Stat. Mech.: Theory Exp. 2006, P08001. 10.1088/1742-5468/2006/08/p08001
M. Esposito and C. Van den Broeck, "Three detailed fluctuation theorems," Phys. Rev. Lett. 104, 090601 (2010). 10.1103/PhysRevLett.104.090601
D. F. Anderson, G. Craciun, and T. G. Kurtz, "Product-form stationary distributions for deficiency zero chemical reaction networks," Bull. Math. Biol. 72, 1947-1970 (2010). 10.1007/s11538-010-9517-4
D. Cappelletti and C. Wiuf, "Product-form Poisson-like distributions and complex balanced reaction systems," SIAM J. Appl. Math. 76, 411-432 (2016). 10.1137/15M1029916
M. Polettini, A. Wachtel, and M. Esposito, "Dissipation in noisy chemical networks: The role of deficiency," J. Chem. Phys. 143, 184103 (2015). 10.1063/1.4935064
A. D. McNaught and A. Wilkinson, IUPAC Compendium of Chemical Terminology ("The Gold Book") (Blackwell Scientific, Oxford, United Kingdom, 2009).
A. Blokhuis, D. Lacoste, and P. Nghe, "Universal motifs and the diversity of autocatalytic systems," Proc. Natl. Acad. Sci. U. S. A. 117, 25230-25236 (2020). 10.1073/pnas.2013527117
S. Dal Cengio, V. Lecomte, and M. Polettini, "Geometry of nonequilibrium reaction networks," Phys. Rev. X (in press) (2022); arXiv:2208.01290.
D. A. McQuarrie, "Stochastic approach to chemical kinetics," J. Appl. Probab. 4, 413-478 (1967). 10.1017/s002190020002547x
D. T. Gillespie, "A rigorous derivation of the chemical master equation," Physica A 188, 404-425 (1992). 10.1016/0378-4371(92)90283-v
The law of mass-action is satisfied for elementary reactions in ideal dilute solutions, that is, chemical species are noninteracting and there is a species, called the solvent, which is not involved in the chemical reactions and is much more abundant than all the other species. If reactions are not elementary or the chemical species interact, reaction rates might not satisfy the law of mass-action. In this work, we consider only elementary reactions in ideal dilute solutions.
J. Schnakenberg, "Network theory of microscopic and macroscopic behavior of master equation systems," Rev. Mod. Phys. 48, 571-585 (1976). 10.1103/revmodphys.48.571
S. Schuster and R. Schuster, "A generalization of Wegscheider's condition. implications for properties of steady states and for quasi-steady-state approximation," J. Math. Chem. 3, 25-42 (1989). 10.1007/bf01171883
The kinetic non-invertibility of catalytic CRNs implies that there are no kinetic constants that can generate the dual process, where the net steady-state currents of all reactions are inverted. However, this does not exclude that the net steady-state currents of some specific reactions (e.g., the reaction producing a desired species) can be inverted in catalytic CRNs by controlling the kinetic constants.
N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland Personal Library, Elsevier Science, 2011).