Abstract :
[en] Geophysical flows like rock–ice avalanches have high mobility and destructive potential, causing global loss of life and property. Water, often from melted ice, significantly impacts their mobility. Experimental investigations of debris friction in a rotating drum with melting ice show reduced friction due to water. However, experimental limitations hinder extensive testing. Employing a numerical model can overcome this, facilitating the study of various scenarios in understanding such calamitous geophysical flows. In the current work, we numerically replicate the rotating drum experiment using Eulerian–Lagrangian CFD–DEM coupling. We focus on the initial and final states, considering a
30% gravel and 70% ice mixture (B12-070 ). We don’t model the ice melting; rather, we inject equivalent water over time. Our simulation captures changes in the frictional behavior of the gravel bulk and flow height profile, closely aligning with experimental observations.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Geological, petroleum & mining engineering
Computer science
Scopus citations®
without self-citations
0