data-driven and model-based approaches; fault detection and diagnosis; fault-tolerant control; robustness and reliability; signal-based schemes; wind turbine; Control of wind turbines; Data driven; Data-driven and model-based approach; Fault detection and diagnosis; Faults diagnosis; Faults tolerant controls; Model based approach; Renewable power generation; Robustness and reliability; Signal-based scheme; Renewable Energy, Sustainability and the Environment; Building and Construction; Fuel Technology; Engineering (miscellaneous); Energy Engineering and Power Technology; Energy (miscellaneous); Control and Optimization; Electrical and Electronic Engineering
Résumé :
[en] Wind turbines are playing an increasingly important role in renewable power generation. Their complex and large-scale structure, however, and operation in remote locations with harsh environmental conditions and highly variable stochastic loads make fault occurrence inevitable. Early detection and location of faults are vital for maintaining a high degree of availability and reducing maintenance costs. Hence, the deployment of algorithms capable of continuously monitoring and diagnosing potential faults and mitigating their effects before they evolve into failures is crucial. Fault diagnosis and fault tolerant control designs have been the subject of intensive research in the past decades. Significant progress has been made and several methods and control algorithms have been proposed in the literature. This paper provides an overview of the most recent fault diagnosis and fault tolerant control techniques for wind turbines. Following a brief discussion of the typical faults, the most commonly used model-based, data-driven and signal-based approaches are discussed. Passive and active fault tolerant control approaches are also highlighted and relevant publications are discussed. Future development tendencies in fault diagnosis and fault tolerant control of wind turbines are also briefly stated. The paper is written in a tutorial manner to provide a comprehensive overview of this research topic.
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
Fekih, Afef ; Electrical and Computer Engineering Department, University of Louisiana at Lafayette, Lafayette, United States
HABIBI, Hamed ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Automation
Simani, Silvio ; Department of Engineering, University of Ferrara, Ferrara, Italy
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Fault Diagnosis and Fault Tolerant Control of Wind Turbines: An Overview
World Wind Energy Association Available online: https://gwec.net/gwec-forecasts-817-gw-of-wind-power-in-2021 (accessed on 2 June 2022)
Richard C. Solar PV to Overtake Wind by 2023, Wind Power Monthly 2019 Available online: https://www.windpowermonthly.com/article/1525730/solar-pv-overtake-wind-2023 (accessed on 12 July 2022)
Verbruggen T. Wind turbine operation & maintenance based on condition monitoring ECN Wind Energy Technical Report ECN-C-03-047; ECN Petten, The Netherlands 2003
McMillan D. Ault G. Quantification of condition monitoring benefit for offshore wind turbines Wind. Energy 2007 31 267 285 10.1260/030952407783123060
Walford C. Wind Turbine Reliability: Understanding and Minimizing Wind Turbine Operation and Maintenance Costs Sandia Report Sandia Sandia National Laboratories (SNL) Albuquerque, NM, USA Livermore, CA, USA 2006 2006 2110
Echivarria E. Van Bussel G. Hahn B. Tomiyama T. Reliability of Wind Turbine Technology Through Time J. Sol. Eng. 2008 130 031005 10.1115/1.2936235
Vidal Y. Tutivén C. Rodellar J. Acho L. Fault diagnosis and fault-tolerant control of wind turbines via a discrete time controller with a disturbance compensator Energies 2015 8 4300 4316 10.3390/en8054300
Badihi H. Zhang Y. Jiang B. Pillay P. Rakheja S. A comprehensive review on signal-based and model-based condition monitoring of wind turbines: Fault diagnosis and life prognosis Proc. IEEE 2022 110 754 806 10.1109/JPROC.2022.3171691
Habibi H. Howard I. Simani S. Reliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: A review Renew. Energy 2019 135 877 896 10.1016/j.renene.2018.12.066
Blanke M. Kinnaert M. Lunze J. Staroswiecki M. Diagnosis and Fault Tolerant Control 3rd ed. Springer Berlin/Heidelberg, Germany 2016
Odgaard P.F. Stoustrup J. Kinnaert M. Fault Tolerant Control of Wind Turbines Benchmark Model Proceedings of the IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes Barcelona, Spain 30 June–3 July 2009 155 160
Odgaard P.F. Stoustrup J. Kinnaert M. Fault Tolerant Control of Wind Turbines: A Benchmark Model IEEE Trans. Control Syst. Technol. 2013 21 1168 1182 10.1109/TCST.2013.2259235
Dobrila C. Stefansen R. Fault Tolerant Wind Turbine Control Master’s Thesis Technical University of Denmark Kongens Lyngby, Denmark 2007
Karimi S. Gaillard A. Poure P. Saadate S. Current sensor fault-tolerant control for WECS with DFIG IEEE Trans. Ind. Electron. 2009 56 4660 4670 10.1109/TIE.2009.2031193
Parker M.A. Ng C. Ran L. Fault-tolerant control for a modular generator–converter scheme for direct-drive wind turbines IEEE Trans. Ind. Electron. 2011 58 305 315 10.1109/TIE.2010.2045318
Sloth C. Esbensen T. Stoustrup J. Active and passive fault-tolerant LPV control of wind turbines Proceedings of the American Control Conference, Marriott Waterfront Baltimore, MD, USA 30 June–2 July 2010 4640 4646
Sloth C. Esbensen T. Stoustrup J. Robust and fault-tolerant linear parameter-varying control of wind turbines Mechatronics 2011 21 645 659 10.1016/j.mechatronics.2011.02.001
Gao Z. Liu X. An Overview on Fault Diagnosis, Prognosis and Resilient Control for Wind Turbine Systems Processes 2021 9 300 10.3390/pr9020300
Ghane M. Rasekhi Nejad A. Blanke M. Gao Z. Moan T. Diagnostic monitoring of drivetrain in a 5 MW spar-type floating wind turbine using Hilbert spectral analysis Energy Procedia 2017 137 204 213 10.1016/j.egypro.2017.10.374
Laouti N. Sheibat-Othman N. Othman S. Support vector machines for fault detection in wind turbines Proceedings of the IFAC World Congress Milano, Italy 28 August–2 September 2011 7067 7707
Odgaard P.F. Stoustrup J. Gear-box fault detection using time frequency-based methods Annu. Rev. Control 2015 40 50 58 10.1016/j.arcontrol.2015.09.004
Barszcz T. Vibration-Based Condition Monitoring of Wind Turbines Springer Berlin/Heidelberg, Germany 2019
Guo P. Infield D. Yang X. Wind turbine generator condition monitoring using temperature trend analysis IEEE Trans. Sustain. Energy 2012 3 124 133 10.1109/TSTE.2011.2163430
Santos P. Villa L.F. Renones A. Bustillo A. Maudes J. Wind turbines fault diagnosis using ensemble classifiers Proceedings of the 12th Industrial Conference on Advances in Data Mining: Applications and Theoretical Aspects Berlin, Germany 13–20 July 2012 67 76
Qiao W. Lu D. A survey on wind turbine condition monitoring and fault diagnosis—Part I: Components and systems IEEE Trans. Ind. Electron. 2015 62 6536 6545 10.1109/TIE.2015.2422112
Qiao W. Lu D. A survey on wind turbine condition monitoring and fault diagnosis—Part II: Signals and signal processing methods IEEE Trans. Ind. Electron. 2015 62 6546 6557 10.1109/TIE.2015.2422394
Chaari M. Fekih A. Seibi A. Current state of wind turbine’s health monitoring Proceedings of the IEEE Green Technology Conference Lafayette, LA, USA 3–6 April 2019 1 6
Márquez F.P.G. Tobias M. Perez J.M.P. Papaelias M. Condition monitoring of wind turbines: Techniques and methods Renew. Energy 2012 46 169 178 10.1016/j.renene.2012.03.003
Li W. Zhang S. Rakheja S. Feature denoising and nearest-farthest distance preserving projection for machine fault diagnosis IEEE Trans. Ind. Inform. 2016 12 393 404 10.1109/TII.2015.2475219
Adams D. White J. Rumsey M. Farrar C. Structural health monitoring of wind turbines: Method and application to a HAWT Wind Energy 2011 14 603 623 10.1002/we.437
Gangsar P. Tiwari R. Signal based condition monitoring techniques for fault detection and diagnosis of induction motors: A state-of-the art review Mech. Syst. Signal Process. 2020 144 106908 10.1016/j.ymssp.2020.106908
Zhang C. Mousavi A. Masri S. Gholipour G. Yan K. Li X. Vibration feature extraction using signal processing techniques for structural health monitoring: A review Mech. Syst. Signal Process. 2022 177 109175 10.1016/j.ymssp.2022.109175
Ding S. Model-Based Fault Diagnosis Techniques. Design Schemes, Algorithms and Tools Springer Berlin/Heidelberg, Germany 2013
Noshirvani G. Askari J. Fekih A. A Robust Fault Detection and Isolation Filter for the Pitch System of a Variable Speed Wind Turbine Int. J. Electr. Eng. Syst. 2018 28 e2625 10.1002/etep.2625
Ziyabari S. Shoorehdeli A. Karimirad M. Robust fault estimation of a blade pitch and drivetrain system in wind turbine model J. Vib. Control 2021 27 277 294 10.1177/1077546320926274
Habibi H. Howard I. Simani S. Fekih A. Decoupling adaptive sliding mode observer design for wind turbines subject to simultaneous faults in sensors and actuators IEEE/CCA Autom. Sin. 2021 8 837 847 10.1109/JAS.2021.1003931
Blesa J. Puig V. Saludes J. Fernández-Cantí R.M. Set-membership parity space approach for fault detection in linear uncertain dynamic systems Int. J. Adapt. Control Signal Process. 2016 30 186 205 10.1002/acs.2476
Idrissi I. Bachtiri R. Chafouk H. A Bank of Kalman Filters for Current Sensors Faults Detection and Isolation of DFIG for Wind Turbine Proceedings of the International Renewable and Sustainable Energy Conference Tangier, Morocco 4–7 December 2017 1 6
Cho S. Cho M. Gao Z. Moan T. Fault detection and diagnosis of a blade pitch system in a floating wind turbine based on Kalman filters and artificial neural networks Renew. Energy 2021 169 1 13 10.1016/j.renene.2020.12.116
Sanchez H. Escobet T. Puig V. Odgaard P. Fault diagnosis of an advanced wind turbine benchmark using interval-based ARRs and observers IEEE Trans. Ind. Electron. 2015 62 3783 3793 10.1109/TIE.2015.2399401
Zhang Y. Zheng H. Liu J. Zhao J. Sun P. An anomaly identification model for wind turbine state parameters J. Clean. Prod. 2018 195 1214 1227 10.1016/j.jclepro.2018.05.126
Odgaard P. Stroustrup J. Unknown input observer based detection of sensor faults in a wind turbine Proceedings of the IEEE International Conference on Control Applications Yokohama, Japan 8–10 September 2010 310 315
Odgaard P. Stoustrup J. Nielsen R. Damgaard C. Observer based detection of sensor faults in wind turbines Proceedings of the European Wind Energy Conference Marseille, France 16–19 March 2009
Odgaard P. Stoustrup J. Unknown input observer based scheme for detecting faults in a wind turbine converter Proceedings of the 7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes Barcelona, Spain 30 June–3 July 2009 161 166
Ouyssaad H. Chafouk H. Lefevre D. Doubly fed induction generator fault diagnosis using unknown input Takagi-Sugeno observer Proceedings of the International Conference on Control, Decision and Information Technologies Hammamet, Tunisia 6–8 May 2013 530 535
Abdelmalek S. Brazane L. Larabi A. Bettayed M. A novel scheme for current sensor faults diagnosis in the stator of a DFIG described by a T-S fuzzy model Measurement 2016 91 680 691 10.1016/j.measurement.2016.05.102
Georg S. Schulte H. Actuator fault diagnosis and fault-tolerant control of wind turbines using a Takagi-Sugeno sliding mode observer Proceedings of the International Conference on Control and Fault-Tolerant Systems Nice, France 9–11 October 2013 516 522
Blesa J. Jimneze P. Rotondo D. Nejjari F. Puig V. Fault Diagnosis of a Wind Farm using Interval Parity Equations IFAC Proc. 2014 47 4322 4327 10.3182/20140824-6-ZA-1003.00792
Simani S. Farsoni S. Castaldi P. Wind turbine simulator fault diagnosis via fuzzy modeling and identification techniques Sustain. Energy Grids Netw. 2015 1 45 52 10.1016/j.segan.2014.12.001
Puig V. Fault diagnosis and fault tolerant control using set-membership approaches: Application to real case studies Int. J. Appl. Math. Comput. Sci. 2010 20 619 635 10.2478/v10006-010-0046-y
Tabatabaeipour S.M. Odgaard P.F. Bak T. Stoustrup J. Fault detection of wind turbines with uncertain parameters: A set-membership approach Energies 2012 5 2424 2448 10.3390/en5072424
Díaz H. Guedes Soares C. Review of the current status, technology and future trends of offshore wind farms Ocean Eng. 2020 209 107381 10.1016/j.oceaneng.2020.107381
Li H. Huang C.G. Guedes Soares C. A real-time inspection and opportunistic maintenance strategies for floating offshore wind turbines Ocean Eng. 2022 256 111433 10.1016/j.oceaneng.2022.111433
Castro-Santos L. Martins E. Guedes Soares C. Cost assessment methodology for combined wind and wave floating offshore renewable energy systems Renew. Energy 2016 97 866 880 10.1016/j.renene.2016.06.016
Castro-Santos L. Silva D. Bento A.R. Salvacao N. Guedes Soares C. Economic feasibility of floating offshore wind farms in Portugal Ocean Eng. 2020 207 107393 10.1016/j.oceaneng.2020.107393
Yeter B. Garbatov Y. Guedes Soares C. Risk-based maintenance planning of offshore wind turbine farms Reliab. Eng. Syst. Saf. 2020 202 107062 10.1016/j.ress.2020.107062
Li H. Díaz H. Guedes Soares C. A Developed Failure Mode and Effect Analysis for Floating Offshore Wind Turbine Support Structures Renew. Energy 2020 164 133 145 10.1016/j.renene.2020.09.033
Li H. Teixeira A.P. Guedes Soares C. A Two-Stage Failure Mode and Effect Analysis of an Offshore Wind Turbine Renew. Energy 2020 162 1438 1461 10.1016/j.renene.2020.08.001
Li H. Díaz H. Guedes Soares C. A Failure Analysis of Floating Offshore Wind Turbines using AHP-FMEA Methodology Ocean Eng. 2021 234 109261 10.1016/j.oceaneng.2021.109261
Bhardwaj U. Teixeira A.P. Guedes Soares C. Reliability prediction of an offshore wind turbine gearbox Renew. Energy 2019 141 693 706 10.1016/j.renene.2019.03.136
Kang J. Sun L. Guedes Soares C. Fault Tree Analysis of floating offshore wind turbines Renew. Energy 2019 133 1455 1467 10.1016/j.renene.2018.08.097
Sinha Y. Steel J.A. A progressive study into offshore wind farm maintenance optimisation using risk based failure analysis Renew. Sustain. Energy Rev. 2015 42 735 742 10.1016/j.rser.2014.10.087
Reder M. Yürüşen N.Y. Melero J.J. Data-driven learning framework for associating weather conditions and wind turbine failures Reliab. Eng. Syst. Saf. 2018 169 554 569 10.1016/j.ress.2017.10.004
Alkaff A. Qomarudin M.N. Bilfaqih Y. Network reliability analysis: Matrixexponential approach Reliab. Eng. Syst. Saf. 2020 204 107192 10.1016/j.ress.2020.107192
Eryilmaz S. Kan C. Reliability based modelling and analysis for a wind power system integrated by two wind farms considering wind speed dependence Reliab. Eng. Syst. Saf. 2020 203 107077 10.1016/j.ress.2020.107077
Langseth H. Portinale L. Bayesian networks in reliability Reliab. Eng. Syst. Saf. 2007 92 92 108 10.1016/j.ress.2005.11.037
Bobbio A. Portinale L. Minichino M. Ciancamerla E. Improving the analysis of dependable systems by mapping fault trees into Bayesian networks Reliab. Eng. Syst. Saf. 2001 71 249 260 10.1016/S0951-8320(00)00077-6
Li H. Guedes Soares C. Huang H.Z. Reliability analysis of floating offshore wind turbine using Bayesian Networks Ocean Eng. 2020 217 107827 10.1016/j.oceaneng.2020.107827
Isermann R. Model-based Fault Detection and Diagnosis-Status and Applications Annu. Rev. Control 2005 29 71 85 10.1016/j.arcontrol.2004.12.002
Dong J. Verhaegen M. Data driven fault detection and isolation of a wind turbine benchmark Proceedings of the International Federation of Automatic Control (IFAC) World Congress Milano, Italy 28 August–2 September 2011 Volume 2 7086 7091
Simani S. Castaldi P. Tilli A. Data-driven approach for wind turbine actuator and sensor fault detection and isolation Proceedings of the International Federation of Automatic Control (IFAC) World Congress Milano, Italy 28 August–2 September 2011 8301 8306
Stoican F. Raduinea C.F. Olaru S. Adaptation of set theoretic methods to the fault detection of wind turbine benchmark Proceedings of the IFAC World Congress Milano, Italy 28 August–2 September 2011 8322 8327
Nazir M. Khan A.Q. Mustafa G. Abid M. Robust fault detection for wind turbines using reference model-based approach J. King Saud Univ. Eng. Sci. 2017 29 244 252 10.1016/j.jksues.2015.10.003
El Sayed W. Abd El Geliel M. Lotfy A. Fault Diagnosis of PMSG Stator Inter-Turn Fault Using Extended Kalman Filter and Unscented Kalman Filter Energies 2020 13 2972 10.3390/en13112972
Wu D. Gao C. Zhai Y. Shen Y. Ji Z. Fault diagnosis of pitch sensor bias for wind turbine based on the multi-innovation Kalman filter Proceedings of the Chinese Control Conference Chengdu, China 27–29 July 2016 6403 6407
Mengnan C. Yingning Q. Yanhui F. Hao W. Infield D. Wind Turbine Fault Diagnosis Based on Unscented Kalman Filter Proceedings of the International Conference on Renewable Power Generation Beijing, China 17–18 October 2015 1 5
An L. Sepehri N. Hydraulic actuator leakage fault detection using extended Kalman filter Int. J. Fluid Power 2005 6 41 51 10.1080/14399776.2005.10781210
Ghareveran M. Yazdizadeh A. Estimation of V47/660kW Wind Turbine State and Fault Detection with Extended Kalman Filter Proceedings of the International Conference on Control, Instrumentation, and Automation Sanandaj, Iran 30–31 October 2019 1 7
Negre P. Puig V. Pinda I. Fault detection and isolation of a real wind turbine using LPV observers Proceedings of the IFAC World Congress Milano, Italy 8 August–2 September 2011 12372 12379
Negre P. Puig V. Pinda I. Interval LPV Identification and Fault Diagnosis of a Real Wind Turbine Proceedings of the IFAC Symposium on System Identification Brussels, Belgium 11–13 July 2012 1689 1694
Tutiven C. Vidal Y. Acho L. Rodellar J. Fault detection and isolation of pitch actuator faults in a floating wind turbine IFAC PapersOnLine 2018 51 480 487 10.1016/j.ifacol.2018.09.620
Borja-Jaimes V. Adam-Medina M. López-Zapata B.Y. Vela Valdés L.G. Claudio Pachecano L. Sánchez Coronado E.M. Sliding Mode Observer-Based Fault Detection and Isolation Approach for a Wind Turbine Benchmark Processes 2022 10 54 10.3390/pr10010054
Haghani A. Krueger M. Jeinsch T. Ding S. Engel P. Data-Driven Multimode Fault Detection for Wind Energy Conversion Systems IFAC PapersOnLine 2015 48 633 638 10.1016/j.ifacol.2015.09.597
Jihong L. Daping X. Xiyun Y. Sensor fault detection in variable speed wind turbine system using H_/H∞ method Proceedings of the 7th World Congress on Intelligent Control and Automation Chongqing, China 25–27 June 2008
Wei X. Verhaegen M. Van Engelen T. Sensor fault detection and isolation for wind turbines based on subspace identification and Kalman filter techniques Int. J. Adapt. Control 2010 24 687 707 10.1002/acs.1162
Chen W. Ding S.X. Sari A. Naik A. Khan A.Q. Yin S. Observer-based FDI schemes for wind turbine benchmark Proceedings of the IFAC World Congress Milano, Italy 28 August–2 September 2011 7073 7078
Bangalore P. Tjernberg L.B. An artificial neural network approach for early fault detection of gearbox bearings IEEE Trans. Smart Grid 2015 6 980 987 10.1109/TSG.2014.2386305
Jiang G. He H. Yan J. Xie P. Multiscale convolutional neural networks for fault diagnosis of wind turbine gearbox IEEE Trans. Ind. Electron. 2019 4 3196 3207 10.1109/TIE.2018.2844805
Liu X. Cai Y. Song Y. Tan L. Bearing Fault Diagnosis Based on Multi-scale Neural Networks Proceedings of the IEEE International Conference on Electro Information Technology (eIT) Mankato, MN, USA 19–21 May 2022 80 85
Mansouri M. Dhibi K. Hajji M. Bouzara K. Nounou H. Nounou M. Interval-Valued Reduced RNN for Fault Detection and Diagnosis for Wind Energy Conversion Systems IEEE Sens. J. 2022 22 13581 13588 10.1109/JSEN.2022.3175866
Zhu H. Liu J. Lu D. Wang Z. A Novel Wind Turbine Fault Detection Method Based on Fuzzy Logic System Using Neural Network Construction Method IFAC PapersOnLine 2020 53 664 668 10.1016/j.ifacol.2021.04.157
Farsoni S. Simani S. Castaldi P. Fuzzy and Neural Network Approaches to Wind Turbine Fault Diagnosis Appl. Sci. 2021 11 5035 10.3390/app11115035
Wang L. Zhang Z. Long H. Xu J. Liu R. Wind turbine gearbox failure identification with deep neural networks IEEE Trans. Ind. Inform. 2017 3 1360 1368 10.1109/TII.2016.2607179
Chen L. Xu G. Zhang Q. Zhang X. Learning deep representation of imbalanced SCADA data for fault detection of wind turbines Measurement 2019 139 370 379 10.1016/j.measurement.2019.03.029
Schlechtingen M. Santos I.F. Wind turbine condition monitoring based on SCADA data using normal behavior models. Part 2: Application examples Appl. Soft Comput. 2014 14 447 460 10.1016/j.asoc.2013.09.016
Carroll J. Koukoura S. McDonald A. Charalambous A. Weiss S. McArthur S. Wind turbine gearbox failure and remaining useful life prediction using machine learning techniques Wind Energy 2019 22 360 375 10.1002/we.2290
Papatheou E. Dervilis N. Maguire A.E. Antoniadou I. Worden K. A performance monitoring approach for the novel lillgrund offshore wind farm IEEE Trans. Ind. Electron. 2015 62 6636 6644 10.1109/TIE.2015.2442212
Kong Z. Tang B. Deng L. Liu W. Han Y. Condition monitoring of wind turbines based on spatio-temporal fusion of SCADA data by convolutional neural networks and gated recurrent units Renew. Energy 2020 146 760 776 10.1016/j.renene.2019.07.033
Xiang L. Wang P. Yang X. Hu A. Su H. Fault detection of wind turbine based on SCADA data analysis using CNN and LSTM with attention mechanism Measurement 2021 175 109094 10.1016/j.measurement.2021.109094
Guo P. Fu J. Yang X. Condition Monitoring and Fault Diagnosis of Wind Turbines Gearbox Bearing Temperature Based on Kolmogorov-Smirnov Test and Convolutional Neural Network Model Energies 2018 11 2248 10.3390/en11092248
Sun J. Wen J. Yuan C. Liu Z. Xiao Q. Bearing Fault Diagnosis Based on Multiple Transformation Domain Fusion and Improved Residual Dense Networks IEEE Sens. J. 2022 22 1541 1551 10.1109/JSEN.2021.3131722
Toma R.N. Piltan F. Im K. Shon D. Yoon T.H. Yoo D.-S. Kim J.-M. A Bearing Fault Classification Framework Based on Image Encoding Techniques and a Convolutional Neural Network under Different Operating Conditions Sensors 2022 22 4881 10.3390/s22134881 35808372
Guo P. Infield D. Wind turbine power curve modeling and monitoring with Gaussian process and SPRT IEEE Trans. Sustain. Energy 2020 11 107 115 10.1109/TSTE.2018.2884699
Ghane M. Rasekhi Nejad A. Blanke M. Gao Z. Moan T. Statistical fault diagnosis of wind turbine drivetrain applied to a 5MW floating wind turbine J. Phys. Conf. Ser. 2017 753 052017 10.1088/1742-6596/753/5/052017
Ghane M. Rasekhi Nejad A. Blanke M. Gao Z. Moan T. Condition monitoring of spar-type floating wind turbine drivetrain using statistical fault diagnosis Wind Energy 2018 21 575 589 10.1002/we.2179
Heydari A. Garcia D. Fekih A. Keynia F. Tjernberg L. Santoli L. A hybrid intelligent model for the condition monitoring and diagnostics of wind turbines gearbox IEEE Access 2021 9 89878 89890 10.1109/ACCESS.2021.3090434
Wang L. Jia S. Yan X. Ma L. Fang J. A SCADA-Data-Driven Condition Monitoring Method of Wind Turbine Generators IEEE Access 2022 10 67532 67540 10.1109/ACCESS.2022.3185259
Jiang G. Xie P. He H. Yan J. Wind Turbine Fault Detection Using a Denoising Autoencoder with Temporal Information IEEE/ASME Trans. Mechatron. 2018 23 89 100 10.1109/TMECH.2017.2759301
Zimroz R. Bartelmus W. Barszcz T. Urbanek J. Diagnostics of bearings in presence of strong operating conditions non-stationarity—A procedure of load-dependent features processing with application to wind turbine bearings Mech. Syst. Signal Process. 2014 46 16 27 10.1016/j.ymssp.2013.09.010
Nguyen C. Huynh T. Kim J. Vibration-based damage detection in wind turbine towers using artificial neural networks Struct. Monit. Maint. 2018 5 507 519
Teng W. Ding X. Cheng H. Han C. Liu Y. Mu H. Compound faults diagnosis and analysis for a wind turbine gearbox via a novel vibration model and empirical wavelet transform Renew. Energy 2019 136 393 402 10.1016/j.renene.2018.12.094
Toma R.N. Kim J.M. Article bearing fault classification of induction motors using discrete wavelet transform and ensemble machine learning algorithms Appl. Sci. 2020 10 5251 10.3390/app10155251
Mauricio A. Qi J. Gryllias K. Vibration-based condition monitoring of wind turbine gearboxes based on cyclostationary analysis J. Eng. Gas Turbines Power 2019 141 031026 10.1115/1.4041114
Elasha F. Shanbr S. Li X. Mba D. Prognosis of a wind turbine gearbox bearing using supervised machine learning Sensors 2019 19 3092 10.3390/s19143092
Kim H.-C. Kim M.-H. Choe D.-E. Structural health monitoring of towers and blades for floating offshore wind turbines using operational modal analysis and modal properties with numerical-sensor signals Ocean Eng. 2019 188 106226 10.1016/j.oceaneng.2019.106226
Abouhnik A. Albarbar A. Wind turbine blades condition assessment based on vibration measurements and the level of an empirically decomposed feature Energy Convers. Manag. 2012 64 606 613 10.1016/j.enconman.2012.06.008
Pozo F. Vidal Y. Wind turbine fault detection through principal component analysis and statistical hypothesis testing Energies 2016 9 3 10.3390/en9010003
Yoon J. He D. Van Hecke B. On the use of a single piezoelectric strain sensor for wind turbine planetary gearbox fault diagnosis IEEE Trans. Ind. Electron. 2015 62 6585 6593 10.1109/TIE.2015.2442216
Wen B. Tian X. Jiang Z. Li Z. Dong X. Peng Z. Monitoring blade loads for a floating wind turbine in wave basin model tests using fiber Bragg grating sensors: A feasibility study Mar. Struct. 2020 71 102729 10.1016/j.marstruc.2020.102729
Rotondo D. Nejjari F. Puig V. Blesa J. Fault tolerant control of the wind turbine benchmark using virtual sensors/actuators IFAC Proc. 2012 45 114 119 10.3182/20120829-3-MX-2028.00185
Simani S. Castaldi P. Adaptive fault-tolerant control design approach for a wind turbine benchmark Proceedings of the Fault Detection, Supervision and Safety of Technical Processes Conference Mexico City, Mexico 29–31 August 2012 319 324
Shaker M. Patton R. Fault tolerant adaptive sliding mode controller for wind turbine power maximization IFAC Proc. 2012 45 499 504
Odgaard P.F. Stoustrup J. Fault tolerant control of wind turbines using unknown input observers IFAC Proc. Vol. 2012 45 313 318 10.3182/20120829-3-MX-2028.00010
Odgaard P.F. Stoustrup J. A benchmark evaluation of fault tolerant wind turbine control concepts IEEE Trans. Control Syst. Technol. 2015 23 1221 1228 10.1109/TCST.2014.2361291
Simani S. Castaldi P. Data–Driven Design of Fuzzy Logic Fault Tolerant Control for a Wind Turbine Benchmark Proceedings of the Fault Detection, Supervision and Safety of Technical Processes Mexico City, Mexico 29–31 August 2012
Simani S. Castaldi P. Active actuator fault-tolerant control of a wind turbine benchmark model Int. J. Robust Nonlinear Cont. 2014 24 1283 1303 10.1002/rnc.2993
Lan J. Patton R. Zhu X. Fault tolerant wind turbine pitch control using adaptive sliding mode estimation Renew. Energy 2018 116 219 231 10.1016/j.renene.2016.12.005
Kamal E. Aitouche A. Ghorbani R. Bayart M. Robust fuzzy fault tolerant control of wind energy conversion systems subject to sensor faults IEEE Trans. Sustain. Energy 2012 3 231 241 10.1109/TSTE.2011.2178105
Shaker M. Patton R. Active sensor fault tolerant output feedback tracking control for wind turbine systems via T–S model Eng. Appl. Artif. Intell. 2014 34 1 12 10.1016/j.engappai.2014.04.005
Li S. Wang H. Aitouche A. Christov N. Active fault tolerant control of wind turbine systems based on DFIG with actuator fault and disturbance using Takagi–Sugeno fuzzy model J. Frankl. Inst. 2018 355 8194 8212 10.1016/j.jfranklin.2018.08.021
Azizi A. Nourisola H. Shoja-Majidabad S. Fault tolerant control of wind turbines with an adaptive output feedback sliding mode controller Renew. Energy 2019 135 55 65 10.1016/j.renene.2018.11.106
Badihi H. Zhang Y. Hong H. Fuzzy gain-scheduled active fault tolerant control of a wind turbine J. Frankl. Inst. 2014 351 3677 3706 10.1016/j.jfranklin.2013.05.007
Mazare M. Taghizadeh M. Ghaf-Ghanbari P. Pitch actuator fault-tolerant control of wind turbines based on time delay control and disturbance observer Ocean Eng. 2021 238 109724 10.1016/j.oceaneng.2021.109724
Noshirvani G. Askari J. Fekih A. Fractional-order fault-tolerant pitch control design for a 2.5 MW wind turbine subject to actuator faults Struct. Control Health Monit. 2019 26 e2411
Musarrat M.N. Fekih A. A fractional order sliding mode control-based topology to improve the transient stability of wind energy systems Int. J. Electr. Power Energy Syst. 2021 133 107306 10.1016/j.ijepes.2021.107306
Mousavi Y. Bevan G. Kucukdemiral I. Fekih A. Maximum Power Extraction from Wind Turbines using a Fault-Tolerant Fractional-order Nonsingular Terminal Sliding Mode Control Energies 2022 18 5887
Mousavi Y. Bevan G. Kucukdemiral I. Fekih A. Active Fault-tolerant Fractional-order Terminal Sliding Mode Control for DFIG-based Wind Turbines Subjected to Sensor Faults Proceedings of the IEEE IAS GLOBCONET Conference Arad, Romania 20–22 May 2022 1 6
Morshed M.J. Fekih A. A Sliding mode approach to enhance the power quality of wind turbines under unbalanced grid conditions IEEE/CAA J. Autom. Sin. 2019 6 566 574 10.1109/JAS.2019.1911414
Yang B. Yu T. Shu H.C. Zhang Y.M. Chen J. Sang Y.Y. Jiang L. Passivity-based sliding-mode control design for optimal power extraction of a PMSG based variable speed wind turbine Renew. Energy 2018 119 577 589 10.1016/j.renene.2017.12.047
Shaker M.S. Kraidi A. Robust fault-tolerant control of wind turbine systems against actuator and sensor faults Arab. J. Sci. Eng. 2017 42 3055 3063 10.1007/s13369-017-2525-z
Fekih A. Effective Fault Tolerant Control Design for a Class of Nonlinear Systems: Application to a Class of Motor Control IET Control Theory Appl. 2008 2 762 772 10.1049/iet-cta:20070090
Morshed M.J. Fekih A. Design of a Chattering-free integral terminal sliding mode approach for DFIG-based wind energy systems Optim. Control Appl. Methods 2020 41 1718 1734 10.1002/oca.2635
Morshed M.J. Fekih A. Second Order Integral Terminal Sliding Mode Control for Voltage Sag Mitigation in DFIG-based Wind Turbines Proceedings of the IEEE Conference on Control Technology and Applications Maui, HI, USA 27–30 August 2017 614 619
Fekih A. Mobayen S. Chen C.C. Adaptive robust fault-tolerant control design for wind turbines subject to pitch actuator faults Energies 2021 14 1791 10.3390/en14061791
Kim J. Yang I. Lee D. Control allocation based compensation for faulty blade actuator of wind turbine IFAC Proc. 2012 45 355 360 10.3182/20120829-3-MX-2028.00063
Sloth C. Esbensen T. Niss M. Stoustrup J. Odgaard P.F. Robust LMI-Based Control of Wind Turbines with Parametric Uncertainties Proceedings of the 3rd IEEE Multi-Conference on Systems and Control Saint Petersburg, Russia 8–10 July 2009
Badihi H. Zhang Y. Rakheja S. Pillay P. Model-Based Fault-Tolerant Pitch Control of an Offshore Wind Turbine IFAC PapersOnLine 2019 51 221 226 10.1016/j.ifacol.2018.09.303
Odgaard P.F. Johnson K.E. Wind turbine fault detection and fault tolerant control-an enhanced benchmark challenge Proceedings of the 2013 American Control Conference (ACC) Washington, DC, USA 17–19 June 2013 IEEE Piscataway, NJ, USA 2013 4447 4452
Pao L.Y. Johnson K.E. Control of Wind Turbines IEEE Control Syst. 2011 31 44 62 10.1109/MCS.2010.939962
Freeman J. Balas M. An investigation of variable speed horizontal-axis wind turbines using direct model-reference adaptive control Proceedings of the 37th Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics Reno, NV, USA 11–14 January 1999
Frost S.A. Balas M.J. Wright A.D. Direct adaptive control of a utility-scale wind turbine for speed regulation Int. J. Robust Nonlinear Control 2009 19 59 71 10.1002/rnc.1329
Díaz-Guerra L. Adegas F.D. Stoustrup J. Monros M. Adaptive control algorithm for improving power capture of wind turbines in turbulent winds Proceedings of the American Control Conference Montreal, QC, Canada 27–29 June 2012 5807 5812
Kumar A. Stol K. Scheduled Model Predictive Control of a wind Turbine Proceedings of the AIAA Sciences Meeting Orlando, FL, USA 5–8 January 2009
Bianchi F.D. De Battista H. Mantz R.J. Wind Turbine Control Systems: Principles, Modelling and Gain Scheduling Design, Advances in Industrial Control Springer London, UK 2007
Yang X. Maciejowski J.M. Fault-tolerant model predictive control of a wind turbine benchmark IFAC Proc. 2012 45 337 342 10.3182/20120829-3-MX-2028.00134
Benlahrache M.A. Othman S. Sheibat-Othman N. Faults tolerant control of wind turbine based on Laguerre model predictive compensator Proceedings of the European Control Conference Linz, Austria 15–17 July 2015 3653 3658
Soliman M. Malik O.P. Westwick D.T. Multiple model MIMO predictive control for variable speed variable pitch wind turbines Proceedings of the American Control Conference Baltimore, MD, USA 30 June–2 July 2010 2778 2784
Novak J. Chalupa P. Wind Turbine Control with Multiple Model Predictive Control Proceedings of the 14th International Conference on Automation & Information Valencia, Spain 6–8 August 2013 97 102
Hovgaard T.G. Boyd S. Jørgensen J.B. Model predictive control for wind power gradients Wind Energy 2015 18 991 1006 10.1002/we.1742
Benlahrache M.A. Laib K. Othman S. Sheibat-Othman N. Fault Tolerant Control of Wind Turbine Using Robust Model Predictive Min-Max approach IFAC-PapersOnLine 2017 50 9902 9907 10.1016/j.ifacol.2017.08.1622
Evans M.A. Cannon M. Kouvaritakis B. Robust MPC Tower Damping for Variable Speed Wind Turbines IEEE Trans. Control Syst. Technol. 2015 23 290 296 10.1109/TCST.2014.2310513
Mirzaei M. Poulsen N.K. Niemann H.H. Robust model predictive control of a wind turbine Proceedings of the American Control Conference Montreal, QC, Canada 27–29 June 2012 4393 4398
Mousavi Y. Bevan G. Kucukdemiral I. Fekih A. Sliding Mode Control of Wind Energy Conversion Systems: Trends and Applications Renew. Sustain. Energy Rev. 2022 167 112734 10.1016/j.rser.2022.112734
Maati Y. Bahir L. Optimal fault tolerant control of large-scale wind turbines in the case of the pitch actuator partial faults Complexity 2020 2020 6210407 10.1155/2020/6210407
Li. S. Aitouche A. Nicolai C. Fault-Tolerant Control of Wind Turbine System Using Linear Parameter-Varying Model Math. Probl. Eng. 2022 2022 1290639
Badihi H. Jadid S. Zhang Y. Pillay P. Rakheja S. Fault-Tolerant Cooperative Control in a Wind Farm Using Adaptive Control Reconfiguration and Control Reallocation IEEE Trans. Sustain. Energy 2020 11 2119 2129 10.1109/TSTE.2019.2950681
Badihi H. Zhang Y. Hong H. Wind Turbine Fault Diagnosis and Fault-Tolerant Torque Load Control Against Actuator Faults IEEE Trans. Control Syst. Technol. 2015 23 1351 1372 10.1109/TCST.2014.2364956
Yi Y. Bai X. Zhang J. Chen C. Wang L. Li M. Second-order fast non-singular terminal sliding mode fault tolerant control for wind-turbine system Proceedings of the International Conference on Control Science and Electric Power Systems Shanghai, China 28–30 May 2021
Shi F. Patton R. An active fault tolerant control approach to an offshore wind turbine model Renew. Energy 2015 75 788 798 10.1016/j.renene.2014.10.061
Casau P. Rosa P. Tabatabaeipour S.M. Silvestre C. Fault detection and isolation and fault tolerant control of wind turbines using set-valued observers IFAC Proc. 2012 45 120 125 10.3182/20120829-3-MX-2028.00214
Cheng M. Jiang Y. Han P. Wang W. Fault tolerant control for power side current sensor in wind energy conversion system with cascaded brushless DFIG Proceedings of the 2017 IEEE International Electric Machines and Drives Conference (IEMDC) Miami, FL, USA 21–24 May 2017
Chen J. Yao W. Ren Y. Duan W. Kan J. Jiang L. Adaptive active fault-tolerant MPPT control of variable speed wind turbine considering generator actuator failure Int. J. Electr. Power Energy Syst. 2022 143 108443 10.1016/j.ijepes.2022.108443
Kamal. E. Aitouche A. Ghorbani R. Bayart M. Unknown Input Observer with Fuzzy Fault Tolerant Control for Wind Energy System IFAC Proc. 2012 45 946 951 10.3182/20120829-3-MX-2028.00069
Schulte H. Gauterin E. Fault-tolerant control of wind turbines with hydro-static transmission using Takagie Sugeno and sliding mode techniques Annu. Rev. Control 2015 40 82 92 10.1016/j.arcontrol.2015.08.003
Musarrat M.N. Fekih A. A fault tolerant control paradigm for DFIG-based wind energy conversion systems in a Wind/PV hybrid microgrid IEEE J. Emerg. Sel. Top. Power Electron. 2021 9 7237 7252 10.1109/JESTPE.2020.3034604
Vidal Y. Rodellar J. Acho L. Tutivén C. Active Fault Tolerant Control for Pitch Actuators Failures Tested in a Hardware-in-the Loop Simulation for Wind Turbine Controllers Proceedings of the 23rd Mediterranean Conference on Control and Automation (MED) Torremolinos, Spain 16–19 June 2015
Niss M. Esbensen T. Sloth C. Stoustrup J. Odgaard P.F. A Youla-Kucera approach to Gain-Scheduling with Application to Wind Turbine Control Proceedings of the IEEE Multi-Conference on Systems and Control Saint Petersburg, Russia 8–10 July 2009
Acho L. Rodellar J. Tutiven C. Vidal Y. Passive Fault Tolerant Control Strategy in Controlled Wind Turbines Proceedings of the 3rd Conference on Control and Fault-Tolerant Systems (SysTol) Barcelona, Spain 7–9 September 2016 636 641
Fan L. Song Y. Neuro-adaptive model-reference fault-tolerant control with application to wind turbines IET Control Theory Appl. 2012 6 475 486 10.1049/iet-cta.2011.0250
Han B. Zhou L. Yang F. Xiang Z. Individual pitch controller based on fuzzy logic control for wind turbine load mitigation IET Renew. Power Gener. 2016 10 687 693 10.1049/iet-rpg.2015.0320
Meisami-Azad M. Grigoriadis K.M. Anti-windup linear parameter-varying control of pitch actuators in wind turbines Wind Energy 2015 18 187 200 10.1002/we.1689
Habibi H. Nohooji H.R. Howard I. Adaptive PID control of wind turbines for power regulation with unknown control direction and actuator faults IEEE Access 2018 6 37464 37479 10.1109/ACCESS.2018.2853090
Wu A.H. Zhao B.H. Mao J.F. Wu B.W. Yu F. Adaptive active fault-tolerant MPPT control for wind power generation systems under partial loss of actuator effectiveness Int. J. Electr. Power Energy Syst. 2019 105 660 670 10.1016/j.ijepes.2018.09.015
Zhao Z. Wu J. Li T. Sun C. Yan R. Chen X. Challenges and Opportunities of AI-Enabled Monitoring, Diagnosis & Prognosis: A Review Chin. J. Mech. Eng. 2021 34 56