Article (Périodiques scientifiques)
The 1st International Workshop on Human-in-the-Loop Applied Machine Learning (HITLAML)
YILMA, Bereket Abera; Surafel M. Lakew; Yogesh Virkar et al.
2023In Human-in-the-Loop Applied Machine Learning (HITLAML)
Peer reviewed
 

Documents


Texte intégral
HITLAML23.pdf
Postprint Éditeur (399.28 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
CCS Concepts: • Computing methodologies → Machine learning algorithms; Machine learning approaches; Learning paradigms; Artificial intelligence; • Human-centered computing → HCI design and evaluation methods; Interactive systems and tools Interactive Machine Learning; Human-centered Artificial Intelligence; Adaptation; Personalization
Résumé :
[en] Recent advances in applied Machine Learning (ML) are increasingly involving humans, in data processing, model training, inference, and system design and practical application areas. Improving model predictions, and creating a seamless interaction between humans and ML systems are the two main reasons for Human-in-the-Loop applied ML (HITLAML). For instance, ML models are deployed for designing conversational agents (CA), Adaptive User Interfaces (AUI) and diverse Human-computer interaction (HCI) applications. ML research, particularly Computer Vision (CV) and Natural Language Processing (NLP) have enjoyed enormous success over the past decade. Advances in NLP have shown great relevance for various downstream tasks such as language generation, personalisation and recommender systems. Similarly autonomous vehicles, medical imaging, facial recognition, pose tracking and interactive entertainment are among the areas where cross-domain adoption of CV has gained momentum. This interdisciplinary workshop aims to put a spotlight on recent advances and practical applications of ML involving humans. The workshop calls participants for submissions on topics including, human-in-the-loop NLP, CV, HCI, and other practical applications of ML such as recommender systems, and personalization.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
YILMA, Bereket Abera  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
Surafel M. Lakew;  AWS AI Labs
Yogesh Virkar;  AWS AI Labs
Alina Karakanta;  Leiden University [NL]
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
The 1st International Workshop on Human-in-the-Loop Applied Machine Learning (HITLAML)
Date de publication/diffusion :
04 septembre 2023
Titre du périodique :
Human-in-the-Loop Applied Machine Learning (HITLAML)
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
URL complémentaire :
Organisme subsidiant :
FNR - Luxembourg National Research Fund
N° du Fonds :
17937294
Disponible sur ORBilu :
depuis le 02 janvier 2024

Statistiques


Nombre de vues
145 (dont 9 Unilu)
Nombre de téléchargements
120 (dont 7 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu