Article (Périodiques scientifiques)
LaF: Labeling-free Model Selection for Automated Deep Neural Network Reusing
HU, Qiang; GUO, Yuejun; Xie, Xiaofei et al.
2024In ACM Transactions on Software Engineering and Methodology, 33 (1), p. 1-28
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
3611666.pdf
Postprint Auteur (1.83 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Software
Résumé :
[en] Applying deep learning (DL) to science is a new trend in recent years, which leads DL engineering to become an important problem. Although training data preparation, model architecture design, and model training are the normal processes to build DL models, all of them are complex and costly. Therefore, reusing the open-sourced pre-trained model is a practical way to bypass this hurdle for developers. Given a specific task, developers can collect massive pre-trained deep neural networks from public sources for reusing. However, testing the performance (e.g., accuracy and robustness) of multiple deep neural networks (DNNs) and recommending which model should be used is challenging regarding the scarcity of labeled data and the demand for domain expertise. In this article, we propose a labeling-free (LaF) model selection approach to overcome the limitations of labeling efforts for automated model reusing. The main idea is to statistically learn a Bayesian model to infer the models’ specialty only based on predicted labels. We evaluate LaF using nine benchmark datasets, including image, text, and source code, and 165 DNNs, considering both the accuracy and robustness of models. The experimental results demonstrate that LaF outperforms the baseline methods by up to 0.74 and 0.53 on Spearman’s correlation and Kendall’s τ, respectively.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
HU, Qiang  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SerVal
GUO, Yuejun  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust > SerVal > Team Yves LE TRAON ; Luxembourg Institute of Science and Technology, Luxembourg
Xie, Xiaofei ;  Singapore Management University, Singapore
CORDY, Maxime  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SerVal
PAPADAKIS, Mike  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SerVal
Le Traon, Yves ;  University of Luxembourg, Luxembourg
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
LaF: Labeling-free Model Selection for Automated Deep Neural Network Reusing
Date de publication/diffusion :
janvier 2024
Titre du périodique :
ACM Transactions on Software Engineering and Methodology
ISSN :
1049-331X
Maison d'édition :
Association for Computing Machinery (ACM)
Volume/Tome :
33
Fascicule/Saison :
1
Pagination :
1-28
Peer reviewed :
Peer reviewed vérifié par ORBi
Organisme subsidiant :
Luxembourg National Research Funds
Disponible sur ORBilu :
depuis le 29 décembre 2023

Statistiques


Nombre de vues
93 (dont 1 Unilu)
Nombre de téléchargements
46 (dont 0 Unilu)

citations Scopus®
 
3
citations Scopus®
sans auto-citations
0
OpenCitations
 
1
citations OpenAlex
 
3

Bibliographie


Publications similaires



Contacter ORBilu