extreme learning machine; finite-time sliding mode control; model uncertainty; prescribed performance; robot manipulators; Mechanical Engineering; Control and Optimization; Artificial Intelligence
Abstract :
[en] This study aims to provide a robust trajectory tracking controller which guarantees the prescribed performance of a robot manipulator, both in transient and steady-state modes, experiencing parametric uncertainties. The main core of the controller is designed based on the adaptive finite-time sliding mode control (SMC) and extreme learning machine (ELM) methods to collectively estimate the parametric model uncertainties and enhance the quality of tracking performance. Accordingly, the global estimation with a fast convergence rate is achieved while the tracking error and the impact of chattering on the control input are mitigated significantly. Following the control design, the stability of the overall control system along with the finite-time convergence rate is proved, and the effectiveness of the proposed method is investigated via extensive simulation studies. The results of simulations confirm that the prescribed transient and steady-state performances are obtained with enough accuracy, fast convergence rate, robustness, and smooth control input which are all required for practical implementation and applications.
Disciplines :
Electrical & electronics engineering
Author, co-author :
Raoufi, Mona; Department of Electrical Engineering, Hamedan University of Technology, Hamedan, Iran
HABIBI, Hamed ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Automation
Yazdani, Amirmehdi; College of Science, Health, Engineering and Education, Murdoch University, Perth, Australia
Wang, Hai ; College of Science, Health, Engineering and Education, Murdoch University, Perth, Australia
External co-authors :
yes
Language :
English
Title :
Robust Prescribed Trajectory Tracking Control of a Robot Manipulator Using Adaptive Finite-Time Sliding Mode and Extreme Learning Machine Method
Sanchez J. Corrales J.-A. Bouzgarrou B.-C. Mezouar Y. Robotic manipulation and sensing of deformable objects in domestic and industrial applications: A survey Int. J. Robot. Res. 2018 37 688 716 10.1177/0278364918779698
Davidson J. Bhusal S. Mo C. Karkee M. Zhang Q. Robotic manipulation for specialty crop harvesting: A review of manipulator and end-effector technologies Glob. J. Agric. Allied Sci. 2020 2 25 41 10.35251/gjaas.2020.004
Wei B. A Tutorial on Robust Control, Adaptive Control and Robust Adaptive Control—Application to Robotic Manipulators Inventions 2019 4 49 10.3390/inventions4030049
Jin L. Li S. Yu J. He J. Robot manipulator control using neural networks: A survey Neurocomputing 2018 285 23 34 10.1016/j.neucom.2018.01.002
Billard A. Kragic D. Trends and challenges in robot manipulation Science 2019 364 eaat8414 10.1126/science.aat8414
Lee T.S. Alandoli E.A. A critical review of modelling methods for flexible and rigid link manipulators J. Brazil. Soc. Mechan. Sci. Eng. 2020 42 508 10.1007/s40430-020-02602-0
AlAttar A. Kormushev P. Kinematic-model-free orientation control for robot manipulation using locally weighted dual quaternions Robotics 2020 9 76 10.3390/robotics9040076
Choi J. Baek J. Lee W. Lee Y.S. Han S. Adaptive model-free control with nonsingular terminal sliding-mode for application to robot manipulators IEEE Access 2020 8 169897 169907 10.1109/ACCESS.2020.3022523
Zhu Y. Qiao J. Guo L. Adaptive sliding mode disturbance observer-based composite control with prescribed performance of space manipulators for target capturing IEEE Trans. Ind. Electron. 2018 66 1973 1983 10.1109/TIE.2018.2838065
Bu X. Prescribed performance control approaches, applications and challenges: A comprehensive survey Asian, J. Control 2022 1 21 10.1002/asjc.2765
Guo Q. Zhang Y. Celler B.G. Su S.W. Neural adaptive backstepping control of a robotic manipulator with prescribed performance constraint IEEE Trans. Neural Networks Learn. Syst. 2018 30 3572 3583 10.1109/TNNLS.2018.2854699 30183646
Zhao K. Song Y. Ma T. He L. Prescribed performance control of uncertain Euler–Lagrange systems subject to full-state constraints IEEE Trans. Neural Netw. Learn. Systems 2017 29 3478 3489
Wang J. Lu S. Wang S.-H. Zhang Y.-D. A review on extreme learning machine Mult. Tools Appl. 2021 1 50 10.1007/s11042-021-11007-7
Zhang J. Wang H. Ma M. Yu M. Yazdani A. Chen L. Active front steering-based electronic stability control for steer-by-wire vehicles via terminal sliding mode and extreme learning machine IEEE Trans. Vehicul. Technol. 2020 69 14713 14726 10.1109/TVT.2020.3036400
Hu Y. Wang H. Yazdani A. Man Z. Adaptive full order sliding mode control for electronic throttle valve system with fixed time convergence using extreme learning machine Neural Comput. Appl. 2022 34 5241 5253 10.1007/s00521-021-06365-0
Ye M. Wang H. Yazdani A. He S. Ping Z. Xu W. Discrete-time integral terminal sliding mode-based speed tracking control for a robotic fish Nonlinear Dyn. 2021 105 359 370 10.1007/s11071-021-06591-0
Leung H.C. Leung C.S. Wong E.W.M. Fault and noise tolerance in the incremental extreme learning machine IEEE Access 2019 7 155171 155183 10.1109/ACCESS.2019.2948059
Jamian S. Salim S. Kamarudin M. Zainon M. Mohamed M.S. Abdullah L. Hanafiah M. Review on controller design in pneumatic actuator drive system TELKOMNIKA Telecommun. Comput. Electron. Contr. 2020 18 332 342 10.12928/telkomnika.v18i1.12626
Zhang J. Wang H. Cao Z. Zheng J. Yu M. Yazdani A. Shahnia F. Fast nonsingular terminal sliding mode control for permanent-magnet linear motor via ELM Neural Comput. Appl. 2020 32 14447 14457 10.1007/s00521-019-04502-4
Sadgrove E.J. Falzon G. Miron D. Lamb D.W. The Segmented Colour Feature Extreme Learning Machine: Applications in Agricultural Robotics Agronomy 2021 11 2290 10.3390/agronomy11112290
Ezemobi E. Tonoli A. Silvagni M. Battery state of health estimation with improved generalization using parallel layer extreme learning machine Energies 2021 14 2243 10.3390/en14082243
Chen L. Yan B. Wang H. Shao K. Kurniawan E. Wang G. Extreme-learning-machine-based robust integral terminal sliding mode control of bicycle robot Contr. Eng. Pract. 2022 121 105064 10.1016/j.conengprac.2022.105064
Wu Y. Huang R. Li X. Liu S. Adaptive neural network control of uncertain robotic manipulators with external disturbance and time-varying output constraints Neurocomputing 2019 323 108 116 10.1016/j.neucom.2018.09.072
Zhang Q. Zhao X. Liu L. Dai T. Adaptive sliding mode neural network control and flexible vibration suppression of a flexible spatial parallel robot Electronics 2021 10 212 10.3390/electronics10020212
Vo A.T. Truong T.N. Kang H.-J. A Novel Prescribed-Performance-Tracking Control System with Finite-Time Convergence Stability for Uncertain Robotic Manipulators Sensors 2022 22 2615 10.3390/s22072615
Wang P. Zhu L. Zhang C. Wang C. Xiao K. Prescribed performance control with sliding-mode dynamic surface for a glue pump motor based on extended state observers Actuators 2021 10 282 10.3390/act10110282
Lu C. Hua L. Zhang X. Wang H. Guo Y. Adaptive sliding mode control method for Z-axis vibrating gyroscope using prescribed performance approach Appl. Sci. 2020 10 4779 10.3390/app10144779
Chen Q. Ren X. Na J. Zheng D. Adaptive robust finite-time neural control of uncertain PMSM servo system with nonlinear dead zone Neural Comput. Appl. 2017 28 3725 3736 10.1007/s00521-016-2260-5
Nguyen N.P. Mung N.X. Thanh Ha L.N.N. Huynh T.T. Hong S.K. Finite-time attitude fault tolerant control of quadcopter system via neural networks Mathematics 2020 8 1541 10.3390/math8091541
Yu S. Yu X. Shirinzadeh B. Man Z. Continuous finite-time control for robotic manipulators with terminal sliding mode Automatica 2005 41 1957 1964 10.1016/j.automatica.2005.07.001
Filippov A.F. Differential equations with discontinuous right-hand side Amer. Math. Soc. Trans. 1964 42 199 231
Vu V.T. Dao P.N. Loc P.T. Huy T.Q. Sliding variable-based online adaptive reinforcement learning of uncertain/disturbed nonlinear mechanical systems J. Control Automat. Electrical Syst. 2021 32 281 290 10.1007/s40313-020-00674-w
Armstrong B. Khatib O. Burdick J. The explicit dynamic model and inertial parameters of the PUMA 560 arm Proceedings of the 1986 IEEE International Conference on Robotics and Automation San Francisco, CA, USA 4–10 April 1986 510 518
Van M. Ge S.S. Ren H. Robust fault-tolerant control for a class of second-order nonlinear systems using an adaptive third-order sliding mode control IEEE Trans. Systems Man Cybernet. Syst. 2016 47 221 228 10.1109/TSMC.2016.2557220
Zhou H. Chen R. Zhou S. Liu Z. Design and analysis of a drive system for a series manipulator based on orthogonal-fuzzy PID control Electronics 2019 8 1051 10.3390/electronics8091051