Eprint already available on another site (E-prints, Working papers and Research blog)
A unified data infrastructure to support large-scale rare disease research
Johansson, Lennart F.; Laurie, Steven; Spalding, Dylan et al.
2023
 

Files


Full Text
2023.12.20.23299950v1.full.pdf
Publisher postprint (1.66 MB) Creative Commons License - Public Domain Dedication
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
Rare diseases; Solve-RD
Abstract :
[en] The Solve-RD project brings together clinicians, scientists, and patient representatives from 51 institutes spanning 15 countries to collaborate on genetically diagnosing ("solving") rare diseases (RDs). The project aims to significantly increase the diagnostic success rate by co-analysing data from thousands of RD cases, including phenotypes, pedigrees, exome/genome sequencing and multi-omics data. Here we report on the data infrastructure devised and created to support this co-analysis. This infrastructure enables users to store, find, connect, and analyse data and metadata in a collaborative manner. Pseudonymised phenotypic and raw experimental data are submitted to the RD-Connect Genome-Phenome Analysis Platform and processed through standardised pipelines. Resulting files and novel produced omics data are sent to the European Genome-phenome Archive, which adds unique file identifiers and provides long-term storage and controlled access services. MOLGENIS "RD3" and Cafe Variome "Discovery Nexus" connect data and metadata and offer discovery services, and secure cloud-based "Sandboxes" support multi-party data analysis. This proven infrastructure design provides a blueprint for other projects that need to analyse large amounts of heterogeneous data.
Research center :
Luxembourg Centre for Systems Biomedicine (LCSB): Bioinformatics Core (R. Schneider Group)
Disciplines :
Genetics & genetic processes
General & internal medicine
Author, co-author :
Johansson, Lennart F. 
Laurie, Steven 
Spalding, Dylan 
Gibson, Spencer
Ruvolo, David
Thomas, Coline 
Piscia, Davide 
de Andrade, Fernanda
Been, Gerieke
Bijlsma, Marieke
Brunner, Han 
Cimerman, Sandi
Yavari Dizjikan, Farid
Ellwanger, Kornelia 
Fernandez, Marcos 
Freeberg, Mallory 
van de Geijn, Gert-Jan
Kanninga, Roan
Maddi, Vatsalya
Medtarizadeh, Mehdi
Neerincx, Pieter
Ossowski, Stephan 
Rath, Ana 
Roelofs-Prins, Dieuwke
Stok-Benjamins, Marloes
van der Velde, K. Joeri 
Veal, Colin 
van der Vries, Gerben
Wadsley, Marc
Warren, Gregory
Zurek, Birte 
Keane, Thomas 
Graessner, Holm 
MAY, Patrick  ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core
Solve-RD consortium 
Beltran, Sergi
Swertz, Morris A.
Brookes, Anthony J.
More authors (28 more) Less
Language :
English
Title :
A unified data infrastructure to support large-scale rare disease research
Publication date :
20 December 2023
Focus Area :
Systems Biomedicine
Development Goals :
3. Good health and well-being
Available on ORBilu :
since 22 December 2023

Statistics


Number of views
137 (0 by Unilu)
Number of downloads
50 (0 by Unilu)

OpenAlex citations
 
0

Bibliography


Similar publications



Contact ORBilu